1
|
Hayward R, Moore S, Artun D, Madhavan A, Harte E, Torres-Pérez JV, Nagy I. Transcriptional reprogramming post-peripheral nerve injury: A systematic review. Neurobiol Dis 2024; 200:106624. [PMID: 39097036 DOI: 10.1016/j.nbd.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.
Collapse
Affiliation(s)
- R Hayward
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - S Moore
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - D Artun
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - A Madhavan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - E Harte
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - J V Torres-Pérez
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain.
| | - I Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
2
|
Deal B, Phillips K, Crelli C, Janjic JM, Pollock JA. RNA-Seq Reveals Sex Differences in Gene Expression during Peripheral Neuropathic Inflammation and in Pain Relief from a COX-2 Inhibiting Theranostic Nanoemulsion. Int J Mol Sci 2023; 24:ijms24119163. [PMID: 37298117 DOI: 10.3390/ijms24119163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Given decades of neuroinflammatory pain research focused only on males, there is an urgent need to better understand neuroinflammatory pain in females. This, paired with the fact that currently there is no long-term effective treatment for neuropathic pain furthers the need to evaluate how neuropathic pain develops in both sexes and how it can be relieved. Here we show that chronic constriction injury of the sciatic nerve caused comparable levels of mechanical allodynia in both sexes. Using a COX-2 inhibiting theranostic nanoemulsion with increased drug loading, both sexes achieved similar reduction in mechanical hypersensitivity. Given that both sexes have improved pain behavior, we specifically explored differential gene expression between sexes in the dorsal root ganglia (DRG) during pain and relief. Total RNA from the DRG revealed a sexually dimorphic expression for injury and relief caused by COX-2 inhibition. Of note, both males and females experience increased expression of activating transcription factor 3 (Atf3), however, only the female DRG shows decreased expression following drug treatment. Alternatively, S100A8 and S100A9 expression appear to play a sex specific role in relief in males. The sex differences in RNA expression reveal that comparable behavior does not necessitate the same gene expression.
Collapse
Affiliation(s)
- Brooke Deal
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Katherine Phillips
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caitlin Crelli
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jelena M Janjic
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John A Pollock
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
3
|
Cuevas-Diaz Duran R, Li Y, Garza Carbajal A, You Y, Dessauer CW, Wu J, Walters ET. Major Differences in Transcriptional Alterations in Dorsal Root Ganglia Between Spinal Cord Injury and Peripheral Neuropathic Pain Models. J Neurotrauma 2023; 40:883-900. [PMID: 36178348 PMCID: PMC10150729 DOI: 10.1089/neu.2022.0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic, often intractable, pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain. Both PNI and SCI produce DRG neuron hyperexcitability linked to pain, but contusive SCI produces little peripheral axotomy or peripheral nerve inflammation. Thus, comparison of transcriptional signatures of DRGs across PNI and SCI models may highlight pain-associated transcriptional alterations in sensory ganglia that do not depend on peripheral axotomy or associated effects such as peripheral Wallerian degeneration. Data from our rat thoracic SCI experiments were combined with meta-analysis of published whole-DRG RNA-seq datasets from prominent rat PNI models. Striking differences were found between transcriptional responses to PNI and SCI, especially in regeneration-associated genes (RAGs) and long noncoding RNAs (lncRNAs). Many transcriptomic changes after SCI also were found after corresponding sham surgery, indicating they were caused by injury to surrounding tissue, including bone and muscle, rather than to the spinal cord itself. Another unexpected finding was of few transcriptomic similarities between rat neuropathic pain models and the only reported transcriptional analysis of human DRGs linked to neuropathic pain. These findings show that DRGs exhibit complex transcriptional responses to central and peripheral neural injury and associated tissue damage. Although only a few genes in DRG cells exhibited similar changes in expression across all the painful conditions examined here, these genes may represent a core set whose transcription in various DRG cell types is sensitive to significant bodily injury, and which may play a fundamental role in promoting neuropathic pain.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Yong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yanan You
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Katz HR, Arcese AA, Bloom O, Morgan JR. Activating Transcription Factor 3 (ATF3) is a Highly Conserved Pro-regenerative Transcription Factor in the Vertebrate Nervous System. Front Cell Dev Biol 2022; 10:824036. [PMID: 35350379 PMCID: PMC8957905 DOI: 10.3389/fcell.2022.824036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
The vertebrate nervous system exhibits dramatic variability in regenerative capacity across species and neuronal populations. For example, while the mammalian central nervous system (CNS) is limited in its regenerative capacity, the CNS of many other vertebrates readily regenerates after injury, as does the peripheral nervous system (PNS) of mammals. Comparing molecular responses across species and tissues can therefore provide valuable insights into both conserved and distinct mechanisms of successful regeneration. One gene that is emerging as a conserved pro-regenerative factor across vertebrates is activating transcription factor 3 (ATF3), which has long been associated with tissue trauma. A growing number of studies indicate that ATF3 may actively promote neuronal axon regrowth and regeneration in species ranging from lampreys to mammals. Here, we review data on the structural and functional conservation of ATF3 protein across species. Comparing RNA expression data across species that exhibit different abilities to regenerate their nervous system following traumatic nerve injury reveals that ATF3 is consistently induced in neurons within the first few days after injury. Genetic deletion or knockdown of ATF3 expression has been shown in mouse and zebrafish, respectively, to reduce axon regeneration, while inducing ATF3 promotes axon sprouting, regrowth, or regeneration. Thus, we propose that ATF3 may be an evolutionarily conserved regulator of neuronal regeneration. Identifying downstream effectors of ATF3 will be a critical next step in understanding the molecular basis of vertebrate CNS regeneration.
Collapse
Affiliation(s)
- Hilary R Katz
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Anthony A Arcese
- The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,The Donald and Barbara Zucker School of Medicine, Hempstead, NY, United States
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
5
|
Guo ZB, Tang L, Wang LP, Wu HH, Huang CL, Zhan MX, Shi ZM, Yang CL, Chen GZ, Zou YQ, Yang F, Wu XZ. The analgesic effects of ulinastatin either as a single agent or in combination with sufentanil: A novel therapeutic potential for postoperative pain. Eur J Pharmacol 2021; 907:174267. [PMID: 34146590 DOI: 10.1016/j.ejphar.2021.174267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/11/2023]
Abstract
Ulinastatin is a broad-spectrum protease inhibitor widely used for the treatment of various inflammation-related diseases owing to its recognized excellent anti-inflammatory and cytoprotective properties. However, whether ulinastatin can relieve postoperative pain remains unclear. In this study, we evaluated the analgesic effects of ulinastatin administered either as a single agent or in combination with sufentanil in a validated preclinical rat model of postoperative pain induced by plantar incision. We found that incisional surgery on the hind paw of these rats induced sustained ipsilateral mechanical pain hypersensitivity that lasted for at least 10 days. A single intraperitoneal (i.p.) injection of ulinastatin prevented the development and reversed the maintenance of incision-induced mechanical pain hypersensitivity in a dose-dependent manner. However, ulinastatin had no effect on the baseline nociceptive threshold. Moreover, repeated i.p. injections of ulinastatin persistently attenuated incision-induced mechanical pain hypersensitivity and promoted recovery from the surgery. The rats did not develop any analgesic tolerance over the course of repeated injections of ulinastatin. A single i.p. injection of ulinastatin was also sufficient to inhibit the initiation and maintenance of incision-induced hyperalgesic priming when the rats were subsequently challenged with an ipsilateral intraplantar prostaglandin E2 injection. Furthermore, the combined administration of ulinastatin and sufentanil significantly enhanced the analgesic effect of sufentanil on postoperative pain, which involved mechanisms other than a direct influence on opioid receptors. These findings demonstrated that ulinastatin had a significant analgesic effect on postoperative pain and might be a novel pharmacotherapeutic agent for managing postoperative pain either alone or as an adjuvant.
Collapse
Affiliation(s)
- Zhi-Bin Guo
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, PR China
| | - Li-Ping Wang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China
| | - Huang-Hui Wu
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Chang-Lu Huang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Mei-Xiang Zhan
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Chen-Long Yang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China.
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China; Pain Research Laboratory, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China.
| |
Collapse
|
6
|
Lin JH, Yu YW, Chuang YC, Lee CH, Chen CC. ATF3-Expressing Large-Diameter Sensory Afferents at Acute Stage as Bio-Signatures of Persistent Pain Associated with Lumbar Radiculopathy. Cells 2021; 10:cells10050992. [PMID: 33922541 PMCID: PMC8145235 DOI: 10.3390/cells10050992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of pain chronicity is largely unknown in lumbar radiculopathy (LR). The anatomical location of nerve injury is one of the important factors associated with pain chronicity of LR. Accumulating evidence has shown constriction distal to the dorsal root ganglion (DRG) caused more severe radiculopathy than constriction proximal to the DRG; thereby, the mechanism of pain chronicity in LR could be revealed by comparing the differences in pathological changes of DRGs between nerve constriction distal and proximal to the DRG. Here, we used 2 rat models of LR with nerve constriction distal or proximal to the DRG to probe how the different nerve injury sites could differentially affect pain chronicity and the pathological changes of DRG neuron subpopulations. As expected, rats with nerve constriction distal to the DRG showed more persistent pain behaviors than those with nerve constriction proximal to the DRG in 50% paw withdraw threshold, weight-bearing test, and acetone test. One day after the operation, distal and proximal nerve constriction showed differential pathological changes of DRG. The ratios of activating transcription factor3 (ATF3)-positive DRG neurons were significantly higher in rats with nerve constriction distal to DRG than those with nerve constriction proximal to DRG. In subpopulation analysis, the ratios of ATF3-immunoreactivity (IR) in neurofilament heavy chain (NFH)-positive DRG neurons significantly increased in distal nerve constriction compared to proximal nerve constriction; although, both distal and proximal nerve constriction presented increased ratios of ATF3-IR in calcitonin gene-related peptide (CGRP)-positive DRG neurons. Moreover, the nerve constriction proximal to DRG caused more hypoxia than did that distal to DRG. Together, ATF3 expression in NHF-positive DRG neurons at the acute stage is a potential bio-signature of persistent pain in rat models of LR.
Collapse
Affiliation(s)
- Jiann-Her Lin
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan;
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; (Y.-C.C.); (C.-H.L.)
| | - Yu-Wen Yu
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; (Y.-C.C.); (C.-H.L.)
| | - Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; (Y.-C.C.); (C.-H.L.)
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; (Y.-C.C.); (C.-H.L.)
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; (Y.-C.C.); (C.-H.L.)
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115201, Taiwan
- Taiwan Mouse Clinic, Biomedical Translation Research Center, Academia Sinica, Taipei 115202, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
8
|
King SN, Hurley J, Carter Z, Bonomo N, Wang B, Dunlap N, Petruska J. Swallowing dysfunction following radiation to the rat mylohyoid muscle is associated with sensory neuron injury. J Appl Physiol (1985) 2021; 130:1274-1285. [PMID: 33600281 DOI: 10.1152/japplphysiol.00664.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Radiation-based treatments for oropharyngeal and hypopharyngeal cancers result in impairments in swallowing mobility, but the mechanisms behind the dysfunction are not clear. The purpose of this study was to determine if we could establish an animal model of radiation-induced dysphagia in which mechanisms could be examined. We hypothesized that 1) radiation focused at the depth of the mylohyoid muscle would alter normal bolus transport and bolus size and 2) radiation to the mylohyoid muscle will induce an injury/stress-like response in trigeminal sensory neurons whose input might modulate swallow. Rats were exposed to 48 or 64 Gy of radiation to the mylohyoid given 8 Gy in 6 or 8 fractions. Swallowing function was evaluated by videofluoroscopy 2 and 4 wk following treatment. Neuronal injury/stress was analyzed in trigeminal ganglion by assessing activating transcription factor (ATF)3 and GAP-43 mRNAs at 2, 4, and 8 wk post treatment. Irradiated rats exhibited decreases in bolus movement through the pharynx and alterations in bolus clearance. In addition, ATF3 and GAP-43 mRNAs were upregulated in trigeminal ganglion in irradiated rats, suggesting that radiation to mylohyoid muscle induced an injury/stress response in neurons with cell bodies that are remote from the irradiated tissue. These results suggest that radiation-induced dysphagia can be assessed in the rat and radiation induces injury/stress-like responses in sensory neurons.NEW & NOTEWORTHY Radiation-based treatments for head and neck cancer can cause significant impairments in swallowing mobility. This study provides new evidence supporting the possibility of a neural contribution to the mechanisms of swallowing dysfunction in postradiation dysphagia. Our data demonstrated that radiation to the mylohyoid muscle, which induces functional deficits in swallowing, also provokes an injury/stress-like response in the ganglion, innervating the irradiated muscle.
Collapse
Affiliation(s)
- Suzanne N King
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville, Louisville, Kentucky
| | - Justin Hurley
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Zachary Carter
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Nicholas Bonomo
- School of Medicine, University of Louisville, Louisville, Kentucky
| | - Brian Wang
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Neal Dunlap
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Jeffrey Petruska
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky.,Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
9
|
Chang YS, Kan HW, Hsieh YL. Activating transcription factor 3 modulates protein kinase C epsilon activation in diabetic peripheral neuropathy. J Pain Res 2019; 12:317-326. [PMID: 30679921 PMCID: PMC6338122 DOI: 10.2147/jpr.s186699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Skin denervation that develops in patients with diabetes mellitus as a neuropathic manifestation is known as diabetic peripheral neuropathy (DPN). Skin denervation is parallel to neuronal injuries that alter intracellular signaling. To date, the correlation between nerve injury and the activation of intracellular responses to neuropathic manifestations has not been elucidated; specifically, whether activating transcription factor 3 (ATF3) is responsible for neuronal injury and a critical molecule that modulates the activation of intracellular protein kinase C epsilon (p-PKCε) and pain development in DPN is a crucial question. Methods To address, ATF3 knockout (atf3−/− group, C57/B6 genetic background) and wild-type mice (atf3+/+ group) received a single dose of streptozotocin (200 mg/kg) to generate a mouse model of DPN. Results Both atf3+/+ and atf3−/− mice exhibited hyperglycemia and the same pathology of skin denervation at posttreatment month 2, but only atf3+/+ mice developed thermal hyperalgesia (P<0.001) and mechanical allodynia (P=0.002). The atf3+/+ group, but not the atf3−/− group, had preferential ATF3 upregulation on p-PKCε(+) neurons with a ratio of 37.7%±6.1% in p-PKCε(+):ATF3(+) neurons (P<0.001). In addition, B-cell lymphoma-extra large (Bcl-XL), an antiapoptotic Bcl2 family protein, exhibited parallel patterns to p-PKCε (ie, Bcl-XL upregulation was reversed in atf3−/− mice). These two molecules were colocalized and increased by approximately two-fold in the atf3+/+ group compared with the atf3−/− group (30.0%±3.4% vs 13.7% ± 6.2%, P=0.003). Furthermore, linear analysis results showed that the densities of p-PKCε and Bcl-XL had a reverse linear relationship with the degrees of thermal hyperalgesia and mechanical allodynia. Conclusion Collectively, this report suggested that ATF3 is a critical upstream molecule that modulates p-PKCε and Bcl-XL expression, which consequently mediated the development of neuropathic manifestation in DPN.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan,
| |
Collapse
|
10
|
Lee C, Ramsey A, De Brito-Gariepy H, Michot B, Podborits E, Melnyk J, Gibbs JL. Molecular, cellular and behavioral changes associated with pathological pain signaling occur after dental pulp injury. Mol Pain 2018; 13:1744806917715173. [PMID: 28580829 PMCID: PMC5480629 DOI: 10.1177/1744806917715173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Persistent pain can occur after routine dental treatments in which the dental pulp is
injured. To better understand pain chronicity after pulp injury, we assessed whether
dental pulp injury in mice causes changes to the sensory nervous system associated with
pathological pain. In some experiments, we compared findings after dental pulp injury to a
model of orofacial neuropathic pain, in which the mental nerve is injured. After
unilateral dental pulp injury, we observed increased expression of activating
transcription factor 3 (ATF3) and neuropeptide Y (NPY) mRNA and decreased tachykinin
precursor 1 gene expression, in the ipsilateral trigeminal ganglion. We also observed an
ipsilateral increase in the number of trigeminal neurons expressing immunoreactivity for
ATF3, a decrease in substance P (SP) immunoreactive cells, and no change in the number of
cells labeled with IB4. Mice with dental pulp injury transiently exhibit hindpaw
mechanical allodynia, out to 12 days, while mice with mental nerve injury have persistent
hindpaw allodynia. Mice with dental pulp injury increased spontaneous consumption of a
sucrose solution for 17 days while mental nerve injury mice did not. Finally, after dental
pulp injury, an increase in expression of the glial markers Iba1 and glial fibrillary
acidic protein occurs in the transition zone between nucleus caudalis and interpolaris,
ipsilateral to the injury. Collectively these studies suggest that dental pulp injury is
associated with significant neuroplasticity that could contribute to persistent pain after
of dental pulp injury.
Collapse
Affiliation(s)
- Caroline Lee
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Austin Ramsey
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | | - Benoit Michot
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Eugene Podborits
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Janet Melnyk
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | |
Collapse
|
11
|
Abstract
Abstract
The development of chronic pain is considered a major complication after surgery. Basic science research in animal models helps us understand the transition from acute to chronic pain by identifying the numerous molecular and cellular changes that occur in the peripheral and central nervous systems. It is now well recognized that inflammation and nerve injury lead to long-term synaptic plasticity that amplifies and also maintains pain signaling, a phenomenon referred to as pain sensitization. In the context of surgery in humans, pain sensitization is both responsible for an increase in postoperative pain via the expression of wound hyperalgesia and considered a critical factor for the development of persistent postsurgical pain. Using specific drugs that block the processes of pain sensitization reduces postoperative pain and prevents the development of persistent postoperative pain. This narrative review of the literature describes clinical investigations evaluating different preventative pharmacologic strategies that are routinely used by anesthesiologists in their daily clinical practices for preventing persistent postoperative pain. Nevertheless, further efforts are needed in both basic and clinical science research to identify preclinical models and novel therapeutics targets. There remains a need for more patient numbers in clinical research, for more reliable data, and for the development of the safest and the most effective strategies to limit the incidence of persistent postoperative pain.
Collapse
|
12
|
UCHL1/PGP 9.5 Dynamic in Neuro-Immune-Cutaneous Milieu: Focusing on Axonal Nerve Terminals and Epidermal Keratinocytes in Psoriatic Itch. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7489316. [PMID: 30148172 PMCID: PMC6083486 DOI: 10.1155/2018/7489316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Psoriasis is an immunogenetic skin disease manifesting as plaque lesions on the skin. Patients with psoriasis frequently suffer from itch, an unpleasant sensation causing a desire to scratch. Psoriatic itch is mainly transmitted by unmyelinated C-fibers; however, the exact molecular mechanism of psoriatic itch is still unexplained. Protein gene product 9.5 (PGP 9.5) is a panneurological marker commonly used for analysis of peripheral peptidergic and nonpeptidergic nerves and identification of cutaneous neuro-immune-endocrine cells. However, some studies suggested that nonneuronal cells, like keratinocytes, may also express PGP 9.5. This phenomenon might be linked with impaired axonal transport, keratinocyte injury, or dysfunctions of neuro-immune-cutaneous connections. The aim of this study was to analyze the expression of PGP 9.5 in psoriatic skin. We observed significantly altered density of PGP 9.5-positive axonal nerve terminals in pruritic lesional (p=0.04) and nonlesional psoriatic skin (p>0.001) compared with controls. In contrast, no significant differences were observed between psoriatic skin without itch and controls. Furthermore, PGP 9.5 expression by suprabasal keratinocytes (SBKs) was significantly increased in itchy skin lesions (p=0.007) compared to skin without itch, and a positive correlation was observed between PGP 9.5 expression and itch intensity (r=0.64; p=0.02). Our findings indicate changes in peripheral innervations and psoriatic keratinocytes, which may influence neuro-immune-cutaneous homeostasis and modulate itch transmission.
Collapse
|
13
|
Sencan S, Ozcan-Eksi EE, Cuce I, Guzel S, Erdem B. Pregnancy-related low back pain in women in Turkey: Prevalence and risk factors. Ann Phys Rehabil Med 2017; 61:33-37. [PMID: 29042300 DOI: 10.1016/j.rehab.2017.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate the prevalence of pregnancy-related low back pain (PRLBP) in women in Turkey, identify the factors associated with PRLBP and predict the risk of PRLBP. MATERIALS AND METHODS This cross-sectional study included a total of 1500 pregnant women admitted to a prenatal care clinic in a secondary care hospital in Turkey between August 2011 and September 2014. All participants were asked to complete a survey questionnaire. The pregnant women who reported recurrent or continuous pain in the lumbar spine or pelvis for more than 1 week were offered a clinical examination for PRLBP by the spine physiatrist. The main outcome measure was the presence of PRLBP. We collected data on sociodemographic factors, previous obstetric history, daily habits, history of LBP, and functional disability scores as assessed by the Oswestry Disability Index (ODI). RESULTS The mean age of the 1500 women was 26.5±5.5 years. The prevalence of PRLBP was 53.9%, mostly in the third trimester. Women with PRLBP in the third trimester were more disabled than those in the first and second trimesters (mean ODI 40.0±16.7 vs. 34.9±19.2 and 37.4±15.3, respectively). Risk factors of PRLBP were history of LBP, PRLBP, and menstruation-related LBP as well as no housework assistance (OR=5.394, 95% CI: 3.128-9.300, P<0.001; 3.692, 2.745-4.964, P<0.001; 2.141, 1.563-2.932, P<0.001; 1.300, 1.029-1.64, P=0.028, respectively). CONCLUSION This cross-sectional study is the largest study of PRLBP in the literature and showed that about 1 in 2 women have PRLBP in any stage of pregnancy. History of LBP related and unrelated to previous pregnancy and menstruation are strong risk factors for PRLBP. Receiving no housework assistance is another risk factor.
Collapse
Affiliation(s)
- Savas Sencan
- Division of pain medicine, department of physical medicine and rehabilitation, Marmara university, Pendik training and research hospital, Istanbul, Turkey.
| | - Emel Ece Ozcan-Eksi
- Department of physical medicine and rehabilitation, Antalya Ataturk state hospital, Antalya, Turkey
| | - Isa Cuce
- Department of physical medicine and rehabilitation, Adıyaman university training and research hospital, Adıyaman, Turkey
| | - Selcuk Guzel
- Department of physical medicine and rehabilitation, Beypazarı state hospital, Ankara, Turkey
| | - Baki Erdem
- Department of gynecologic oncology, Kanuni Sultan Süleyman training and research hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Fischer BD, Ho C, Kuzin I, Bottaro A, O’Leary ME. Chronic exposure to tumor necrosis factor in vivo induces hyperalgesia, upregulates sodium channel gene expression and alters the cellular electrophysiology of dorsal root ganglion neurons. Neurosci Lett 2017; 653:195-201. [DOI: 10.1016/j.neulet.2017.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
|