1
|
Ó Murchú SC, O'Halloran KD. BREATHE DMD: boosting respiratory efficacy after therapeutic hypoxic episodes in Duchenne muscular dystrophy. J Physiol 2024; 602:3255-3272. [PMID: 38837229 DOI: 10.1113/jp280280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disorder, characterised by progressive decline in skeletal muscle function due to the secondary consequences of dystrophin deficiency. Weakness extends to the respiratory musculature, and cardiorespiratory failure is the leading cause of death in men with DMD. Intermittent hypoxia has emerged as a potential therapy to counteract ventilatory insufficiency by eliciting long-term facilitation of breathing. Mechanisms of sensory and motor facilitation of breathing have been well delineated in animal models. Various paradigms of intermittent hypoxia have been designed and implemented in human trials culminating in clinical trials in people with spinal cord injury and amyotrophic lateral sclerosis. Application of therapeutic intermittent hypoxia to DMD is considered together with discussion of the potential barriers to progression owing to the complexity of this devastating disease. Notwithstanding the considerable challenges and potential pitfalls of intermittent hypoxia-based therapies for DMD, we suggest it is incumbent on the research community to explore the potential benefits in pre-clinical models. Intermittent hypoxia paradigms should be implemented to explore the proclivity to express respiratory plasticity with the longer-term aim of preserving and potentiating ventilation in pre-clinical models and people with DMD.
Collapse
Affiliation(s)
- Seán C Ó Murchú
- Department of Physiology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Sunshine MD, Sutor TW, Fox EJ, Fuller DD. Targeted activation of spinal respiratory neural circuits. Exp Neurol 2020; 328:113256. [PMID: 32087253 DOI: 10.1016/j.expneurol.2020.113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Spinal interneurons which discharge in phase with the respiratory cycle have been repeatedly described over the last 50 years. These spinal respiratory interneurons are part of a complex propriospinal network that is synaptically coupled with respiratory motoneurons. This article summarizes current knowledge regarding spinal respiratory interneurons and emphasizes chemical, electrical and physiological methods for activating spinal respiratory neural circuits. Collectively, the work reviewed here shows that activating spinal interneurons can have a powerful impact on spinal respiratory motor output, and can even drive rhythmic bursting in respiratory motoneuron pools under certain conditions. We propose that the primary functions of spinal respiratory neurons include 1) shaping the respiratory pattern into the final efferent motor output from the spinal respiratory nerves; 2) coordinating respiratory muscle activation across the spinal neuraxis; 3) coordinating postural, locomotor and respiratory movements, and 4) enabling plasticity of respiratory motor output in health and disease.
Collapse
Affiliation(s)
- Michael D Sunshine
- Department of Physical Therapy, University of Florida, United States of America; McKnight Brain Institute, University of Florida, United States of America; Rehabilitation Science PhD Program, University of Florida, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, United States of America
| | - Tommy W Sutor
- Department of Physical Therapy, University of Florida, United States of America; Rehabilitation Science PhD Program, University of Florida, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, United States of America
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, United States of America; Clinical Research Center, Brooks Rehabilitation, Jacksonville, FL, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, United States of America; McKnight Brain Institute, University of Florida, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, United States of America.
| |
Collapse
|
3
|
Reklow RJ, Alvares TS, Zhang Y, Miranda Tapia AP, Biancardi V, Katzell AK, Frangos SM, Hansen MA, Toohey AW, Cass CE, Young JD, Pagliardini S, Boison D, Funk GD. The Purinome and the preBötzinger Complex - A Ménage of Unexplored Mechanisms That May Modulate/Shape the Hypoxic Ventilatory Response. Front Cell Neurosci 2019; 13:365. [PMID: 31496935 PMCID: PMC6712068 DOI: 10.3389/fncel.2019.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Exploration of purinergic signaling in brainstem homeostatic control processes is challenging the traditional view that the biphasic hypoxic ventilatory response, which comprises a rapid initial increase in breathing followed by a slower secondary depression, reflects the interaction between peripheral chemoreceptor-mediated excitation and central inhibition. While controversial, accumulating evidence supports that in addition to peripheral excitation, interactions between central excitatory and inhibitory purinergic mechanisms shape this key homeostatic reflex. The objective of this review is to present our working model of how purinergic signaling modulates the glutamatergic inspiratory synapse in the preBötzinger Complex (key site of inspiratory rhythm generation) to shape the hypoxic ventilatory response. It is based on the perspective that has emerged from decades of analysis of glutamatergic synapses in the hippocampus, where the actions of extracellular ATP are determined by a complex signaling system, the purinome. The purinome involves not only the actions of ATP and adenosine at P2 and P1 receptors, respectively, but diverse families of enzymes and transporters that collectively determine the rate of ATP degradation, adenosine accumulation and adenosine clearance. We summarize current knowledge of the roles played by these different purinergic elements in the hypoxic ventilatory response, often drawing on examples from other brain regions, and look ahead to many unanswered questions and remaining challenges.
Collapse
Affiliation(s)
- Robert J. Reklow
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tucaaue S. Alvares
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yong Zhang
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana P. Miranda Tapia
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vivian Biancardi
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexis K. Katzell
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sara M. Frangos
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan A. Hansen
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander W. Toohey
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carol E. Cass
- Professor Emerita, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - James D. Young
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Gregory D. Funk
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|