1
|
Gumus C, Yazici IP, Yazici KU, Ustundag B. Increased Serum Brain-derived Neurotrophic Factor, Nerve Growth Factor, Glial-derived Neurotrophic Factor and Galanin Levels in Children with Attention Deficit Hyperactivity Disorder, and the Effect of 10 Weeks Methylphenidate Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:635-648. [PMID: 36263639 PMCID: PMC9606423 DOI: 10.9758/cpn.2022.20.4.635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/10/2021] [Accepted: 02/12/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This study aimed to investigate the levels of serum brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial cell-derived neurotrophic factor (GDNF) and galanin in children with attention deficit hyperactivity disorder (ADHD). METHODS The study included 58 cases with ADHD and 60 healthy controls. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL) together with Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) criteria were used for diagnostic evaluation. Sociodemographic data form and Conners' Parent/Teacher Rating Scale-Revised:Long Form were applied to all cases. The serum levels of BDNF, NGF, GDNF, and galanin were evaluated in all subjects. Afterwards, methylphenidate was started in the ADHD group. ADHD cases were reevaluated in terms of the serum levels of BDNF, NGF, GDNF, galanin at the 10th week of treatment. RESULTS Before the treatment, the levels of BDNF, NGF, GDNF, galanin were significantly higher in the ADHD group compared to the control group. The levels of BDNF, NGF, GDNF, galanin were found to be significantly lower after treatment in ADHD group compared to pre-treatment. No correlation was between scale scores and the serum levels of BDNF, NGF, GDNF, galanin. CONCLUSION The levels of neurotrophic factors and galanin were thought to be parameters worth evaluating in ADHD. Further studies on the subject with longer-term treatments and larger sample groups are required.
Collapse
Affiliation(s)
- Cavithan Gumus
- Department of Child and Adolescent Psychiatry, Karaman Training and Research Hospital, Karaman, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey,Address for correspondence: Ipek Percinel Yazici Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig 230000, Turkey, E-mail: , ORCID: https://orcid.org/0000-0002-6807-655X
| | - Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
2
|
Cheng HM, Gao CS, Lou QW, Chen Z, Wang Y. The diverse role of the raphe 5-HTergic systems in epilepsy. Acta Pharmacol Sin 2022; 43:2777-2788. [PMID: 35614227 PMCID: PMC9622810 DOI: 10.1038/s41401-022-00918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
The raphe nuclei comprise nearly all of 5-hydroxytryptaminergic (5-HTergic) neurons in the brain and are widely acknowledged to participate in the modulation of neural excitability. "Excitability-inhibition imbalance" results in a variety of brain disorders, including epilepsy. Epilepsy is a common neurological disorder characterized by hypersynchronous epileptic seizures accompanied by many psychological, social, cognitive consequences. Current antiepileptic drugs and other therapeutics are not ideal to control epilepsy and its comorbidities. Cumulative evidence suggests that the raphe nuclei and 5-HTergic system play an important role in epilepsy and epilepsy-associated comorbidities. Seizure activities propagate to the raphe nuclei and induce various alterations in different subregions of the raphe nuclei at the cellular and molecular levels. Intervention of the activity of raphe nuclei and raphe 5-HTergic system with pharmacological or genetic approaches, deep brain stimulation or optogenetics produces indeed diverse and even contradictory effects on seizure and epilepsy-associated comorbidities in different epilepsy models. Nevertheless, there are still many open questions left, especially regarding to the relationship between 5-HTergic neural circuit and epilepsy. Understanding of 5-HTergic network in a circuit- and molecule-specific way may not only be therapeutically relevant for increasing the drug specificity and precise treatment in epilepsy, but also provide critical hints for other brain disorders with abnormal neural excitability. In this review we focus on the roles of the raphe 5-HTergic system in epilepsy and epilepsy-associated comorbidities. Besides, further perspectives about the complexity and diversity of the raphe nuclei in epilepsy are also addressed.
Collapse
Affiliation(s)
- He-Ming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chen-Shu Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiu-Wen Lou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Wu Y, Li Y, Zhu J, Long J. Shared genetics and causality underlying epilepsy and attention-deficit hyperactivity disorder. Psychiatry Res 2022; 316:114794. [PMID: 35994864 DOI: 10.1016/j.psychres.2022.114794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
The prevalence of attention deficit hyperactivity disorder (ADHD) in patients with epilepsy was much higher than prevalence in general population, and vice versa. The mechanisms underlying comorbid ADHD and epilepsy remained largely unknown. Here, we systematically analyzed the genetic correlation, causality, shared genetics and specific trait related tissues by using linkage disequilibrium score regression (LDSC), two sample Mendelian randomization (TwoSampleMR), bivariate causal mixture model (MiXeR), conjunctional false discovery rate (conjFDR) and LDSC applied to specifically expressed genes based on genome wide association studies (GWASs) data of ADHD and epilepsy. We found that ADHD had significant positive genetic association with epilepsy. Two-sample Mendelian randomization analysis with genome wide significant single nucleotide polymorphisms (SNPs) as instrument variables suggested a positively causal effect of ADHD on epilepsy. Using MiXeR, which estimates the total amount of shared variants, we observed 1 K causal variants overlapped between ADHD and epilepsy. At conjFDR <0.05, ADHD shared 2 distinct genomic loci with Epilepsy. Further disease-relevant tissues analysis showed that cortex, substantia nigra, amygdala and hippocampus were both associated with ADHD and epilepsy. Our results suggested that ADHD was genetically correlated with epilepsy, which might be due to the fact that they shared common pathogenic sites and tissues origin.
Collapse
Affiliation(s)
- Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei 430012, China
| | - Yichen Li
- Radiology Department, Wuhan Mental Health Center, Wuhan, Hubei 430012, China
| | - Junhong Zhu
- Department of Mental Rehabilitation, Wuhan Mental Health Center, Wuhan, Hubei 430012, China.
| | - Jingyi Long
- Department of Child & Adolescent Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei 430012, China.
| |
Collapse
|
4
|
Yang L. Nano-Hydrogel for the Treatment of Depression and Epilepsy. J Biomed Nanotechnol 2022; 18:1097-1105. [PMID: 35854439 DOI: 10.1166/jbn.2022.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article first combines nano-carrier technology, the electrophysiological mechanism of seizures, and brain targeting technology to prepare new nano-hydrogels. Secondly, through the discharge information generated during the seizure and the electric field responsiveness of the nano-hydrogel, the free drug concentration in the brain area related to the seizure is increased, thereby, limiting the abnormal discharge of the focus to the local area and suppressing it in time. Finally, this article examines the impact of nano-hydrogel on the epilepsy and depression using relevant studies. The experimental observations revealed that the yield of the nano-hydrogel synthesized after 24 h of sapon-free emulsion polymerization was 50 to 70%, the swelling rate was 400 to 1700%, and the viscosity of the 20 mg/mL nano-hydrogel dispersion was 3.9 to 17.0 mPa· s. Furthermore, because the total efficiency was 0.952, the nano-hydrogels have a reduced recurrence rate and a better effect on the depression improvement.
Collapse
Affiliation(s)
- Libai Yang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, P. R. China
| |
Collapse
|
5
|
Patodia S, Somani A, Thom M. Review: Neuropathology findings in autonomic brain regions in SUDEP and future research directions. Auton Neurosci 2021; 235:102862. [PMID: 34411885 PMCID: PMC8455454 DOI: 10.1016/j.autneu.2021.102862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Autonomic dysfunction is implicated from clinical, neuroimaging and experimental studies in sudden and unexpected death in epilepsy (SUDEP). Neuropathological analysis in SUDEP series enable exploration of acquired, seizure-related cellular adaptations in autonomic and brainstem autonomic centres of relevance to dysfunction in the peri-ictal period. Alterations in SUDEP compared to control groups have been identified in the ventrolateral medulla, amygdala, hippocampus and central autonomic regions. These involve neuropeptidergic, serotonergic and adenosine systems, as well as specific regional astroglial and microglial populations, as potential neuronal modulators, orchestrating autonomic dysfunction. Future research studies need to extend to clinically and genetically characterized epilepsies, to explore if common or distinct pathways of autonomic dysfunction mediate SUDEP. The ultimate objective of SUDEP research is the identification of disease biomarkers for at risk patients, to improve post-mortem recognition and disease categorisation, but ultimately, for exposing potential treatment targets of pharmacologically modifiable and reversible cellular alterations.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alyma Somani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
6
|
Xi XJ, Tang JH, Zhang BB, Xiao X, Hu XY, Wan Y, Zhou C, Lin H. Dlg4 and Vamp2 are involved in comorbid epilepsy and attention-deficit hyperactivity disorder: A microarray data study. Epilepsy Behav 2020; 110:107192. [PMID: 32580088 DOI: 10.1016/j.yebeh.2020.107192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Children with epilepsy exhibit a significantly higher risk for attention-deficit hyperactivity disorder (ADHD), which is often associated with lower quality of life. In this study, we aimed to identify molecular mechanisms associated with both epilepsy and ADHD. MATERIALS AND METHODS Gene expression profiles of GSE12457 and GSE47752 were downloaded from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) were separately screened in epilepsy and ADHD samples and compared with controls. Weighted gene coexpression network analysis (WGCNA) was used to identify candidate modules associated with the two disorders. Functional annotation and analysis of hub genes and molecular complex detection (MCODE) was also performed. RESULTS Three modules closely related to epilepsy and ADHD were screened using WGCNA; DEGs in this module were involved in the synaptic vesicle cycle, axon and neuron regeneration, and neurotransmission. The Dlg4 and Vamp2 genes were selected as common candidate factors in epilepsy and ADHD pathogenesis. CONCLUSION Dlg4 and Vamp2 could play essential roles in comorbidity between epilepsy and ADHD.
Collapse
Affiliation(s)
- Xiao-Jun Xi
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China; Department of Pediatrics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Ji-Hong Tang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China.
| | - Bing-Bing Zhang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China
| | - Xiao Xiao
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China
| | - Xiao-Yue Hu
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China; Department of Neurology, Wuxi Children's Hospital, Wuxi 214000, Jiangsu Province, China
| | - Yu Wan
- Department of Pediatrics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Cheng Zhou
- Department of Pediatrics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Hong Lin
- Department of Pediatrics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
7
|
Matricardi S, Farello G, Operto FF, Coppola G, Verrotti A. What are the challenges with the pharmacological management of epilepsy in patients with Attention Deficit Hyperactivity Disorder (ADHD)? Expert Opin Pharmacother 2020; 21:737-739. [PMID: 32077772 DOI: 10.1080/14656566.2020.1732351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sara Matricardi
- Department of Child Neuropsychiatry, Children's Hospital "G. Salesi", Ospedali Riuniti Ancona , Ancona, Italy
| | - Giovanni Farello
- Pediatric Clinic, Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry, Department of Medicine, Surgery, and Odontoiatry, University of Salerno , Salerno, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry, Department of Medicine, Surgery, and Odontoiatry, University of Salerno , Salerno, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila , L'Aquila, Italy
| |
Collapse
|
8
|
Jankovic MJ, Kapadia PP, Krishnan V. Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS One 2019; 14:e0224856. [PMID: 31697745 PMCID: PMC6837443 DOI: 10.1371/journal.pone.0224856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how “behavioral severity” (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and “behavioral” severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.
Collapse
Affiliation(s)
- Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Paarth P. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
9
|
Cheng Y, Mai Q, Zeng X, Wang H, Xiao Y, Tang L, Li J, Zhang Y, Ding H. Propionate relieves pentylenetetrazol-induced seizures, consequent mitochondrial disruption, neuron necrosis and neurological deficits in mice. Biochem Pharmacol 2019; 169:113607. [PMID: 31491413 DOI: 10.1016/j.bcp.2019.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
The present research was designed to evaluate the protective effects and underlying mechanisms of propionate, a bioactive food additive, on mitochondrial disruption, neuron necrosis and neurological deficits after epilepsy seizures. Epilepsy seizures was induced by repetitive injections of pentylenetetrazol at a dose of 37 mg per kg. Propionate (37.5, 50 and 75 mg/kg) as well as sodium valproate (300 mg/kg) were administrated intragastrically (i.g.) 1 h before each PTZ injection and continued for 40 days. The influence of propionate was assessed by many biochemical assays and neurobehavioral experiments. The results of gas chromatography (GC) analysis indicated that increased concentration of propionate can be explored in hippocampus area of propionate + PTZ treated animals. Propionate decreased epilepsy seizure intensity, increased latency of seizures. Meanwhile, propionate treatment reversed the structure disruption of the mitochondria, improved ATP level and lessened 8-OHdG level in the brains of animals with seizures. In addition, we find propionate pretreated can increase activities of the antioxidant enzymes (CAT, SOD, as well as GSH-Px) in mitochondria. Additionally, propionate reduced neuronal loss in hippocampus and our results suggest that HIF-1α/ERK pathway and neuron necrosis exists potential linkage during epileptogenesis. Moreover, as a result, propionate administration can significantly improve the neurological function estimated by a battery of functional tests. In conclusion, treatment with propionate attenuates mitochondrial disruption, hippocampal apoptosis and neurological deficits in a mouse model of epilepsy seizures. Therefore, propionate, currently used as a food preservative, has a potential additional advantage of ameliorating epilepsy seizures.
Collapse
Affiliation(s)
- Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Qianting Mai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xin Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Huiling Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Liu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jing Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Patodia S, Somani A, O'Hare M, Venkateswaran R, Liu J, Michalak Z, Ellis M, Scheffer IE, Diehl B, Sisodiya SM, Thom M. The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy. Brain 2019; 141:1719-1733. [PMID: 29608654 PMCID: PMC5972615 DOI: 10.1093/brain/awy078] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/01/2018] [Indexed: 11/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with epilepsy. One hypothesis proposes that sudden death is mediated by post-ictal central respiratory depression, which could relate to underlying pathology in key respiratory nuclei and/or their neuromodulators. Our aim was to investigate neuronal populations in the ventrolateral medulla (which includes the putative human pre-Bötzinger complex) and the medullary raphe. Forty brainstems were studied comprising four groups: 14 SUDEP, six epilepsy controls, seven Dravet syndrome cases and 13 non-epilepsy controls. Serial sections through the medulla (from obex 1 to 10 mm) were stained for Nissl, somatostatin, neurokinin 1 receptor (for pre-Bötzinger complex neurons) and galanin, tryptophan hydroxylase and serotonin transporter (neuromodulatory systems). Using stereology total neuronal number and densities, with respect to obex level, were measured. Whole slide scanning image analysis was used to quantify immunolabelling indices as well as co-localization between markers. Significant findings included reduction in somatostatin neurons and neurokinin 1 receptor labelling in the ventrolateral medulla in sudden death in epilepsy compared to controls (P < 0.05). Galanin and tryptophan hydroxylase labelling was also reduced in sudden death cases and more significantly in the ventrolateral medulla region than the raphe (P < 0.005 and P < 0.05). With serotonin transporter, reduction in labelling in cases of sudden death in epilepsy was noted only in the raphe (P ≤ 0.01); however, co-localization with tryptophan hydroxylase was significantly reduced in the ventrolateral medulla. Epilepsy controls and cases with Dravet syndrome showed less significant alterations with differences from non-epilepsy controls noted only for somatostatin in the ventrolateral medulla (P < 0.05). Variations in labelling with respect to obex level were noted of potential relevance to the rostro-caudal organization of respiratory nuclear groups, including tryptophan hydroxylase, where the greatest statistical difference noted between all epilepsy cases and controls was at obex 9-10 mm (P = 0.034), the putative level of the pre-Bötzinger complex. Furthermore, there was evidence for variation with duration of epilepsy for somatostatin and neurokinin 1 receptor. Our findings suggest alteration to neuronal populations in the medulla in SUDEP with evidence for greater reduction in neuromodulatory neuropeptidergic and mono-aminergic systems, including for galanin, and serotonin. Other nuclei need to be investigated to evaluate if this is part of more widespread brainstem pathology. Our findings could be a result of previous seizures and may represent a pathological risk factor for SUDEP through impaired respiratory homeostasis during a seizure.
Collapse
Affiliation(s)
- Smriti Patodia
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Alyma Somani
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Megan O'Hare
- Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ranjana Venkateswaran
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joan Liu
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Department of Biomedical Sciences, University of Westminster London W1W 6UW, UK
| | - Zuzanna Michalak
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matthew Ellis
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine (Neurology), University of Melbourne, Victoria 3052, Australia
| | - Beate Diehl
- Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sanjay M Sisodiya
- Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Maria Thom
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
11
|
Chen F, He X, Luan G, Li T. Role of DNA Methylation and Adenosine in Ketogenic Diet for Pharmacoresistant Epilepsy: Focus on Epileptogenesis and Associated Comorbidities. Front Neurol 2019; 10:119. [PMID: 30863356 PMCID: PMC6399128 DOI: 10.3389/fneur.2019.00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by a long term propensity to produce unprovoked seizures and by the associated comorbidities including neurological, cognitive, psychiatric, and impairment the quality of life. Despite the clinic availability of several novel antiepileptic drugs (AEDs) with different mechanisms of action, more than one-third of patients with epilepsy suffer with pharmacoresistant epilepsy. Until now, no AEDs have been proven to confer the efficacy in alteration of disease progression or inhibition of the development of epilepsy. The ketogenic diet, the high-fat, low-carbohydrate composition is an alternative metabolic therapy for epilepsy, especially for children with drug-resistant epilepsy. Recently clinical and experimental results demonstrate its efficacy in ameliorating both seizures and comorbidities associated with epilepsy, such as cognitive/psychiatric concerns for the patients with refractory epilepsy. Of importance, ketogenic diet demonstrates to be a promising disease-modifying or partial antiepileptogenesis therapy for epilepsy. The mechanisms of action of ketogenic diet in epilepsy have been revealed recently, such as epigenetic mechanism for increase the adenosine level in the brain and inhibition of DNA methylation. In the present review, we will focus on the mechanisms of ketogenic diet therapies underlying adenosine system in the prevention of epileptogenesis and disease modification. In addition, we will review the role of ketogenic diet therapy in comorbidities associated epilepsy and the underlying mechanisms of adenosine.
Collapse
Affiliation(s)
- Fan Chen
- Beijing Key Laboratory of Epilepsy Research, Department of Neurology, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xinghui He
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy Research, Department of Neurology, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Deal AL, Mikhailova MA, Grinevich VP, Weiner JL, Gainetdinov RR, Budygin EA. In vivo voltammetric evidence that locus coeruleus activation predominantly releases norepinephrine in the infralimbic cortex: Effect of acute ethanol. Synapse 2018; 73:e22080. [PMID: 30447016 DOI: 10.1002/syn.22080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Using fast-scan cyclic voltammetry paired with pharmacology, the authors show that infralimbic catecholamine release following locus coeruleus stimulation is noradrenergic, but not dopaminergic, and not affected by acute ethanol. With previous work, these data suggest differential effects of ethanol on prefrontal norepinephrine and dopamine, a region important in addiction-related pathways.
Collapse
Affiliation(s)
- Alex L Deal
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria A Mikhailova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Valentina P Grinevich
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Evgeny A Budygin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
13
|
The Challenge of Pharmacotherapy in Children and Adolescents with Epilepsy-ADHD Comorbidity. Clin Drug Investig 2018; 38:1-8. [PMID: 29071470 DOI: 10.1007/s40261-017-0585-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epilepsy is common in children and adolescents where its prevalence is 3.2-5.5/1000. About one-third of patients also have attention deficit hyperactivity/impulsivity disorder (ADHD). The possible relationship between epilepsy and ADHD is still unclear, and ADHD symptoms (such as inattention, hyperactivity, behavioral disturbances) are frequently considered as adverse effects of antiepileptic drugs (AEDs). The literature was searched for data on the behavioral effects of AEDs. Phenobarbital is the most frequently reported medication to induce symptoms of ADHD, followed by topiramate and valproic acid. Phenytoin seems to exert modest effects, while for levetiracetam there are contrasting data. Lacosamide induces some beneficial effects on behavior; carbamazepine and lamotrigine exert favorable effects on attention and behavior. Gabapentin and vigabatrin have limited adverse effects on cognition. Oxcarbazepine, rufinamide, and eslicarbazepine do not seem to aggravate or induce ADHD symptoms, whereas perampanel can lead to a high incidence of hostile/aggressive behavior, which increases with higher dosages. Information about the behavioral effects of ethosuximide, zonisamide, tiagabine, pregabalin, stiripentol, and retigabine is still limited. Because ADHD significantly affects the quality of life of epilepsy patients, the clinical management of this neuropsychiatric disorder should be a priority. Methylphenidate is effective most children and adolescents with ADHD symptoms and comorbid epilepsy, without a significant increase of seizure risk, although data are still limited with few controlled trials.
Collapse
|