1
|
Womble PD, Hodges SL, Nolan SO, Binder MS, Holley AJ, Herrera R, Senger S, Kwok E, Narviaz DA, Faust A, Hernandez-Zegada CJ, Kwon RY, Lugo JN. A vitamin D enriched diet attenuates sex-specific behavioral deficits, increases the lifespan, but does not rescue bone abnormalities in a mouse model of cortical dysplasia. Epilepsy Behav 2021; 124:108297. [PMID: 34509882 DOI: 10.1016/j.yebeh.2021.108297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Individuals who experience recurrent spontaneous seizures often show behavioral and physiological comorbidities. Those with epilepsy are at a high risk of bone fractures (independent of seizure-related falls) and show a higher rate of a diagnosis of Autism Spectrum Disorder. The neural subset-specific (NS) Pten knockout (KO) mouse has an epilepsy phenotype, has been characterized to show autistic-like deficits, and has an osteoporosis phenotype. The current study examined the effect of a vitamin D enriched diet (20,000 IU VD) in the NS-Pten KO and wildtype mice. Mice were placed onto a vitamin D enriched diet at 4 weeks of age and maintained on that diet throughout testing. Behavioral testing began at 6 weeks of age and included tests for general activity, anxiety, repetitive behaviors, social behaviors, and memory. Results indicated that a vitamin D diet attenuated hypoactivity levels in male KO mice (p < 0.05). In a social partition task, vitamin D increased sociability in male wildtype mice, (p < 0.05). Most significantly, vitamin D fortified diet increased percent survival in KO animals and decreased the level of microglia marker IBA-1 and mTOR (mammalian target of rapamycin) downstream targets pS6 and pAKT. A high vitamin D diet did not reverse bone deficits in male or female KO mice. Overall, these findings suggest that a vitamin D enriched diet had a significant impact on the behavioral phenotype of NS-Pten KO mice, suggesting that dietary manipulations could be a potential therapeutic option for autistic-like behavior.
Collapse
Affiliation(s)
- Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Andrew J Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Rebecca Herrera
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Savannah Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Eliesse Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - David A Narviaz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Amanda Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | | | - Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98104, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
2
|
Clipperton-Allen AE, Page DT. Connecting Genotype with Behavioral Phenotype in Mouse Models of Autism Associated with PTEN Mutations. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037010. [PMID: 31871231 DOI: 10.1101/cshperspect.a037010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A subset of individuals with autism spectrum disorder (ASD) and macrocephaly carry mutations in the gene PTEN. Animal models, particularly mice, have been helpful in establishing a causal role for Pten mutations in autism-relevant behavioral deficits. These models are a useful tool for investigating neurobiological mechanisms of these behavioral phenotypes and developing potential therapeutic interventions. Here we provide an overview of various genetic mouse models that have been used to characterize behavioral phenotypes caused by perturbation of Pten We discuss convergent and divergent phenotypes across models with the aim of highlighting a set of behavioral domains that are sensitive to the effects of Pten mutation and that may provide useful readouts for translational and basic neuroscience research.
Collapse
Affiliation(s)
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
3
|
Hu Y, Tan LJ, Chen XD, Greenbaum J, Deng HW. Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method. Bone 2018; 117:6-14. [PMID: 30172742 PMCID: PMC6364698 DOI: 10.1016/j.bone.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
AIMS Clinical and epidemiological findings point to an association between type 2 diabetes (T2D) and osteoporosis. Genome-wide association studies (GWASs) have been fruitful in identifying some loci potentially associated with osteoporosis and T2D respectively. However, the total genetic variance for each of these two diseases and the shared genetic determination between them are largely unknown. The aim of this study was to identify novel genetic variants for osteoporosis and/or T2D. METHODS First, using a pleiotropic conditional false discovery rate (cFDR) method, we analyzed two GWAS summary data of femoral neck bone mineral density (FN_BMD, n = 53,236) and T2D (n = 159,208) to identify novel shared genetic loci. FN_BMD is an important risk factor for osteoporosis. Next, to explore the potential functions of the identified potential pleiotropic genes, differential expression analysis was performed for them in monocytes and peripheral blood mononuclear cells (PBMCs) as these cells are relevant to the etiology of osteoporosis and/or T2D. Further, weighted gene co-expression analysis (WGCNA) was conducted to identify functional connections between novel pleiotropic genes and known osteoporosis/T2D susceptibility genes by using transcriptomic expression datasets in bone biopsies (E-MEXP-1618) and pancreatic islets (GSE50397). Finally, multi-trait fine mapping for the detected pleiotropic risk loci were conducted to identify the SNPs that have the highest probability of being causal for both FN_BMD and T2D. RESULTS We identified 27 significant SNPs with cFDR<0.05 for FN_BMD and 61 SNPs for T2D respectively. Four loci, rs7068487 (PLEKHA1), rs10885421 (TCF7L2), rs944082 (GNG12-AS1 (WLS)) and rs2065929 (PIFO||PGCP1), were found to be potentially pleiotropic and shared between FN_BMD and T2D (ccFDR<0.05). PLEKHA1 was found differentially expressed in circulating monocytes between high and low BMD subjects, and PBMCs between diabetic and non-diabetic conditions. WGCNA showed that PLEKHA1 and TCF7L2 were interconnected with multiple osteoporosis and T2D associated genes in bone biopsy and pancreatic islets, such as JAG, EN1 and CPE. Fine mapping showed that rs11200594 was a potentially causal variant in the locus of PLEKHA1. rs11200594 is also an eQTL of PLEKHA1 in multiple tissue (e.g. peripheral blood cells, adipose and ovary) and is in strong LD with a number of functional variants. CONCLUSIONS Four potential pleiotropic loci were identified for shared genetic determination of osteoporosis and T2D. Our study highlights PLEKHA1 as an important potentially pleiotropic gene. The findings may help us gain a better understanding of the shared genetic determination between these two important disorders.
Collapse
Affiliation(s)
- Yuan Hu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jonathan Greenbaum
- School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China; Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Simm PJ, Seah S, Gorelik A, Gilbert L, Nuguid J, Werther GA, Mackay MT, Freeman JL, Petty SJ, Wark JD. Impaired bone and muscle development in young people treated with antiepileptic drugs. Epilepsia 2017; 58:1931-1938. [DOI: 10.1111/epi.13893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter J. Simm
- Department of Endocrinology and Diabetes; Royal Children's Hospital; Melbourne Victoria Australia
- Murdoch Childrens Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; University of Melbourne; Melbourne Victoria Australia
| | - Sebastian Seah
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Victoria Australia
| | - Alex Gorelik
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Victoria Australia
- Melbourne EpiCentre; Royal Melbourne Hospital; Parkville Victoria Australia
| | - Lauren Gilbert
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Victoria Australia
| | - Jenning Nuguid
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Victoria Australia
| | - George A. Werther
- Department of Endocrinology and Diabetes; Royal Children's Hospital; Melbourne Victoria Australia
- Murdoch Childrens Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; University of Melbourne; Melbourne Victoria Australia
| | - Mark T. Mackay
- Murdoch Childrens Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; University of Melbourne; Melbourne Victoria Australia
- Department of Neurology; Royal Children's Hospital; Melbourne Victoria Australia
| | - Jeremy L. Freeman
- Murdoch Childrens Research Institute; Melbourne Victoria Australia
- Department of Neurology; Royal Children's Hospital; Melbourne Victoria Australia
| | - Sandra J. Petty
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Victoria Australia
- Melbourne Brain Centre at Royal Melbourne Hospital; Melbourne Victoria Australia
- Academic Centre; Ormond College; Parkville Victoria Australia
| | - John D. Wark
- Department of Medicine; Royal Melbourne Hospital; University of Melbourne; Melbourne Victoria Australia
- Bone & Mineral Medicine; Royal Melbourne Hospital; Melbourne Victoria Australia
| |
Collapse
|