1
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
2
|
Hunt PR, Welch B, Camacho J, Bushana PN, Rand H, Sprando RL, Ferguson M. The worm Adult Activity Test (wAAT): A de novo mathematical model for detecting acute chemical effects in Caenorhabditis elegans. J Appl Toxicol 2023; 43:1899-1915. [PMID: 37551865 DOI: 10.1002/jat.4525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
We have adapted a semiautomated method for tracking Caenorhabditis elegans spontaneous locomotor activity into a quantifiable assay by developing a sophisticated method for analyzing the time course of measured activity. The 16-h worm Adult Activity Test (wAAT) can be used to measure C. elegans activity levels for efficient screening for pharmacological and toxicity-induced effects. As with any apical endpoint assay, the wAAT is mode of action agnostic, allowing for detection of effects from a broad spectrum of response pathways. With caffeine as a model mild stimulant, the wAAT showed transient hyperactivity followed by reversion to baseline. Mercury chloride (HgCl2 ) produced an early dose-response hyperactivity phase followed by pronounced hypoactivity, a behavior pattern we have termed a toxicant "escape response." Methylmercury chloride (meHgCl) produced a similar pattern to HgCl2 , but at much lower concentrations, a weaker hyperactivity response, and more pronounced hypoactivity. Sodium arsenite (NaAsO2 ) and dimethylarsinic acid (DMA) induced hypoactivity at high concentrations. Acute toxicity, as measured by hypoactivity in C. elegans adults, was ranked: meHgCl > HgCl2 > NaAsO2 = DMA. Caffeine was not toxic with the wAAT at tested concentrations. Methods for conducting the wAAT are described, along with instructions for preparing C. elegans Habitation Medium, a liquid nutrient medium that allows for developmental timing equivalent to that found with C. elegans grown on agar with OP50 Escherichia coli feeder cultures. A de novo mathematical parametric model for adult C. elegans activity and the application of this model in ranking exposure toxicity are presented.
Collapse
Affiliation(s)
- Piper Reid Hunt
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, Maryland, USA
| | - Bonnie Welch
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, Maryland, USA
| | - Jessica Camacho
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, Maryland, USA
| | - Priyanka N Bushana
- Department of Translational Medicine and Physiology, Washington State University - Health Science Campus, Pullman, Washington, USA
| | - Hugh Rand
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, Maryland, USA
| | - Martine Ferguson
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| |
Collapse
|
3
|
Currie SD, Doherty JP, Xue KS, Wang JS, Tang L. The stage-specific toxicity of per- and polyfluoroalkyl substances (PFAS) in nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122429. [PMID: 37619695 DOI: 10.1016/j.envpol.2023.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are a diverse class of industrial chemicals that have been used for decades in industrial and commercial applications. Due to their widespread usages, persistence in the environment, and bioaccumulation in animals and humans, great public health concerns have been raised on adverse health risks of PFAS. In this study, ten PFAS were selected according to their occurrence in different water bodies. The wild-type worms were exposed to individual PFAS at 0, 0.1, 1,10, 100, and 200 μM, and the toxic effects of PFAS on growth, development, fecundity, and behavior at different life stages were investigated using a high-throughput screening (HTS) platform. Our results showed that perfluorooctanesulfonic acid (PFOS), 1H,1H, 2H, 2H-perfluorooctanesulfonamidoacetic acid (NEtFOSAA), perfluorobutanesulfonic (PFBS), and perfluorohexanesulfonic acid (PFHxS) exhibited significant inhibitive effects on the growth in the L4 larva and later stages of worms with concentrations ranging from 0.1 to 200 μmol/L. PFOS and PFBS significantly decreased the brood size of worms across all tested concentrations (p < 0.05), and the most potent PFAS is PFOS with BMC of 0.02013 μM (BMCL, 1.6e-06 μM). During adulthood, all PFAS induced a significant reduction in motility (p < 0.01), while only PFOS can significantly induce behavior alteration at the early larvae stage. Furthermore, the adverse effects occurred in larval stages were found to be the most susceptible to the PFAS exposure. These findings provide valuable insights into the potential adverse effects associated with PFAS exposure and show the importance of considering developmental stages in toxicity assessments.
Collapse
Affiliation(s)
- Seth D Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Joseph Patrick Doherty
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
5
|
Barlow IL, Feriani L, Minga E, McDermott-Rouse A, O'Brien TJ, Liu Z, Hofbauer M, Stowers JR, Andersen EC, Ding SS, Brown AEX. Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Commun Biol 2022; 5:253. [PMID: 35322206 PMCID: PMC8943053 DOI: 10.1038/s42003-022-03206-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms' behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.
Collapse
Affiliation(s)
- Ida L Barlow
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Luigi Feriani
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Eleni Minga
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Adam McDermott-Rouse
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Thomas James O'Brien
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Ziwei Liu
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Siyu Serena Ding
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - André E X Brown
- Institute of Clinical Sciences, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
6
|
Labarre A, Tossing G, Maios C, Doyle JJ, Parker JA. A single copy transgenic mutant FUS strain reproduces age-dependent ALS phenotypes in C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34568776 PMCID: PMC8459179 DOI: 10.17912/micropub.biology.000473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Mutations in the human DNA/RNA binding protein FUS are associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration, including some aggressive and juvenile onset forms. Cytoplasmic inclusions of human FUS proteins are observed in various neurodegenerative disorders, such as Huntington’s disease or spinocerebellar ataxia, suggesting that FUS proteinopathy may be a key player in neurodegeneration. To better understand the pathogenic mechanisms of FUS, we created single copy transgenic Caenorhabditis elegans strains expressing full-length, untagged human FUS in the worm’s GABAergic neurons. These transgenic worms expressing human mutant FUS (mFUS) display the same ALS-associated phenotypes than our previous multiple copy transgenic model, including adult-onset age-dependent loss of motility, progressive paralysis and GABAergic neurodegeneration. These phenotypes are distinct from the transgenic worms expressing human wild-type FUS (wtFUS). We introduce here our C. elegans single copy transgenic for human mutant FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening.
Collapse
Affiliation(s)
- Audrey Labarre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Gilles Tossing
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - James J Doyle
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre , Montreal, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| |
Collapse
|
7
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Shahzad U, Taccone MS, Kumar SA, Okura H, Krumholtz S, Ishida J, Mine C, Gouveia K, Edgar J, Smith C, Hayes M, Huang X, Derry WB, Taylor MD, Rutka JT. Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro Oncol 2021; 23:718-731. [PMID: 33378446 DOI: 10.1093/neuonc/noaa306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.
Collapse
Affiliation(s)
- Uswa Shahzad
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Michael S Taccone
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sachin A Kumar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Hidehiro Okura
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Joji Ishida
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Coco Mine
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kyle Gouveia
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Julia Edgar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Christian Smith
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Madeline Hayes
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xi Huang
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - James T Rutka
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker JA, Pilon N, Samarut E, Patten SA. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep 2021; 22:e50958. [PMID: 33900016 PMCID: PMC8183419 DOI: 10.15252/embr.202050958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the chromatin remodeller‐coding gene CHD7 cause CHARGE syndrome (CS). CS features include moderate to severe neurological and behavioural problems, clinically characterized by intellectual disability, attention‐deficit/hyperactivity disorder and autism spectrum disorder. To investigate the poorly characterized neurobiological role of CHD7, we here generate a zebrafish chd7−/− model. chd7−/− mutants have less GABAergic neurons and exhibit a hyperactivity behavioural phenotype. The GABAergic neuron defect is at least in part due to downregulation of the CHD7 direct target gene paqr3b, and subsequent upregulation of MAPK/ERK signalling, which is also dysregulated in CHD7 mutant human cells. Through a phenotype‐based screen in chd7−/− zebrafish and Caenorhabditis elegans, we show that the small molecule ephedrine restores normal levels of MAPK/ERK signalling and improves both GABAergic defects and behavioural anomalies. We conclude that chd7 promotes paqr3b expression and that this is required for normal GABAergic network development. This work provides insight into the neuropathogenesis associated with CHD7 deficiency and identifies a promising compound for further preclinical studies.
Collapse
Affiliation(s)
| | - Maximilian Breuer
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Kathrin Schmeisser
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tatiana Cardinal
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Betelhem Kassa
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - J Alex Parker
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Nicolas Pilon
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département de pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Eric Samarut
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Shunmoogum A Patten
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
10
|
Fardghassemi Y, Maios C, Parker JA. Small Molecule Rescue of ATXN3 Toxicity in C. elegans via TFEB/HLH-30. Neurotherapeutics 2021; 18:1151-1165. [PMID: 33782863 PMCID: PMC8423969 DOI: 10.1007/s13311-020-00993-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in exon 10 of the gene ATXN3. There are no effective pharmacological treatments for MJD, thus the identification of new pathogenic mechanisms, and the development of novel therapeutics is urgently needed. In this study, we performed a comprehensive, blind drug screen of 3942 compounds (many FDA approved) and identified small molecules that rescued the motor-deficient phenotype in transgenic ATXN3 Caenorhabditis elegans strain. Out of this screen, five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in ATXN3-CAG89 mutant worms were identified. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen, and sulfaphenazole. We then investigated how these molecules might exert their neuroprotective properties. We found that three of these compounds, chenodiol, fenbufen, and sulfaphenazole, act as modulators for TFEB/HLH-30, a key transcriptional regulator of the autophagy process, and require this gene for their neuroprotective activities. These genetic-chemical approaches, using genetic C. elegans models for MJD and the screening, are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. Positively acting compounds may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease.
Collapse
Affiliation(s)
- Yasmin Fardghassemi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| | - J. Alex Parker
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9 Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec H3T 1J4 Canada
- Department of Neuroscience, University of Montreal, Montreal, Quebec H3T 1J4 Canada
| |
Collapse
|
11
|
Fardghassemi Y, Parker JA. Overexpression of FKH-2/FOXG1 is neuroprotective in a C. elegans model of Machado-Joseph disease. Exp Neurol 2020; 337:113544. [PMID: 33290777 DOI: 10.1016/j.expneurol.2020.113544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is the most common form of dominantly inherited ataxia worldwide. This disease is caused by an expanded CAG repeat in the coding region of ATXN3. Due to our incomplete understanding of mechanisms and molecular pathways related to this disease, there are no therapies that successfully treat core MJD patients. Therefore, the identification of new candidate targets related to this disease is needed. In this study, we performed a large-scale RNA interference (RNAi) screen of 387 transcription factor genes leading to the identification of several modifiers (suppressors and enhancers) of impaired motility phenotypes in a mutant ATXN3 transgenic C. elegans model. We showed that inactivation of one particular gene, fkh-2/FOXG1, enhanced the motility defect, neurodegeneration and reduced longevity in our MJD models. Opposite to genetic inactivation, the overexpression of fkh-2 rescued the impaired motility, shortened-lifespan, and neurodegeneration phenotypes of mutant ATXN3 transgenics. We found that overexpression of FKH-2/FOXG1 in ATXN3 mutant worms is neuroprotective. Using our transgenic ATXN3 C. elegans models and the screening of an RNAi library, we gained insights into the pathways contributing to neurodegeneration, and found that FKH-2/FOXG1 has neuroprotective activity. These findings may aid the development of novel therapeutic interventions for MJD.
Collapse
Affiliation(s)
- Yasmin Fardghassemi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis Street, Montreal, Quebec H2X 0A9, Canada; Department of Biochemistry, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis Street, Montreal, Quebec H2X 0A9, Canada; Department of Biochemistry, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada; Department of Neuroscience, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada.
| |
Collapse
|
12
|
Soh MS, Cheng X, Vijayaraghavan T, Vernon A, Liu J, Neumann B. Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans. PLoS One 2020; 15:e0231600. [PMID: 32294113 PMCID: PMC7159224 DOI: 10.1371/journal.pone.0231600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is an inherited peripheral motor and sensory neuropathy. The disease is divided into demyelinating (CMT1) and axonal (CMT2) neuropathies, and although we have gained molecular information into the details of CMT1 pathology, much less is known about CMT2. Due to its clinical and genetic heterogeneity, coupled with a lack of animal models, common underlying mechanisms remain elusive. In order to gain an understanding of the normal function of genes associated with CMT2, and to draw direct comparisons between them, we have studied the behavioural, cellular and molecular consequences of mutating nine different genes in the nematode Caenorhabditis elegans (lin-41/TRIM2, dyn-1/DNM2, unc-116/KIF5A, fzo-1/MFN2, osm-9/TRPV4, cua-1/ATP7A, hsp-25/HSPB1, hint-1/HINT1, nep-2/MME). We show that C. elegans defective for these genes display debilitated movement in crawling and swimming assays. Severe morphological defects in cholinergic motors neurons are also evident in two of the mutants (dyn-1 and unc-116). Furthermore, we establish methods for quantifying muscle morphology and use these to demonstrate that loss of muscle structure occurs in the majority of mutants studied. Finally, using electrophysiological recordings of neuromuscular junction (NMJ) activity, we uncover reductions in spontaneous postsynaptic current frequency in lin-41, dyn-1, unc-116 and fzo-1 mutants. By comparing the consequences of mutating numerous CMT2-related genes, this study reveals common deficits in muscle structure and function, as well as NMJ signalling when these genes are disrupted.
Collapse
Affiliation(s)
- Ming S. Soh
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Xinran Cheng
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Tarika Vijayaraghavan
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Arwen Vernon
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Fardghassemi Y, Tauffenberger A, Gosselin S, Parker JA. Rescue of ATXN3 neuronal toxicity in Caenorhabditiselegans by chemical modification of endoplasmic reticulum stress. Dis Model Mech 2017; 10:1465-1480. [PMID: 29061563 PMCID: PMC5769603 DOI: 10.1242/dmm.029736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
Polyglutamine expansion diseases are a group of hereditary neurodegenerative disorders that develop when a CAG repeat in the causative genes is unstably expanded above a certain threshold. The expansion of trinucleotide CAG repeats causes hereditary adult-onset neurodegenerative disorders, such as Huntington's disease, dentatorubral–pallidoluysian atrophy, spinobulbar muscular atrophy and multiple forms of spinocerebellar ataxia (SCA). The most common dominantly inherited SCA is the type 3 (SCA3), also known as Machado–Joseph disease (MJD), which is an autosomal dominant, progressive neurological disorder. The gene causatively associated with MJD is ATXN3. Recent studies have shown that this gene modulates endoplasmic reticulum (ER) stress. We generated transgenic Caenorhabditiselegans strains expressing human ATXN3 genes in motoneurons, and animals expressing mutant ATXN3-CAG89 alleles showed decreased lifespan, impaired movement, and rates of neurodegeneration greater than wild-type ATXN3-CAG10 controls. We tested three neuroprotective compounds (Methylene Blue, guanabenz and salubrinal) believed to modulate ER stress and observed that these molecules rescued ATXN3-CAG89 phenotypes. Furthermore, these compounds required specific branches of the ER unfolded protein response (UPRER), reduced global ER and oxidative stress, and polyglutamine aggregation. We introduce new C. elegans models for MJD based on the expression of full-length ATXN3 in a limited number of neurons. Using these models, we discovered that chemical modulation of the UPRER reduced neurodegeneration and warrants investigation in mammalian models of MJD. Summary: We introduce a novel C. elegans model for Machado–Joseph disease for use in preclinical drug discovery and identified guanabenz as a potent neuroprotective molecule.
Collapse
Affiliation(s)
- Yasmin Fardghassemi
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) Montréal, Québec H2X 0A9, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Arnaud Tauffenberger
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) Montréal, Québec H2X 0A9, Canada.,Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sarah Gosselin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) Montréal, Québec H2X 0A9, Canada.,Département de neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - J Alex Parker
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) Montréal, Québec H2X 0A9, Canada .,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada.,Département de neurosciences, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
14
|
Schmeisser K, Parker JA. Worms on the spectrum - C. elegans models in autism research. Exp Neurol 2017; 299:199-206. [PMID: 28434869 DOI: 10.1016/j.expneurol.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
The small non-parasitic nematode Caenorhabditis elegans is widely used in neuroscience thanks to its well-understood development and lineage of the nervous system. Furthermore, C. elegans has been used to model many human developmental and neurological conditions to better understand disease mechanisms and identify potential therapeutic strategies. Autism spectrum disorder (ASD) is the most prevalent of all neurodevelopmental disorders, and the C. elegans system may provide opportunities to learn more about this complex disorder. Since basic cell biology and biochemistry of the C. elegans nervous system is generally very similar to mammals, cellular or molecular phenotypes can be investigated, along with a repertoire of behaviours. For instance, worms have contributed greatly to the understanding of mechanisms underlying mutations in genes coding for synaptic proteins such as neuroligin and neurexin. Using worms to model neurodevelopmental disorders like ASD is an emerging topic that harbours great, untapped potential. This review summarizes the numerous contributions of C. elegans to the field of neurodevelopment and introduces the nematode system as a potential research tool to study essential roles of genes associated with ASD.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada; Department of Neuroscience, Université de Montreál, 2960 Chemin de la Tour, Montreál, Queb́ec H3T 1J4, Canada.
| |
Collapse
|