1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Ruggiero RN, Marques DB, Rossignoli MT, De Ross JB, Prizon T, Beraldo IJS, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Lopes-Aguiar C, Leite JP. Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 2024; 12:RP90997. [PMID: 38593008 PMCID: PMC11003745 DOI: 10.7554/elife.90997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Jana Batista De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Ikaro Jesus Silva Beraldo
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | | | | | - Jose Eduardo Peixoto-Santos
- Neuroscience Discipline, Department of Neurology and Neurosurgery,Universidade Federal de São PauloSão PauloBrazil
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | - Joao Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| |
Collapse
|
3
|
Peng Y, Wang Y, Gao P, Zhang L. The stationarity control of the average links for the Hebb complex dynamical network via external stimulus signals. ISA TRANSACTIONS 2023; 132:338-345. [PMID: 35725668 DOI: 10.1016/j.isatra.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The model of complex dynamical network (CDN) can be represented as the mathematic graph, in which some characteristics may emerge from the dynamic nodes group (NG) and links group (LG). This paper primarily focuses on the feature appearing from the dynamic links. The average link weight (ALW), as a novel quantitative index to describe the characteristic of dynamic links is introduced. Inspired by the Hebb's neuroscience theory, the Hebb complex dynamical network (HCDN) is constructed. The ALW of the HCDN can track a given target via external stimulus signals with adaptive amplifiers' proportional coefficients. In other words, the stationary network implies the ALW is a constant in time. Finally, two simulation examples are performed to validate the proposed adaptive update law's effectiveness.
Collapse
Affiliation(s)
- Yi Peng
- School of Automation, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yinhe Wang
- School of Automation, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Peitao Gao
- School of Automation, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Lili Zhang
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
4
|
Chen X, Li L, Sui L. Alterations in amperometric cholinergic signals accompanied by synaptic plasticity and γ oscillations in the hippocampus-medial prefrontal cortex pathway. Neuroreport 2021; 32:1428-1435. [PMID: 34776505 DOI: 10.1097/wnr.0000000000001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Neural projections from the ventral hippocampal CA1 (vCA1) to the medial prefrontal cortex (mPFC) and from the posterior dorsal hippocampal CA1 (pdCA1) to the mPFC are important for information processing. Previous studies have revealed that two forms of long-term synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), and γ oscillations, which are all believed to be neural bases for learning and memory in the vCA1-mPFC and the pdCA1-mPFC pathways, exhibited distinct profiles. However, the underlying mechanism is unclear. METHODS In the present study, amperometric cholinergic signals were monitored during in-vivo electrophysiological recordings of evoked extracellular postsynaptic potentials and spontaneous local field potentials. RESULTS The results demonstrated that in the vCA1-mPFC pathway, increased cholinergic currents and γ power of the amperometric cholinergic signals were accompanied by the induction of LTD and increased γ power of local field potentials, whereas, in the pdCA1-mPFC pathway, decreased cholinergic currents and increased γ power of the amperometric cholinergic signals were accompanied by the induction of LTP and increased γ power of local field potentials. CONCLUSION These findings indicated that some correlations may exist between amperometric cholinergic signals and synaptic plasticity in the hippocampus-mPFC pathway. The pattern of alterations in cholinergic signals may help to illustrate the specific properties of synaptic plasticity and γ oscillations in the vCA1-mPFC and the pdCA1-mPFC pathways.
Collapse
Affiliation(s)
- XiaoYu Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | | |
Collapse
|
5
|
Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C, Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Front Cell Neurosci 2021; 15:732360. [PMID: 34707481 PMCID: PMC8542677 DOI: 10.3389/fncel.2021.732360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023] Open
Abstract
The hippocampus-prefrontal cortex (HPC-PFC) pathway plays a fundamental role in executive and emotional functions. Neurophysiological studies have begun to unveil the dynamics of HPC-PFC interaction in both immediate demands and long-term adaptations. Disruptions in HPC-PFC functional connectivity can contribute to neuropsychiatric symptoms observed in mental illnesses and neurological conditions, such as schizophrenia, depression, anxiety disorders, and Alzheimer's disease. Given the role in functional and dysfunctional physiology, it is crucial to understand the mechanisms that modulate the dynamics of HPC-PFC communication. Two of the main mechanisms that regulate HPC-PFC interactions are synaptic plasticity and modulatory neurotransmission. Synaptic plasticity can be investigated inducing long-term potentiation or long-term depression, while spontaneous functional connectivity can be inferred by statistical dependencies between the local field potentials of both regions. In turn, several neurotransmitters, such as acetylcholine, dopamine, serotonin, noradrenaline, and endocannabinoids, can regulate the fine-tuning of HPC-PFC connectivity. Despite experimental evidence, the effects of neuromodulation on HPC-PFC neuronal dynamics from cellular to behavioral levels are not fully understood. The current literature lacks a review that focuses on the main neurotransmitter interactions with HPC-PFC activity. Here we reviewed studies showing the effects of the main neurotransmitter systems in long- and short-term HPC-PFC synaptic plasticity. We also looked for the neuromodulatory effects on HPC-PFC oscillatory coordination. Finally, we review the implications of HPC-PFC disruption in synaptic plasticity and functional connectivity on cognition and neuropsychiatric disorders. The comprehensive overview of these impairments could help better understand the role of neuromodulation in HPC-PFC communication and generate insights into the etiology and physiopathology of clinical conditions.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Monteiro de Sousa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Lopes-Aguiar C, Ruggiero RN, Rossignoli MT, Esteves IDM, Peixoto-Santos JE, Romcy-Pereira RN, Leite JP. Long-term potentiation prevents ketamine-induced aberrant neurophysiological dynamics in the hippocampus-prefrontal cortex pathway in vivo. Sci Rep 2020; 10:7167. [PMID: 32346044 PMCID: PMC7188848 DOI: 10.1038/s41598-020-63979-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-competitive NMDAr antagonist. However, it is not clear whether LTP could also modulate aberrant oscillations and short-term plasticity disruptions induced by NMDAr antagonists. Thus, we tested whether LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma cross-frequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.
Collapse
Affiliation(s)
- Cleiton Lopes-Aguiar
- Núcleo de Neurociências, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Ingrid de Miranda Esteves
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | | | | | - João P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
7
|
Zhou J, Ma X, Li C, Liao A, Yang Z, Ren H, Tang J, Li J, Li Z, He Y, Chen X. Frequency-Specific Changes in the Fractional Amplitude of the Low-Frequency Fluctuations in the Default Mode Network in Medication-Free Patients With Bipolar II Depression: A Longitudinal Functional MRI Study. Front Psychiatry 2020; 11:574819. [PMID: 33488415 PMCID: PMC7819893 DOI: 10.3389/fpsyt.2020.574819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Objective: This study aimed to examine the treatment-related changes of the fractional amplitude of low-frequency fluctuations (fALFF) in the default mode network (DMN) across different bands after the medication-free patients with bipolar II depression received a 16-week treatment of escitalopram and lithium. Methods: A total of 23 medication-free patients with bipolar II depression and 29 healthy controls (HCs) were recruited. We evaluated the fALFF values of slow 4 (0.027-0.073 Hz) band and slow 5 (0.01-0.027 Hz) band of the patients and compared the results with those of the 29 HCs at baseline. After 16-week treatment of escitalopram with lithium, the slow 4 and slow 5 fALFF values of the patients were assessed and compared with the baselines of patients and HCs. The depressive symptoms of bipolar II depression in patients were assessed with a 17-item Hamilton Depression Rating Scale (HDRS) before and after treatment. Results: Treatment-related effects showed increased slow 5 fALFF in cluster D (bilateral medial superior frontal gyrus, bilateral superior frontal gyrus, right middle frontal gyrus, and bilateral anterior cingulate), cluster E (bilateral precuneus/posterior cingulate, left cuneus), and cluster F (left angular, left middle temporal gyrus, left superior temporal gyrus, and left supramarginal gyrus) in comparison with the baseline of the patients. Moreover, a positive association was found between the increase in slow 5 fALFF values (follow-up value minus the baseline values) in cluster D and the decrease in HDRS scores (baseline HDRS scores minus follow-up HDRS scores) at follow-up, and the same association between the increase in slow 5 fALFF values and the decrease in HDRS scores was found in cluster E. Conclusions: The study reveals that the hypoactivity of slow 5 fALFF in the DMN is related to depression symptoms and might be corrected by the administration of escitalopram with lithium, implying that slow 5 fALFF of the DMN plays a key role in bipolar depression.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Aijun Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Zihao Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jinguang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
8
|
Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Exp Neurol 2019; 322:113060. [PMID: 31505162 DOI: 10.1016/j.expneurol.2019.113060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that depression and declined cognition have been involved in some neurodegenerative diseases including Stroke, Parkinson's diseases and Vascular Parkinsonism. Post-stroke depression (PSD) is the most common psychiatric disorder following a stroke and has high morbidity and mortality. Studies on PSD are increasingly common, but the specific mechanisms remain unknown. Current research mainly includes clinical and animal aspects. Questionnaires and peripheral blood examination are two of the most common methods used to study clinical PSD. The results of questionnaires are influenced by multiple factors such as disease history, education background, occupation, economic status, family relationships and social support. There are certain limitations to blood sample testing; for example, it is influenced by cerebrovascular diseases and some other disruptions of the internal environment. It is difficult for either method to fully clarify the pathophysiological mechanism of PSD. Animal models provide alternative methods to further understand the pathophysiological mechanisms of PSD, such as the involvement of neuronal circuits and cytokines. More than ten animal models of PSD have been developed, and new models are constantly being introduced. Therefore, it is important to choose the appropriate model for any given study. In this paper, we will discuss the characteristics of the different models of PSD and comment on the advantages and disadvantages of each model, drawing from research on model innovation. Finally, we briefly describe the current assessment methods for the core symptoms of PSD models, point out the shortcomings, and present the improved sucrose preference test as a rational evaluation of anhedonia.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Jieqiong Tan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|