1
|
Hu S, Tang Y, Li X, Li W, Zeng Y, Jiang M, Chen R, Zheng P, Yang L, Song Z, Xie D, Chen Y, Yuan Y. Hsp90aa1/JUN/Ccl2 regulatory axis mediates migration and differentiation of NSPCs, promoting the onset and progression of early post-ischemic stroke epilepsy. Neurobiol Dis 2024; 200:106635. [PMID: 39128813 DOI: 10.1016/j.nbd.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Early-onset epilepsy following ischemic stroke is a severe neurological condition, the pathogenesis of which remains incompletely understood. Recent studies suggest that Neural stem/progenitor cells (NSPCs) play a crucial role in the disease process, yet the precise molecular mechanisms regulating NSPCs have not been thoroughly investigated. This study utilized single-cell transcriptome sequencing and bioinformatics analysis to identify disease-related genes, which were subsequently validated in both in vitro and in vivo experiments. The findings revealed that Hsp90aa1 (heat shock protein 90 kDa alpha, class A member 1), Jun proto-oncogene (JUN), and CC Motif Ligation 2 (Ccl2) constitute an important regulatory axis influencing the migration and differentiation of NSPCs, potentially impacting the onset and progression of early-onset epilepsy post-ischemic stroke. Additionally, the expression of Hsp90aa1 was found to influence the likelihood of seizure occurrence and the severity of brain ischemia.
Collapse
Affiliation(s)
- Shuntong Hu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhong Tang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yini Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mi Jiang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Ru Chen
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Liang Yang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dujie Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yiwei Chen
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yi Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Ma Y, Singhal G, Chan SS, Wang C, Yu H, Yin B, Pang J, Malvar G, Nasser I, Mather ML, Maratos-Flier E. FGF21 protects against ischaemia reperfusion injury in normal and fatty livers. Liver Int 2024; 44:1668-1679. [PMID: 38554044 DOI: 10.1111/liv.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Liver ischaemia/reperfusion (I/R) injury, which is an inevitable clinical problem of liver resection, liver transplantation and haemorrhagic shock. Fibroblast growth factor 21 (FGF21) was intimately coupled with multiple metabolic processes and proved to protect against apoptosis and inflammatory response in hepatocytes during hepatic I/R injury. However, the regulatory mechanisms of FGF21 in hepatic I/R injury remains unknown. Therefore, we hypothesize that FGF21 protects hepatic tissues from I/R injury. METHODS Blood samples were available from haemangiomas patients undergoing hepatectomy and murine liver I/R model and used to further evaluate the serum levels of FGF21 both in humans and mice. We further explored the regulatory mechanisms of FGF21 in murine liver I/R model by using FGF21-knockout mice (FGF21-KO mice) and FGF21-overexpression transgenic mice (FGF21-OE mice) fed a high-fat or ketogenic diet. RESULTS Our results show that the circulating levels of FGF21 were robustly decreased after liver I/R in both humans and mice. Silencing FGF21 expression with FGF21-KO mice aggravates liver injury at 6 h after 75 min of partial liver ischaemia, while FGF21-OE mice display alleviated hepatic I/R injury and inflammatory response. Compared with chow diet mice, exogenous FGF21 decreases the levels of aminotransferase, histological changes, apoptosis and inflammatory response in hepatic I/R injury treatment mice with a high-fat diet. Meanwhile, ketogenic diet mice are not sensitive to hepatic I/R injury. CONCLUSIONS The circulating contents of FGF21 are decreased during liver warm I/R injury and exogenous FGF21 exerts hepatoprotective effects on hepatic I/R injury. Thus, FGF21 regulates hepatic I/R injury and may be a key therapeutic target.
Collapse
Affiliation(s)
- Yong Ma
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Garima Singhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne S Chan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Pang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Malvar
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie L Mather
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Huang WT, Chen XJ, Lin YK, Shi JF, Li H, Wu HD, Jiang RL, Chen S, Wang X, Tan XX, Chen KY, Wang P. FGF17 protects cerebral ischemia reperfusion-induced blood-brain barrier disruption via FGF receptor 3-mediated PI3K/AKT signaling pathway. Eur J Pharmacol 2024; 971:176521. [PMID: 38522639 DOI: 10.1016/j.ejphar.2024.176521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Maintaining blood-brain barrier (BBB) integrity is critical components of therapeutic approach for ischemic stroke. Fibroblast growth factor 17 (FGF17), a member of FGF8 superfamily, exhibits the strongest expression throughout the wall of all major arteries during development. However, its molecular action and potential protective role on brain endothelial cells after stroke remains unclear. Here, we observed reduced levels of FGF17 in the serum of patients with ischemic stroke, as well as in the brains of mice subjected to middle cerebral artery occlusion (MCAO) injury and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain microvascular endothelial cells (bEnd.3) cells. Moreover, treatment with exogenous recombinant human FGF17 (rhFGF17) decreased infarct volume, improved neurological deficits, reduced Evans Blue leakage and upregulated the expression of tight junctions in MCAO-injured mice. Meanwhile, rhFGF17 increased cell viability, enhanced trans-endothelial electrical resistance, reduced sodium fluorescein leakage, and alleviated reactive oxygen species (ROS) generation in OGD/R-induced bEnd.3 cells. Mechanistically, the treatment with rhFGF17 resulted in nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation and upregulation of heme oxygenase-1 (HO-1) expression. Additionally, based on in-vivo and in-vitro research, rhFGF17 exerted protective effects against ischemia/reperfusion (I/R) -induced BBB disruption and endothelial cell apoptosis through the activation of the FGF receptor 3/PI3K/AKT signaling pathway. Overall, our findings indicated that FGF17 may hold promise as a novel therapeutic strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Wen-Ting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong-Jian Chen
- Department of Pharmacy, Wenzhou Central Hospital, Wenzhou, 325099, China
| | - Yu-Kai Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuai Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian-Xi Tan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ke-Yang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Li D, Lian L, Huang L, Gamdzyk M, Huang Y, Doycheva D, Li G, Yu S, Guo Y, Kang R, Tang H, Tang J, Kong L, Zhang JH. Delayed recanalization reduced neuronal apoptosis and neurological deficits by enhancing liver-derived trefoil factor 3-mediated neuroprotection via LINGO2/EGFR/Src signaling pathway after middle cerebral artery occlusion in rats. Exp Neurol 2024; 371:114607. [PMID: 37935323 PMCID: PMC11585322 DOI: 10.1016/j.expneurol.2023.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Delayed recanalization at days or weeks beyond the therapeutic window was shown to improve functional outcomes in acute ischemic stroke (AIS) patients. However, the underlying mechanisms remain unclear. Previous preclinical study reported that trefoil factor 3 (TFF3) was secreted by liver after cerebral ischemia and acted a distant neuroprotective factor. Here, we investigated the liver-derived TFF3-mediated neuroprotective mechanism enhanced by delayed recanalization after AIS. A total of 327 male Sprague-Dawley rats and the model of middle cerebral artery occlusion (MCAO) with permanent occlusion (pMCAO) or with delayed recanalization at 3 d post-occlusion (rMCAO) were used. Partial hepatectomy was performed within 5 min after MCAO. Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) siRNA was administered intracerebroventricularly at 48 h after MCAO. Recombinant rat TFF3 (rr-TFF3, 30 μg/Kg) or recombinant rat epidermal growth factor (rr-EGF, 100 μg/Kg) was administered intranasally at 1 h after recanalization, and EGFR inhibitor Gefitinib (75 mg/Kg) was administered intranasally at 30 min before recanalization. The evaluation of outcomes included neurobehavior, ELISA, western blot and immunofluorescence staining. TFF3 in hepatocytes and serum were upregulated in a similar time-dependent manner after MCAO. Compared to pMCAO, delayed recanalization increased brain TFF3 levels and attenuated brain damage with the reduction in neuronal apoptosis, infarct volume and neurological deficits. Partial hepatectomy reduced TFF3 levels in serum and ipsilateral brain hemisphere, and abolished the benefits of delayed recanalization on neuronal apoptosis and neurobehavioral deficits in rMCAO rats. Intranasal rrTFF3 treatment reversed the changes associated with partial hepatectomy. Delayed recanalization after MCAO increased the co-immunoprecipitation of TFF3 and LINGO2, as well as expressions of p-EGFR, p-Src and Bcl-2 in the brain. LINGO2 siRNA knockdown or EGFR inhibitor reversed the effects of delayed recanalization on apoptosis and brain expressions of LINGO2, p-EGFR, p-Src and Bcl-2 in rMCAO rats. EGFR activator abolished the deleterious effects of LINGO2 siRNA. In conclusion, our investigation demonstrated for the first time that delayed recanalization may enhance the entry of liver-derived TFF3 into ischemic brain upon restoring blood flow after MCAO, which attenuated neuronal apoptosis and neurological deficits at least in part via activating LINGO2/EGFR/Src pathway.
Collapse
Affiliation(s)
- Dujuan Li
- Department of Pathology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University, People's Hospital of Henan University), Zhengzhou 450003, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gaigai Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shufeng Yu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yong Guo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University, People's Hospital of Henan University), Zhengzhou 450003, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
5
|
Xu SY, Song MM, Pan X, Song SN, Zhang Q, Li CX. Rectangular method: a modified technique for sampling the ischemic border zone in a rat model of transient middle cerebral artery occlusion. Braz J Med Biol Res 2023; 56:e13140. [PMID: 38088675 PMCID: PMC10712280 DOI: 10.1590/1414-431x2023e13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
To date, there have been three common methods for sampling the cerebral ischemic border zone in a rat model of transient middle cerebral artery occlusion (tMCAO): the "two o'clock method", the "diagonal method", and the "parallel line method". However, these methods have their own advantages and limitations. Here, we propose a modified technique (the "rectangular method") for sampling the ischemic border zone. A rat tMCAO model was prepared under the support of a compact small animal anesthesia machine. Cerebral blood flow was monitored by high-resolution laser Doppler to control the quality of modeling, and 2,3,5-triphenyl tetrazolium chloride (TTC) staining was used for cerebral infarction location assessment. Superoxide dismutase 2 (SOD2), cysteinyl aspartate specific proteinase (caspase)-3, caspase-9, and heat shock protein 70 (HSP70) were used to verify the reliability and reproducibility of the rectangular method. The expression of biomarkers (SOD2, caspase-3, caspase-9, and HSP70) in the traditional (two o'clock method after TTC staining) and modified (rectangular method) groups were increased. There were no significant differences between the groups. The rectangular method proposed herein is based on a modification of the diagonal method and parallel line method, which could provide a directly observable infarct borderline and a sufficient sampling area for subsequent experimental operations regardless of the cerebral infarct location. The assessed biomarkers (SOD2, caspase-3, caspase-9, and HSP70) demonstrated the reliability and reproducibility of the rectangular method, which may facilitate inter-laboratory comparisons.
Collapse
Affiliation(s)
- Sui-yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mao-mei Song
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xue Pan
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shi-na Song
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Zhang
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chang-xin Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Lu D, Liu Y, Huang H, Hu M, Li T, Wang S, Shen S, Wu R, Cai W, Lu T, Lu Z. Melatonin Offers Dual-Phase Protection to Brain Vessel Endothelial Cells in Prolonged Cerebral Ischemia-Recanalization Through Ameliorating ER Stress and Resolving Refractory Stress Granule. Transl Stroke Res 2023; 14:910-928. [PMID: 36181629 DOI: 10.1007/s12975-022-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 10/07/2022]
Abstract
Ischemic-reperfusion injury limits the time window of recanalization therapy in cerebral acute ischemic stroke (AIS). Brain vessel endothelial cells (BVECs) form the first layer of the blood-brain barrier (BBB) and are thus the first sufferer of ischemic-reperfusion disorder. The current study demonstrates that melatonin can reduce infarct volume, alleviate brain edema, ameliorate neurological deficits, and protect BBB integrity in prolonged-stroke mice. Here, we demonstrate that endoplasmic reticulum (ER)-associated injury contributes to BVEC death in the dural phase of reperfusion after prolonged ischemia. When encountering ischemia, ER stress arises, specifically activating PERK-EIF2α signaling and the subsequent programmed cell death. Prolonged ischemia leads stress granules (SGs) to be refractory, which remain unresolved and accumulate in ER during recanalization. During reperfusion, refractory SGs activate PKR-EIF2α and further exacerbate BVEC injury. We report that melatonin treatment downregulates ER stress in the ischemic period and enhances dissociation of the refractory SGs during reperfusion, thus offering dual-phase protection to BVECs in prolonged cerebral stroke. Mechanistically, melatonin enhances autophagy in BVECs, which preserves ER function and resolves refractory SGs. We, therefore, propose that melatonin is a potential treatment to extend the time window of delayed recanalization therapy in AIS.
Collapse
Affiliation(s)
- Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Zheng W, Li W, Zeng Y, Yuan H, Yang H, Chen R, Zhu A, Wu J, Song Z, Yan W. Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:648-662. [PMID: 37539567 PMCID: PMC10930414 DOI: 10.11817/j.issn.1672-7347.2023.220380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO). METHODS Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting. RESULTS The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO. CONCLUSIONS Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Wenjun Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Yini Zeng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Hui Yuan
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Ru Chen
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Anding Zhu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jinze Wu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Zhi Song
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Wenguang Yan
- Department of Rihabilitation Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
8
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
9
|
Kang R, Gamdzyk M, Luo Y, Tang H, Huang L, Lenahan C, Doycheva D, Li D, Tang J, Tan S, Zhang JH. Three Days Delayed Recanalization Improved Neurological Function in pMCAO Rats by Increasing M2 Microglia-Possible Involvement of the IL-4R/STAT6/PPARγ Pathway. Transl Stroke Res 2023; 14:250-262. [PMID: 35867328 PMCID: PMC11586074 DOI: 10.1007/s12975-022-01032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Current approved therapies for acute ischemic stroke have a restricted therapeutic time window. Delayed recanalization, which has been utilized clinically in patients who have missed the time window for administration, may be a promising alternative for stroke patients. However, the underlying molecular mechanisms remain undiscovered. Herein, we hypothesized that delayed recanalization would increase M2 microglial polarization through the IL-4R (interleukin-4 receptor)/STAT6 (signal transducer and activators of transcription 6)/PPARγ (peroxisome proliferator-activated receptor γ) pathway, subsequently promoting stroke recovery in rats. The permanent middle cerebral artery occlusion (pMCAO) model was induced via intravascular filament insertion. Recanalization was induced by withdrawing the filament at 3 days after MCAO (rMCAO). Interleukin (IL)-4 was administered intranasally at 3 days after pMCAO. AS1517499, a specific STAT6 inhibitor, was administered intranasally at 3 days after MCAO induction. Immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), western blot analysis, volumetric measurements of brain infarct, and neurological behavior tests were conducted. Delayed recanalization at 3 days after MCAO increased the polarization of M2 microglia, decreased inflammation, and improved neurological behavior. IL-4 treatment administered on the 3rd day after pMCAO increased M2 microglial polarization, improved neurological behavior, and reduced infarction volume of pMCAO rats. The inhibition of STAT6 decreased the level of p-STAT6 and PPARγ in rats treated with delayed recanalization. Delayed recanalization improved neurological function by increasing microglial M2 polarization, possibly involved with the IL-4R/STAT6/PPARγ pathway after MCAO in rats.
Collapse
Affiliation(s)
- Ruiqing Kang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Yujie Luo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Dujuan Li
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
- Department of Anesthesiology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
10
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
11
|
Eastin TM, Dye JA, Pillai P, Lopez-Gonzalez MA, Huang L, Zhang JH, Boling WW. Delayed revascularization in acute ischemic stroke patients. Front Pharmacol 2023; 14:1124263. [PMID: 36843940 PMCID: PMC9945110 DOI: 10.3389/fphar.2023.1124263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Stroke shares a significant burden of global mortality and disability. A significant decline in the quality of life is attributed to the so-called post-stroke cognitive impairment including mild to severe cognitive alterations, dementia, and functional disability. Currently, only two clinical interventions including pharmacological and mechanical thrombolysis are advised for successful revascularization of the occluded vessel. However, their therapeutic effect is limited to the acute phase of stroke onset only. This often results in the exclusion of a significant number of patients who are unable to reach within the therapeutic window. Advances in neuroimaging technologies have allowed better assessment of salvageable penumbra and occluded vessel status. Improvement in diagnostic tools and the advent of intravascular interventional devices such as stent retrievers have expanded the potential revascularization window. Clinical studies have demonstrated positive outcomes of delayed revascularization beyond the recommended therapeutic window. This review will discuss the current understanding of ischemic stroke, the latest revascularization doctrine, and evidence from clinical studies regarding effective delayed revascularization in ischemic stroke.
Collapse
Affiliation(s)
- T. Marc Eastin
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Justin A. Dye
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Promod Pillai
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Miguel A. Lopez-Gonzalez
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Lei Huang
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States,Department of Pharmacology and Physiology, Loma Linda University, Loma Linda, CA, United States
| | - John H. Zhang
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States,Department of Pharmacology and Physiology, Loma Linda University, Loma Linda, CA, United States,Department of Neurology, Loma Linda University Medical Center, Loma Linda, CA, United States,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Warren W. Boling
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States,*Correspondence: Warren W. Boling,
| |
Collapse
|
12
|
Pang J, Matei N, Peng J, Zheng W, Yu J, Luo X, Camara R, Chen L, Tang J, Zhang JH, Jiang Y. Macrophage Infiltration Reduces Neurodegeneration and Improves Stroke Recovery after Delayed Recanalization in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6422202. [PMID: 36035227 PMCID: PMC9402313 DOI: 10.1155/2022/6422202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Background Recent cerebrovascular recanalization therapy clinical trials have validated delayed recanalization in patients outside of the conventional window. However, a paucity of information on the pathophysiology of delayed recanalization and favorable outcomes remains. Since macrophages are extensively studied in tissue repair, we anticipate that they may play a critical role in delayed recanalization after ischemic stroke. Methods In adult male Sprague-Dawley rats, two ischemic stroke groups were used: permanent middle cerebral artery occlusion (pMCAO) and delayed recanalization at 3 days following middle cerebral artery occlusion (rMCAO). To evaluate outcome, brain morphology, neurological function, macrophage infiltration, angiogenesis, and neurodegeneration were reported. Confirming the role of macrophages, after their depletion, we assessed angiogenesis and neurodegeneration after delayed recanalization. Results No significant difference was observed in the rate of hemorrhage or animal mortality among pMCAO and rMCAO groups. Delayed recanalization increased angiogenesis, reduced infarct volumes and neurodegeneration, and improved neurological outcomes compared to nonrecanalized groups. In rMCAO groups, macrophage infiltration contributed to increased angiogenesis, which was characterized by increased vascular endothelial growth factor A and platelet-derived growth factor B. Confirming these links, macrophage depletion reduced angiogenesis, inflammation, neuronal survival in the peri-infarct region, and favorable outcome following delayed recanalization. Conclusion If properly selected, delayed recanalization at day 3 postinfarct can significantly improve the neurological outcome after ischemic stroke. The sanguineous exposure of the infarct/peri-infarct to macrophages was essential for favorable outcomes after delayed recanalization at 3 days following ischemic stroke.
Collapse
Affiliation(s)
- Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Nathanael Matei
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wen Zheng
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jing Yu
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xu Luo
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Richard Camara
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiping Tang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
13
|
Zhu H, Huang J, Chen Y, Li X, Wen J, Tian M, Ren J, Zhou L, Yang Q. Resveratrol pretreatment protects neurons from oxygen-glucose deprivation/reoxygenation and ischemic injury through inhibiting ferroptosis. Biosci Biotechnol Biochem 2022; 86:704-716. [PMID: 35357412 DOI: 10.1093/bbb/zbac048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Ferroptosis, a newly discovered iron-dependent cell death, is involved in brain ischemia-reperfusion injury. Iron scavengers or ferroptosis inhibitors could reduce infarct volume and improve neurological function in mice. Resveratrol has neuroprotective and neurorestorative effects. However, it is unclear whether resveratrol can play a neuroprotective role via inhibiting ferroptosis. Our study showed that resveratrol pretreatment had a similar effect with ferrostatin‑1, which inhibited neuronal ferroptosis-related changes, such as iron overload, damages of oxidation-reduction system, and destruction of mitochondrial structure, after oxygen-glucose deprivation/reoxygenation (OGD/R) and application of ferroptosis inducers. In addition, middle cerebral artery occlusion/reperfusion (MCAO/R) injury in vivo also induced ferroptosis, and resveratrol pretreatment could inhibit ferroptosis and reduce degenerative neurons, cerebral ischemic damage and infarction volume. Our results are the first to indicate that resveratrol pretreatment might inhibit ferroptosis induced by OGD/R and ferroptosis inducers in neurons, and MCAO/R in rats.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Sommakia S, Almaw NH, Lee SH, Ramadurai DKA, Taleb I, Kyriakopoulos CP, Stubben CJ, Ling J, Campbell RA, Alharethi RA, Caine WT, Navankasattusas S, Hoareau GL, Abraham AE, Fang JC, Selzman CH, Drakos SG, Chaudhuri D. FGF21 (Fibroblast Growth Factor 21) Defines a Potential Cardiohepatic Signaling Circuit in End-Stage Heart Failure. Circ Heart Fail 2022; 15:e008910. [PMID: 34865514 PMCID: PMC8930477 DOI: 10.1161/circheartfailure.121.008910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Extrinsic control of cardiomyocyte metabolism is poorly understood in heart failure (HF). FGF21 (Fibroblast growth factor 21), a hormonal regulator of metabolism produced mainly in the liver and adipose tissue, is a prime candidate for such signaling. METHODS To investigate this further, we examined blood and tissue obtained from human subjects with end-stage HF with reduced ejection fraction at the time of left ventricular assist device implantation and correlated serum FGF21 levels with cardiac gene expression, immunohistochemistry, and clinical parameters. RESULTS Circulating FGF21 levels were substantially elevated in HF with reduced ejection fraction, compared with healthy subjects (HF with reduced ejection fraction: 834.4 [95% CI, 628.4-1040.3] pg/mL, n=40; controls: 146.0 [86.3-205.7] pg/mL, n=20, P=1.9×10-5). There was clear FGF21 staining in diseased cardiomyocytes, and circulating FGF21 levels negatively correlated with the expression of cardiac genes involved in ketone metabolism, consistent with cardiac FGF21 signaling. FGF21 gene expression was very low in failing and nonfailing hearts, suggesting extracardiac production of the circulating hormone. Circulating FGF21 levels were correlated with BNP (B-type natriuretic peptide) and total bilirubin, markers of chronic cardiac and hepatic congestion. CONCLUSIONS Circulating FGF21 levels are elevated in HF with reduced ejection fraction and appear to bind to the heart. The liver is likely the main extracardiac source. This supports a model of hepatic FGF21 communication to diseased cardiomyocytes, defining a potential cardiohepatic signaling circuit in human HF.
Collapse
Affiliation(s)
- Salah Sommakia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Naredos H. Almaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Sandra H. Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Dinesh K. A. Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Christos P. Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Chris J. Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jing Ling
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Campbell
- Department of Internal Medicine, Division of General Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Rami A. Alharethi
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
| | - William T. Caine
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Guillaume L. Hoareau
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, Division of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Anu E. Abraham
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - James C. Fang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Craig H. Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake Veterans Affairs Health Care System, Salt Lake City, UT
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT
| | - Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
15
|
Ávila-Gómez P, Pérez-Mato M, Hervella P, Dopico-López A, da Silva-Candal A, Bugallo-Casal A, López-Amoedo S, Candamo-Lourido M, Sobrino T, Iglesias-Rey R, Castillo J, Campos F. Associations between RNA-Binding Motif Protein 3, Fibroblast Growth Factor 21, and Clinical Outcome in Patients with Stroke. J Clin Med 2022; 11:jcm11040949. [PMID: 35207221 PMCID: PMC8875775 DOI: 10.3390/jcm11040949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Background: RNA-binding motif protein 3 (RBM3) is a cold-induced marker of good functional outcome of ischemic stroke that is promising as a protective target. Fibroblast growth factor 21 (FGF21) is an obesity- and temperature-related hormone that upregulates the expression of RBM3, which is beneficial as a recombinant treatment and has been tested under different experimental pathological conditions, including stroke. However, the interaction between RBM3 and FGF21 has not yet been tested for clinical stroke conditions. Methods: In a sample of 66 stroke patients, we analyzed the associations between the FGF21 and RBM3 serum concentrations on admission and at 72 h, body weight, maximum temperature during the first 24 h, and the outcome of patients at 3 months. We also analyzed their association with biomarkers of obesity (adiponectin and leptin) and inflammation (interleukin-6 (IL-6) and interleukin (IL-10)). Results: Higher concentrations of FGF21 on admission and RBM3 at 72 h were associated with good outcomes. Serum FGF21 and RBM3 were directly related to body mass index and inversely related to the maximum temperature during the first 24 h. We found a positive association between the FGF21 concentrations in obese patients with leptin and a negative correlation with adiponectin in non-obese participants. Conclusions: This clinical study demonstrates the association between RBM3 and FGF21 levels and the outcome of stroke patients. Although further investigations are required, these data support the pharmacological induction of RBM3 as a promising protective therapy.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - María Pérez-Mato
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Antonio Dopico-López
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Andrés da Silva-Candal
- Neurovascular Diseases Laboratory, Neurology Service, Biomedical Research Institute (INIBIC), University Hospital Complex of A Coruña, 15006 A Coruña, Spain;
| | - Ana Bugallo-Casal
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Sonia López-Amoedo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - María Candamo-Lourido
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - José Castillo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.Á.-G.); (P.H.); (A.D.-L.); (A.B.-C.); (S.L.-A.); (M.C.-L.); (T.S.); (R.I.-R.); (J.C.)
- Correspondence: ; Tel./Fax: +34-981951097
| |
Collapse
|
16
|
Matei N, Leahy S, Blair NP, Shahidi M. Assessment of retinal oxygen metabolism, visual function, thickness and degeneration markers after variable ischemia/reperfusion in rats. Exp Eye Res 2021; 213:108838. [PMID: 34774489 DOI: 10.1016/j.exer.2021.108838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
After total retinal ischemia induced experimentally by ophthalmic vessel occlusion followed by reperfusion, studies have reported alterations in retinal oxygen metabolism (MO2), delivery (DO2), and extraction fraction (OEF), as well as visual dysfunction and cell loss. In the current study, under variable durations of ischemia/reperfusion, changes in these oxygen metrics, visual function, retinal thickness, and degeneration markers (gliosis and apoptosis) were assessed and related. Additionally, the prognostic value of MO2 for predicting visual function and retinal thickness outcomes was reported. Sixty-one rats were divided into 5 groups of ischemia duration (0 [sham], 60, 90, 120, or 180 min) and 2 reperfusion durations (1 h, 7 days). Phosphorescence lifetime and blood flow imaging, electroretinography, and optical coherence tomography were performed. MO2 reduction was related to visual dysfunction, retinal thinning, increased gliosis and apoptosis after 7-days reperfusion. Impairment in MO2 after 1-h reperfusion predicted visual function and retinal thickness outcomes after 7-days reperfusion. Since MO2 can be measured in humans, findings from analogous studies may find value in the clinical setting.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States
| | - Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
17
|
Activation of activator protein-1-fibroblast growth factor 21 signaling attenuates Cisplatin hepatotoxicity. Biochem Pharmacol 2021; 194:114823. [PMID: 34748822 DOI: 10.1016/j.bcp.2021.114823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor (Fgf/FGF) 21, which plays important roles in sugar, lipid and energy metabolism, has been accepted as a mito-stress marker gene. We recently reported that FGF21 expression can be up-regulated via activation of aryl hydrocarbon receptor (AhR) or glucocorticoid receptor (GR) and that FGF21 plays important cytoprotective roles. Cisplatin (cis-diamminedichloroplatinum, CDDP) is a widely used chemotherapeutic drug. Numerous adverse effects including hepatotoxicity have been noted during CDDP therapy. It is known that CDDP can induce mitochondrial dysfunction. The studies were designed to determine the regulation of Fgf/FGF21 expression by CDDP, and to characterize the underlying mechanisms of its regulation, as well as to determine the impact of gain or loss of Fgf/FGF21 function on the progression of CDDP hepatotoxicity. Our results showed that CDDP and phorbol ester induced mRNA and protein expression of Fgf/FGF21 and β-Klotho, two essential components of Fgf21 signaling, in mouse livers and cultured mouse/human hepatocytes. Luciferase reporter assays and ChIP-qPCR assays demonstrated that the cJun-AP-1 activation is responsible for CDDP- and phorbol ester-induced Fgf/FGF21 expression. Such induction is abolished after cotreated with AP-1 inhibitor SR11302. In addition, CDDP produces more severe liver injury in Fgf21-null than wild-type mice. Pre-treatment of GR activator dexamethasone or AhR activator β-Naphthoflavone, both of which can induce Fgf21 expression, attenuated CDDP-induced hepatotoxicity in vivo and in vitro. In conclusion, Fgf/FGF21-β-Klotho signaling can be activated via AP-1 activation. Gain of Fgf/FGF21 function attenuates the progression of CDDP hepatotoxicity, which may be considered clinically to improve CDDP therapy.
Collapse
|
18
|
Zhang Q, Fan Z, Xue W, Sun F, Zhu H, Huang D, Wang Z, Dong L. Vitexin regulates Epac and NLRP3 and ameliorates chronic cerebral hypoperfusion injury. Can J Physiol Pharmacol 2021; 99:1079-1087. [PMID: 33915055 DOI: 10.1139/cjpp-2021-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic cerebral hypoperfusion (CCH), as a critical factor of chronic cerebrovascular diseases, has greatly influenced the health of patients with vascular dementia. Vitexin, a flavone C-glycoside (apigenin-8-C-β-D-glucopyranoside) that belongs to the flavone subclass of flavonoids, has been shown to possess antioxidant and anti-ischemic properties; however, the putative protective effects of vitexin on the CCH need further investigation. In the current study, the role of vitexin and its underlying mechanism were investigated with permanent bilateral common carotid artery occlusion (2VO) in rats as well as mouse hippocampal neuronal (HT22) cells with oxygen and glucose deprivation/reoxygenation (OGD/R) injury model. The results demonstrated that vitexin improved cognitive dysfunction as well as alleviated pathological neuronal damage in hematoxylin plus eosin (HE) and TUNEL results. The decreased levels of exchange protein directly activated by cAMP 1 (Epac1), Epac2, Ras-associated protein 1 (Rap1), and phospho-extracellular signal-regulated kinase (p-ERK) were reversed by vitexin in rats with CCH. Furthermore, this study indicated that vitexin alleviated CCH-induced inflammation injuries by reducing the expression of NOD-like receptor 3 (NLRP3), caspase-1, interleukin 1β (IL-1β), IL-6, and cleaved caspase-3. In vitro, vitexin increased the expression of Epac1 and Epac2, decreased the activation of the NLRP3-mediated inflammation, and improved cell viability. Taken together, our findings suggest that vitexin can reduce the degree of the progressing pathological damage in the cortex and hippocampus and inhibit further deterioration of cognitive function in rats with CCH. Epac and NLRP3 can be regulated by vitexin in vivo and in vitro, which provides enlightenment for the protection of CCH injury.
Collapse
Affiliation(s)
- Qilong Zhang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zhijia Fan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Xue
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fanfan Sun
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
19
|
Dordoe C, Chen K, Huang W, Chen J, Hu J, Wang X, Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol 2021; 12:671131. [PMID: 33967812 PMCID: PMC8102031 DOI: 10.3389/fphar.2021.671131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the leading cause of death worldwide, and its treatment remains a challenge. Complex pathological processes are involved in stroke, which causes a reduction in the supply of oxygen and energy to the brain that triggers subsequent cascade events, such as oxidative stress, inflammatory responses and apoptosis, resulting in brain injury. Stroke is a devastating disease for which there are few treatments, but physical rehabilitation can help improve stroke recovery. Although there are very few treatments for stroke patients, the discovery of fibroblast growth factors (FGFs) in mammals has led to the finding that FGFs can effectively treat stroke in animal models. As presented in this review, FGFs play essential roles by functioning as homeostatic factors and controlling cells and hormones involved in metabolism. They could be used as effective therapeutic agents for stroke. In this review, we will discuss the pharmacological actions of FGFs on multiple targets, including their ability to directly promote neuron survival, enhance angiogenesis, protect against blood-brain barrier (BBB) disruption, and regulate microglial modulation, in the treatment of ischemic stroke and their theoretical mechanisms and actions, as well as the therapeutic potential and limitations of FGFs for the clinical treatment of stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
20
|
Mamtilahun M, Jiang L, Song Y, Shi X, Liu C, Jiang Y, Deng L, Zheng H, Shen H, Li Y, Zhang Z, Wang Y, Tang Y, Yang GY. Plasma from healthy donors protects blood-brain barrier integrity via FGF21 and improves the recovery in a mouse model of cerebral ischaemia. Stroke Vasc Neurol 2021; 6:561-571. [PMID: 33785536 PMCID: PMC8717795 DOI: 10.1136/svn-2020-000774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/14/2023] Open
Abstract
Background Healthy plasma therapy reverses cognitive deficits and promotes neuroplasticity in ageing brain disease. However, whether healthy plasma therapy improve blood–brain barrier integrity after stroke remains unknown. Methods Here, we intravenously injected healthy female mouse plasma into adult female ischaemic stroke C57BL/6 mouse induced by 90 min transient middle cerebral artery occlusion for eight consecutive days. Infarct volume, brain atrophy and neurobehavioural tests were examined to assess the outcomes of plasma treatment. Cell apoptosis, blood–brain barrier integrity and fibroblast growth factor 21 knockout mice were used to explore the underlying mechanism. Results Plasma injection improved neurobehavioural recovery and decreased infarct volume, brain oedema and atrophy after stroke. Immunostaining showed that the number of transferase dUTP nick end labelling+/NeuN+ cells decreased in the plasma-injected group. Meanwhile, plasma injection reduced ZO-1, occluding and claudin-5 tight junction gap formation and IgG extravasation at 3 days after ischaemic stroke. Western blot results showed that the FGF21 expression increased in the plasma-injected mice. However, using FGF21 knockout mouse plasma injecting to the ischaemic wild-type mice diminished the neuroprotective effects. Conclusions Our study demonstrated that healthy adult plasma treatment protected the structural and functional integrity of blood–brain barrier, reduced neuronal apoptosis and improved functional recovery via FGF21, opening a new avenue for ischaemic stroke therapy.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Lu Jiang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yaying Song
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xiaojing Shi
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Chang Liu
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yixu Jiang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Lidong Deng
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Haoran Zheng
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Hui Shen
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China .,Department of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
21
|
Lee D, Tomita Y, Miwa Y, Jeong H, Mori K, Tsubota K, Kurihara T. Fenofibrate Protects against Retinal Dysfunction in a Murine Model of Common Carotid Artery Occlusion-Induced Ocular Ischemia. Pharmaceuticals (Basel) 2021; 14:ph14030223. [PMID: 33799938 PMCID: PMC7999063 DOI: 10.3390/ph14030223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Ocular ischemia is a common cause of blindness and plays a detrimental role in various diseases such as diabetic retinopathy, occlusion of central retinal arteries, and ocular ischemic syndrome. Abnormalities of neuronal activities in the eye occur under ocular ischemic conditions. Therefore, protecting their activities may prevent vision loss. Previously, peroxisome proliferator-activated receptor alpha (PPARα) agonists were suggested as promising drugs in ocular ischemia. However, the potential therapeutic roles of PPARα agonists in ocular ischemia are still unknown. Thus, we attempted to unravel systemic and ocular changes by treatment of fenofibrate, a well-known PPARα agonist, in a new murine model of ocular ischemia. Adult mice were orally administered fenofibrate (60 mg/kg) for 4 days once a day, followed by induction of ocular ischemia by unilateral common carotid artery occlusion (UCCAO). After UCCAO, fenofibrate was continuously supplied to mice once every 2 days during the experiment period. Electroretinography was performed to measure retinal functional changes. Furthermore, samples from the retina, liver, and blood were subjected to qPCR, Western blot, or ELISA analysis. We found that fenofibrate boosted liver function, increased serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the central nervous system, and protected against UCCAO-induced retinal dysfunction. Our current data suggest a promising fenofibrate therapy in ischemic retinopathies.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Animal Eye Care, Tokyo Animal Eye Clinic, Tokyo 158-0093, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| |
Collapse
|
22
|
Matei N, Camara J, Zhang JH. The Next Step in the Treatment of Stroke. Front Neurol 2021; 11:582605. [PMID: 33551950 PMCID: PMC7862333 DOI: 10.3389/fneur.2020.582605] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Although many patients do not receive reperfusion therapy because of delayed presentation and/or severity and location of infarct, new reperfusion approaches are expanding the window of intervention. Novel application of neuroprotective agents in combination with the latest methods of reperfusion provide a path to improved stroke intervention outcomes. We examine why neuroprotective agents have failed to translate to the clinic and provide suggestions for new approaches. New developments in recanalization therapy in combination with therapeutics evaluated in parallel animal models of disease will allow for novel, intra-arterial deployment of therapeutic agents over a vastly expanded therapeutic time window and with greater likelihood success. Although the field of neuronal, endothelial, and glial protective therapies has seen numerous large trials, the application of therapies in the context of newly developed reperfusion strategies is still in its infancy. Given modern imaging developments, evaluation of the penumbra will likely play a larger role in the evolving management of stroke. Increasingly more patients will be screened with neuroimaging to identify patients with adequate collateral blood supply allowing for delayed rescue of the penumbra. These patients will be ideal candidates for therapies such as reperfusion dependent therapeutic agents that pair optimally with cutting-edge reperfusion techniques.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States
| | - Justin Camara
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
23
|
Hussein O, Sawalha K, Elazim AA, Greene-Chandos D, Torbey MT. Hyperbaric oxygen therapy after acute ischemic stroke with large penumbra: a case report. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hyperbaric oxygen therapy (HBOT) for the treatment of acute stroke has been under the radar for a long time. Previous studies have not been able to prove efficacy. Several factors might have contributed to such inconsistent results. The timing of delivering the hyperbaric oxygen in relation to the stage of stroke evolution may be an important factor. This was not taken into account in the previous studies as there was no feasible and standardized method to assess the penumbra in the acute phase. Now with the perfusion scan appearing as a key player in the acute stroke management, precise stroke patient selection for hyperbaric oxygen therapy deserves a second chance similar to mechanical thrombectomy.
Case presentation
A 62-year-old female patient who presented with acute large vessel stroke was not eligible for chemical or mechanical thrombectomy. There was a large penumbra on imaging. She got treated with several sessions of hyperbaric oxygen over a 2-week period immediately after stroke. The patient showed significant improvement on the follow-up perfusion imaging as well as some clinical improvement. The more impressive radiological improvement was probably due to the presence of relatively large core infarction at baseline affecting functional brain areas. The patient continued to improve clinically on her 6-month follow up visit.
Conclusion
Our case demonstrates immediate stroke-related penumbra improvement associated with HBOT. Based on that, we anticipate a potential role for HBOT in acute stroke management considering precise patient selection. Future randomized controlled trials are needed and should take that in consideration.
Collapse
|
24
|
Kang R, Gamdzyk M, Tang H, Luo Y, Lenahan C, Zhang JH. Delayed Recanalization-How Late Is Not Too Late? Transl Stroke Res 2020; 12:382-393. [PMID: 33215347 DOI: 10.1007/s12975-020-00877-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Stroke has become the second most prevalent cause of mortality in the world. Currently, the treatment of ischemic stroke is based on thrombolytic and thrombectomy therapy shortly after the ischemic event (≤ 4.5 h for thrombolytic strategies; ≤ 6 h for thrombectomy strategies). However, the majority of patients are unable to receive prompt treatment, particularly in undeveloped countries. Alternative solutions are lacking for those patients that miss the optimal window of opportunity for treatment. Recently, new developments in imaging techniques and intravascular interventional devices enable the expansion of the window of opportunity for treating stroke patients. Clinical studies have reported that delayed recanalization at 24 h, or even more than 1 month, was beneficial for some patients. However, the mechanisms of neuroprotection that underly the delayed recanalization in these ischemic stroke patients remain unclear. In this review, we will summarize the clinical studies of delayed recanalization, and organize them according to the duration of occlusion. Additionally, we will discuss the changing guidelines and possible mechanisms based on animal research, and attempt to draw conclusions and future perspectives.
Collapse
Affiliation(s)
- Ruiqing Kang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.,Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yujie Luo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.,Burrell College of Osteopathic Medicine, Las Cruces, NM, 88003, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA. .,Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurosurgery, School of Medicine, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
25
|
Yu H, Song L, Cao X, Li W, Zhao Y, Chen J, Li J, Chen Y, Yu W, Xu Y. Hederagenin Attenuates Cerebral Ischaemia/Reperfusion Injury by Regulating MLK3 Signalling. Front Pharmacol 2020; 11:1173. [PMID: 32848779 PMCID: PMC7406912 DOI: 10.3389/fphar.2020.01173] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 01/25/2023] Open
Abstract
Cerebral ischaemia/reperfusion (CI/R) injury is a major challenge due to the lack of effective neuroprotective drugs. Hederagenin (HE) is the aglycone part of saponins extracted from Hedera helix Linné that has exhibited anti-apoptotic and anti-inflammatory effects; however, the role of HE in CI/R has not been elucidated. In this study, mice were intraperitoneally (i.p.) injected with HE (26.5, 53, or 106 μmol/kg body weight) for 3 days after middle cerebral artery occlusion (MCAO). Neural function and brain infarct volume were evaluated. HE treatment attenuated CI/R-induced apoptosis and inflammatory cytokine expression within the infarcted areas. HE treatment also decreased the activation of the MLK3 signalling pathway, which potentiates CI/R damage via the MAPK and NFκB pathways. Due to HE's safety profile, it has potential to be used for the clinical treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Hailong Yu
- Affiliated of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Lilong Song
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Xiang Cao
- Affiliated of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Li
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Yuanyuan Zhao
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Jian Chen
- Affiliated of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Li
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yingzhu Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China.,Dalian Medical University, Dalian, China
| | - Wenkui Yu
- Affiliated of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Affiliated of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats. Exp Neurol 2020; 330:113359. [PMID: 32428505 DOI: 10.1016/j.expneurol.2020.113359] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023]
Abstract
The activation of tyrosine kinase receptor c-Met by hepatocyte growth factor (HGF) showed an anti-apoptotic effect in numerous disease models. This study aimed to investigate the neuroprotective mechanism of the HGF/c-Met axis-mediated anti-apoptosis underlying the delayed recanalization in a rat model of middle cerebral artery occlusion (MCAO). Permanent MCAO model (pMCAO) was induced by intravascular filament insertion. Recanalization was induced by withdrawing the filament at 3 days after MCAO (rMCAO). HGF levels in the blood serum and brain tissue expressions of HGF, c-Met, phosphorylated-STAT3 (p-STAT3), STAT3, Bcl-2, Bax, cleaved caspase-3(CC3) were assessed using ELISA and western blot, respectively. To study the mechanism, HGF small interfering ribonucleic acid (siRNA) and c-Met inhibitor, su11274, were administered intracerebroventricularly (i.c.v.) or intranasally, respectively. The concentration of HGF in the serum was increased significantly after MCAO. Brain expression of HGF was increased after MCAO and peaked at 3 days after recanalization. HGF and c-Met were both co-localized with neurons. Compared to rats received permanent MCAO, delayed recanalization after MCAO decreased the infarction volume, inhibited neuronal apoptosis, and improved neurobehavioral function, increased expressions of p-STAT3 and its downstream Bcl-2. Mechanistic studies indicated that HGF siRNA and su11274 reversed the neuroprotection including anti-apoptotic effects provided by delayed recanalization. In conclusion, the delayed recanalization after MCAO increased the expression of HGF in the brain, and reduced the infarction and neuronal apoptosis after MCAO, partly via the activation of the HGF/c-Met/STAT3/Bcl-2 signaling pathway. The delayed recanalization may serve as a therapeutic alternative for a subset of ischemic stroke patients.
Collapse
|
27
|
Li M, Liu G, Wang K, Wang L, Fu X, Lim LY, Chen W, Mo J. Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage. J Nanobiotechnology 2020; 18:61. [PMID: 32306970 PMCID: PMC7168846 DOI: 10.1186/s12951-020-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Primary intracerebral hemorrhage (ICH) is a leading cause of long-term disability and death worldwide. Drug delivery vehicles to treat ICH are less than satisfactory because of their short circulation lives, lack of specific targeting to the hemorrhagic site, and poor control of drug release. To exploit the fact that metal ions such as Fe2+ are more abundant in peri-hematomal tissue than in healthy tissue because of red blood cell lysis, we developed a metal ion-responsive nanocarrier based on a phosphonated calix[4]arene derivative in order to deliver the neuroprotective agent dauricine (DRC) specifically to sites of primary and secondary brain injury. The potential of the dauricine-loaded nanocarriers for ICH therapy was systematically evaluated in vitro and in mouse models of autologous whole blood double infusion. The nanocarriers significantly reduced brain water content, restored blood-brain barrier integrity and attenuated neurological deficits by inhibiting the activation of glial cells, infiltration by neutrophils as well as production of pro-inflammatory factors (IL-1β, IL-6, TNF-α) and matrix-metalloprotease-9. These results suggest that our dauricine-loaded nanocarriers can improve neurological outcomes in an animal model of ICH by reducing inflammatory injury and inhibiting apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Mingxin Li
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Guohao Liu
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,Department of Radiology, Affiliated Hospital of Jilin Medical University, Jilin, 132013, China
| | - Kaixuan Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Lingfeng Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Xiang Fu
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Wei Chen
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Pharmacy, Guilin Medical University, Guilin, 541001, China.
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Chemistry, University of New South Wales Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
28
|
Matei N, Leahy S, Auvazian S, Thomas B, Blair NP, Shahidi M. Relation of Retinal Oxygen Measures to Electrophysiology and Survival Indicators after Permanent, Incomplete Ischemia in Rats. Transl Stroke Res 2020; 11:1273-1286. [PMID: 32207038 DOI: 10.1007/s12975-020-00799-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
Studies in experimental ischemia models by permanent bilateral common carotid artery occlusion (BCCAO) have reported reduced retinal electrophysiological function, coupled with inner retinal degeneration and gliosis. In the current study, we tested the hypothesis that long-term (up to 14 days) BCCAO impairs oxygen delivery (DO2), which affects oxygen metabolism (MO2) and extraction fraction (OEF), electrophysiological function, morphology, and biochemical pathways. Twenty-one rats underwent BCCAO (N = 12) or sham surgery (N = 9) and were evaluated in separate groups after 3, 7, or 14 days. Electroretinography (ERG), optical coherence tomography, blood flow and vascular oxygen tension imaging, and morphological and biochemical evaluations were performed in both eyes. Reduced ERG b-wave amplitudes and delayed implicit times were reported at 3, 7, and 14 days following BCCAO. Total retinal blood flow, MO2, and DO2 were reduced in all BCCAO groups. OEF was increased in both 3- and 7-day groups, while no significant difference was observed in OEF at 14 days compared to the sham group. At 14 days following BCCAO, total and inner retinal layer thickness was reduced, while the outer nuclear layer thickness and gliosis were increased. There was an increase in nuclei containing fragmented DNA at 3 days following BCCAO. The compensatory elevation in OEF following BCCAO did not meet the tissue demand, resulting in the subsequent reduction of MO2. The associations between retinal MO2, DO2, and retinal function were shown to be significant in the sequelae of persistent ischemia. In sum, measurements of DO2, MO2, and OEF may become useful for characterizing salvageable tissue in vision-threatening pathologies.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Selin Auvazian
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Biju Thomas
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Wang X, Zhu L, Hu J, Guo R, Ye S, Liu F, Wang D, Zhao Y, Hu A, Wang X, Guo K, Lin L. FGF21 Attenuated LPS-Induced Depressive-Like Behavior via Inhibiting the Inflammatory Pathway. Front Pharmacol 2020; 11:154. [PMID: 32184729 PMCID: PMC7058797 DOI: 10.3389/fphar.2020.00154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
Major depressive disorder is a serious neuropsychiatric disorder with high rates of recurrence and mortality. Many studies have supported that inflammatory processes play a central role in the etiology of depression. Fibroblast growth factor 21 (FGF21), a member of the fibroblast growth factors (FGFs) family, regulates a variety of pharmacological activities, including energy metabolism, glucose and lipid metabolism, and insulin sensitivity. In addition, recent studies showed that the administration of FGF21, a regulator of metabolic function, had therapeutic effects on mood stabilizers, indicating that FGF21 could be a common regulator of the mood response. However, few studies have highlighted the antidepressant effects of FGF21 on lipopolysaccharide (LPS)-induced mice, and the anti-inflammatory mechanism of FGF21 in depression has not yet been elucidated. The purpose of the current study was to determine the antidepressant effects of recombinant human FGF21 (rhFGF21). The effects of rhFGF21 on depression-like behaviors and the inflammatory signaling pathway were investigated in both an LPS-induced mouse model and primary microglia in vitro. The current study demonstrated that LPS induced depressive-like behaviors, upregulated proinflammatory cytokines, and activated microglia in the mouse hippocampus and activated the inflammatory response in primary microglia, while pretreatment with rhFGF21 markedly improved depression-like behavior deficits, as shown by an increase in the total distance traveled and number of standing numbers in the open field test (OFT) and a decrease in the duration of immobility in the tail suspension test (TST) and forced swimming test (FST). Furthermore, rhFGF21 obviously suppressed expression levels of the proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) and inhibited microglial activation and the nuclear factor-κB (NF-κB) signing pathway. Moreover, coadministration of rhFGF21 with the fibroblast growth factor receptor 1 (FGFR1) inhibitor PD173074 significantly reversed these protective effects, indicating that the antidepressant effects of rhFGF21 occur through FGFR1 activation. Taken together, the results of the current study demonstrated for the first time that exogenous rhFGF21 ameliorated LPS-induced depressive-like behavior by inhibiting microglial expression of proinflammatory cytokines through NF-κB suppression. This new discovery suggests rhFGF21 as a new therapeutic candidate for depression treatment.
Collapse
Affiliation(s)
- Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruili Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Aiping Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Kaiming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| |
Collapse
|
30
|
Yamamoto M, Morita T, Ishikawa M, Sakamoto A. Specific microRNAs are involved in the reno‑protective effects of sevoflurane preconditioning and ischemic preconditioning against ischemia reperfusion injury in rats. Int J Mol Med 2020; 45:1141-1149. [PMID: 31985019 PMCID: PMC7053861 DOI: 10.3892/ijmm.2020.4477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 01/14/2023] Open
Abstract
The kidneys are prone to developing ischemia reperfusion injury (IRI) following certain renal surgeries and cardiovascular surgeries requiring cardiac arrest. Sevoflurane and ischemic preconditioning reportedly alleviate IRI, which is mediated via microRNAs. The present study compared anesthetic preconditioning (APC) and ischemic preconditioning (IPC) on microRNAs, which promote cell‑survival pathways in rats in a randomized controlled study. After undergoing right nephrectomy under general anesthesia, male Wistar rats (336±24 g) and were divided into four groups (IRI, APC, IPC and sham; n=7 each). The IRI group underwent 45 min clamping of the left renal vasculature, followed by 4 h of reperfusion. APC involved exposure to one minimum alveolar concentration sevoflurane for 15 min. IPC included three cycles of two‑min clamping and five‑min reperfusion. Blood and renal biopsy samples were assessed postoperatively to measure serum creatinine and to analyze renal microRNA (miR) expression using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) testing and their target pathways with Ingenuity Pathway Analysis™. The present study found that serum creatinine values in APC (0.71±0.08 mg/dl) and IPC (0.73±0.1 mg/dl) groups were lower than in the IRI group (0.96±0.13 mg/dl; P<0.05), indicating amelioration of IRI by APC and IPC. RT‑qPCR followed by pathway analysis indicated that APC and IPC affect 'protein kinase B (Akt)'. APC promoted miR‑17‑3p and suppressed miR‑27a. IPC promoted miR‑19a. All the miRs were predicted to regulate phosphorylated Akt, which promotes cell‑protection. Western blot analysis showed that expression of phosphorylated Akt increased and phosphatase and tensin homologue deleted from chromosome 10 (PTEN) decreased following APC and IPC. The present study concluded that APC and IPC affect different miRs, although they are estimated to similarly promote the PTEN/phosphoinositide 3‑kinase/Akt signaling pathway, resulting in reno‑protection.
Collapse
Affiliation(s)
- Makiko Yamamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 1138602, Japan
| | - Tomonori Morita
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 1138602, Japan
| | - Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 1138602, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 1138602, Japan
| |
Collapse
|
31
|
Pang J, Zhang JH, Jiang Y. Delayed recanalization in acute ischemic stroke patients: Late is better than never? J Cereb Blood Flow Metab 2019; 39:2536-2538. [PMID: 31594437 PMCID: PMC6893989 DOI: 10.1177/0271678x19881449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Successful recanalization of the occluded vessel as early as possible has been widely accepted as the key principle of acute ischemic stroke (AIS) treatment. Unfortunately, for many years, the vast majority of AIS patients were prevented from receiving effective recanalization therapy because of a narrow therapeutic window. Recently, a series of inspiring clinical trials have indicated that more patients may benefit from delayed recanalization during an expanded therapeutic window, even up to 24 h after symptom onset. However, could potentially salvageable brain tissue (penumbra) in patients who do not receive medication within 24 h still possible to be saved?
Collapse
Affiliation(s)
- Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - John H Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, USA
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|