1
|
Fonseca-Barriendos D, Castañeda-Cabral JL, Martínez-Cuevas F, Besio W, Valdés-Cruz A, Rocha L. Transcranial Focal Electric Stimulation Avoids P-Glycoprotein Over-Expression during Electrical Amygdala Kindling and Delays Epileptogenesis in Rats. Life (Basel) 2023; 13:1294. [PMID: 37374077 DOI: 10.3390/life13061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Recent evidence suggests that P-glycoprotein (P-gp) overexpression mediates hyperexcitability and is associated with epileptogenesis. Transcranial focal electrical stimulation (TFS) delays epileptogenesis and inhibits P-gp overexpression after a generalized seizure. Here, first we measured P-gp expression during epileptogenesis and second, we assessed if TFS antiepileptogenic effect was related with P-gp overexpression avoidance. Male Wistar rats were implanted in right basolateral amygdala and stimulated daily for electrical amygdala kindling (EAK), P-gp expression was assessed during epileptogenesis in relevant brain areas. Stage I group showed 85% increase in P-gp in ipsilateral hippocampus (p < 0.001). Stage III group presented 58% and 57% increase in P-gp in both hippocampi (p < 0.05). Kindled group had 92% and 90% increase in P-gp in both hippocampi (p < 0.01), and 93% and 143% increase in both neocortices (p < 0.01). For the second experiment, TFS was administrated daily after each EAK stimulation for 20 days and P-gp concentration was assessed. No changes were found in the TFS group (p > 0.05). Kindled group showed 132% and 138% increase in P-gp in both hippocampi (p < 0.001) and 51% and 92% increase in both cortices (p < 0.001). Kindled + TFS group presented no changes (p > 0.05). Our experiments revealed that progression of EAK is associated with increased P-gp expression. These changes are structure-specific and dependent on seizure severity. EAK-induced P-gp overexpression would be associated with neuronal hyperexcitability and thus, epileptogenesis. P-gp could be a novel therapeutical target to avoid epileptogenesis. In accordance with this, TFS inhibited P-gp overexpression and interfered with EAK. An important limitation of the present study is that P-gp neuronal expression was not evaluated under the different experimental conditions. Future studies should be carried out to determine P-gp neuronal overexpression in hyperexcitable networks during epileptogenesis. The TFS-induced lessening of P-gp overexpression could be a novel therapeutical strategy to avoid epileptogenesis in high-risk patients.
Collapse
Affiliation(s)
- Daniel Fonseca-Barriendos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitrio de Ciencias Biológicas y Agropecuaias, Universidad de Guadalajara, Zapopan C.P. 44600, Mexico
| | - Frida Martínez-Cuevas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - Walter Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA
| | - Alejandro Valdés-Cruz
- Laboratorio de Neurofisiología del Control y la Regulación, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México C.P. 14370, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| |
Collapse
|
2
|
A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods. J Neurosci Methods 2023; 385:109761. [PMID: 36470469 PMCID: PMC9884911 DOI: 10.1016/j.jneumeth.2022.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
Collapse
|
3
|
San-Juan D, Espinoza-López DA, Vázquez-Gregorio R, Trenado C, Aragón MFG, Pérez-Pérez D, Hernández-Ruiz A, Anschel DJ. A pilot randomized controlled clinical trial of Transcranial Alternating Current Stimulation in patients with multifocal pharmaco-resistant epilepsy. Epilepsy Behav 2022; 130:108676. [PMID: 35366528 DOI: 10.1016/j.yebeh.2022.108676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022]
Abstract
Transcranial Alternating Current Stimulation (tACS) is a promising noninvasive electrical stimulation therapy for neuropsychiatric diseases. Invasive neuromodulation using alternating current has been efficacious for drug-resistant epilepsy, but it is associated with surgical and medical complications. We aimed to explore the safeness and effectivity on seizure frequency reduction of two tACS protocols against placebo in patients with multifocal refractory epilepsy. This was a randomized, double-blinded, placebo-controlled clinical trial with 3-arm parallel-group (placebo, 30 min/2 mA daily sessions for 3 days [tACS-30], and 60 min/2 mA weekday sessions [tACS-60]). The main outcome was considered a change in reducing seizure frequency at 2 months after the intervention. Secondary outcomes were the apparition of any adverse effects during follow-up. At the second month, we observed a nonsignificant reduction in the seizure frequency in the placebo (7.3 ± 40.4%, p > 0.05) and the tACS-60 (26 ± 37.7%, p > 0.05). While the tACS-30 group showed a nonsignificant increase in seizure frequency (63.6 ± 155.3%, p > 0.05). No changes were statistically different from the placebo group. Otherwise, participants experienced only minor adverse events - the most common being an initial local transient tingling sensation (21%). This pilot study of tACS raises no severe safety issues, but provides negligible evidence for efficacy using this brief treatment protocol. Therefore, more studies are warranted testing different parameters to further verify the safety and effectivity of tACS in multifocal epilepsy.
Collapse
Affiliation(s)
- Daniel San-Juan
- Epilepsy Clinic Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Tlalpan, Mexico City, Mexico.
| | - Dulce Anabel Espinoza-López
- Clinical Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Tlalpan, Mexico City, Mexico
| | - Rafael Vázquez-Gregorio
- Epilepsy Clinic Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Tlalpan, Mexico City, Mexico
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Translational Neuromodulation Unit, Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | | | - Daniel Pérez-Pérez
- Plan of Combined Studies in Medicine (PECEM), Faculty of Medicine, UNAM, Coyoacan, Mexico City, Mexico
| | - Axel Hernández-Ruiz
- Superior School of Medicine, National Polytechnic Institute, Miguel Hidalgo, Mexico City, Mexico
| | - David J Anschel
- St. Charles Epilepsy/New York University Comprehensive Epilepsy Center, St. Charles Hospital, Port Jefferson, NY, United States
| |
Collapse
|
4
|
Huggins JE, Krusienski D, Vansteensel MJ, Valeriani D, Thelen A, Stavisky S, Norton JJS, Nijholt A, Müller-Putz G, Kosmyna N, Korczowski L, Kapeller C, Herff C, Halder S, Guger C, Grosse-Wentrup M, Gaunt R, Dusang AN, Clisson P, Chavarriaga R, Anderson CW, Allison BZ, Aksenova T, Aarnoutse E. Workshops of the Eighth International Brain-Computer Interface Meeting: BCIs: The Next Frontier. BRAIN-COMPUTER INTERFACES 2022; 9:69-101. [PMID: 36908334 PMCID: PMC9997957 DOI: 10.1080/2326263x.2021.2009654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.
Collapse
Affiliation(s)
- Jane E Huggins
- Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States 325 East Eisenhower, Room 3017; Ann Arbor, Michigan 48108-5744, 734-936-7177
| | - Dean Krusienski
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23219
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Dept of Neurosurgery, University Medical Center Utrecht, The Netherlands
| | | | - Antonia Thelen
- eemagine Medical Imaging Solutions GmbH, Berlin, Germany
| | | | - James J S Norton
- National Center for Adaptive Neurotechnologies, US Department of Veterans Affairs, 113 Holland Ave, Albany, NY 12208
| | - Anton Nijholt
- Faculty EEMCS, University of Twente, Enschede, The Netherlands
| | - Gernot Müller-Putz
- Institute of Neural Engineering, GrazBCI Lab, Graz University of Technology, Stremayrgasse 16/4, 8010 Graz, Austria
| | - Nataliya Kosmyna
- Massachusetts Institute of Technology (MIT), Media Lab, E14-548, Cambridge, MA 02139, Unites States
| | | | | | - Christian Herff
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Christoph Guger
- g.tec medical engineering GmbH/Guger Technologies OG, Austria, Sierningstrasse 14, 4521 Schiedlberg, Austria, +43725122240-0
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, Vienna Cognitive Science Hub, Data Science @ Uni Vienna University of Vienna
| | - Robert Gaunt
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA, 3520 5th Ave, Suite 300, Pittsburgh, PA 15213, 412-383-1426
| | - Aliceson Nicole Dusang
- Department of Electrical and Computer Engineering, School of Engineering, Brown University, Carney Institute for Brain Science, Brown University, Providence, RI
- Department of Veterans Affairs Medical Center, Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence, RI
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA
| | | | - Ricardo Chavarriaga
- IEEE Standards Association Industry Connections group on neurotechnologies for brain-machine interface, Center for Artificial Intelligence, School of Engineering, ZHAW-Zurich University of Applied Sciences, Switzerland, Switzerland
| | - Charles W Anderson
- Department of Computer Science, Molecular, Cellular and Integrative Neurosience Program, Colorado State University, Fort Collins, CO 80523
| | - Brendan Z Allison
- Dept. of Cognitive Science, Mail Code 0515, University of California at San Diego, La Jolla, United States, 619-534-9754
| | - Tetiana Aksenova
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | - Erik Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Siskos N, Ververidis C, Skavdis G, Grigoriou ME. Genoarchitectonic Compartmentalization of the Embryonic Telencephalon: Insights From the Domestic Cat. Front Neuroanat 2022; 15:785541. [PMID: 34975420 PMCID: PMC8716433 DOI: 10.3389/fnana.2021.785541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.
Collapse
Affiliation(s)
- Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Ververidis
- Obstetrics and Surgery Unit, Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
6
|
Noninvasive transcranial focal stimulation affects the convulsive seizure-induced P-glycoprotein expression and function in rats. Epilepsy Behav 2021; 115:107659. [PMID: 33334719 DOI: 10.1016/j.yebeh.2020.107659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023]
Abstract
Transcranial focal stimulation (TFS) is a noninvasive neuromodulation strategy that reduces seizure activity in different experimental models. Nevertheless, there is no information about the effects of TFS in the drug-resistant phenotype associated with P-glycoprotein (Pgp) overexpression. The present study focused on determining the effects of TFS on Pgp expression after an acute seizure induced by 3-mercaptopropionic acid (MPA). P-glycoprotein expression was analyzed by western blot in the cerebral cortex and hippocampus of rats receiving 5 min of TFS (300 Hz, 50 mA, 200 μs, biphasic charge-balanced squared pulses) using a tripolar concentric ring electrode (TCRE) prior to administration of a single dose of MPA. An acute administration of MPA induced Pgp overexpression in cortex (68 ± 13.4%, p < 0.05 vs the control group) and hippocampus (48.5 ± 14%, p < 0.05, vs the control group). This effect was avoided when TFS was applied prior to MPA. We also investigated if TFS augments the effects of phenytoin in an experimental model of drug-resistant seizures induced by repetitive MPA administration. Animals with MPA-induced drug-resistant seizures received TFS alone or associated with phenytoin (75 mg/kg, i.p.). TFS alone did not modify the expression of the drug-resistant seizures. However, TFS combined with phenytoin reduced seizure intensity, an effect associated with a lower prevalence of major seizures (50%, p = 0.03 vs phenytoin alone). Our experiments demonstrated that TFS avoids the Pgp overexpression induced after an acute convulsive seizure. In addition, TFS augments the phenytoin effects in an experimental model of drug-resistant seizures. According with these results, it is indicated that TFS may represent a new neuromodulatory strategy to revert the drug-resistant phenotype.
Collapse
|
7
|
Davis P, Gaitanis J. Neuromodulation for the Treatment of Epilepsy: A Review of Current Approaches and Future Directions. Clin Ther 2020; 42:1140-1154. [PMID: 32620340 DOI: 10.1016/j.clinthera.2020.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
|
8
|
Aghaei-Lasboo A, Inoyama K, Fogarty AS, Kuo J, Meador KJ, Walter JJ, Le ST, Graber KD, Razavi B, Fisher RS. Tripolar concentric EEG electrodes reduce noise. Clin Neurophysiol 2019; 131:193-198. [PMID: 31809982 DOI: 10.1016/j.clinph.2019.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assay EEG signal quality recorded with tripolar concentric ring electrodes (TCREs) compared to regular EEG electrodes. METHODS EEG segments were recorded simultaneously by TCREs and regular electrodes, low-pass filtered at 35 Hz (REG35) and 70 Hz (REG70). Clips were rated blindly by nine electroencephalographers for presence or absence of key EEG features, relative to the "gold-standard" of the clinical report. RESULTS TCRE showed less EMG artifact (F = 15.4, p < 0.0001). Overall quality rankings were not significantly different. Focal slowing was better detected by TCRE and spikes were better detected by regular electrodes. Seizures (n = 85) were detected by TCRE in 64 cases (75.3%), by REG70 in 75 (88.2%) and REG35 in 69 (81.2%) electrodes. TCRE detected 9 (10.6%) seizures not detected by one of the other 2 methods. In contrast, 14 seizures (16.5%) were not detected by TCRE, but were by REG35 electrodes. Each electrode detected interictal spikes when the other did not. CONCLUSIONS TCRE produced similar overall quality and confidence ratings versus regular electrodes, but less muscle artifact. TCRE recordings detected seizures in 7% of instances where regular electrodes did not. SIGNIFICANCE The combination of the two types increased detection of epileptiform events compared to either alone.
Collapse
Affiliation(s)
- Anahita Aghaei-Lasboo
- Bass Medical Group, Department of Neurology, Suite 301, 400 Taylor Blvd, Pleasant Hill, CA 94523, USA
| | - Katherine Inoyama
- NYU Langone Comprehensive Epilepsy Center, 240 East 38th Street, New York, NY 10016, USA
| | - Adam S Fogarty
- Stanford University Department of Neurology and Neurological Sciences, Palo Alto, CA 94304, USA
| | - Jonathan Kuo
- Clinical Neurology, Keck School of Medicine USC, 1520 San Pablo St, Suite 3000, Los Angeles, CA 90033, USA
| | - Kimford J Meador
- Stanford University Department of Neurology and Neurological Sciences, Palo Alto, CA 94304, USA
| | - Jessica J Walter
- Stanford University Department of Neurology and Neurological Sciences, Palo Alto, CA 94304, USA
| | - Scheherazade T Le
- Stanford University Department of Neurology and Neurological Sciences, Palo Alto, CA 94304, USA
| | - Kevin D Graber
- Stanford University Department of Neurology and Neurological Sciences, Palo Alto, CA 94304, USA
| | - Babak Razavi
- Stanford University Department of Neurology and Neurological Sciences, Palo Alto, CA 94304, USA
| | - Robert S Fisher
- Stanford University Department of Neurology and Neurological Sciences, Palo Alto, CA 94304, USA.
| |
Collapse
|