1
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
2
|
Mu D, Liu J, Mi Y, Wang D, Xu L, Yang Y, Liu Y, Liang D, Hou Y. Gnetupendin A protects against ischemic stroke through activating the PI3K/AKT/mTOR-dependent autophagy pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156233. [PMID: 39550921 DOI: 10.1016/j.phymed.2024.156233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Autophagy has been recently emerged as a prominent factor in the pathogenesis of ischemic stroke (IS) and is increasingly being considered as a potential therapeutic target for IS. Gnetum parvifolium has been identified as a potential therapeutic agent for inflammatory diseases such as rheumatism and traumatic injuries. However, the pharmacological effects of Gnetupindin A (GA), a stilbene compound isolated from Gnetum parvifolium, have not been fully elucidated until now. OBJECTIVE Here we identified the therapeutic potential of GA for IS, deeply exploring the possible mechanisms related to its regulation of autophagy. METHODS The mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and the oxygen-glucose deprivation reperfusion (OGD/R)-exposed cells served as models to study the protection of GA against IS. The adeno-associated virus (AAV) encoding shAtg5, in conjunction with autophagy inhibitor 3-Methyladenine (3-MA) were utilized to explore the role of GA in regulating autophagy following IS. Molecular docking, CETSA, and DARTS were used to identify the specific therapeutic target of GA. PI3K inhibitor LY294002 was employed to test the participation of PI3K in GA-mediated autophagy and neuroprotective effects following IS. RESULTS Our findings revealed that treatment with GA significantly alleviated the brain infract volume, edema, improved neurological deficits and attenuated apoptosis. Mechanistically, we found that GA promoted autophagic flow both in vivo and in vitro after IS. Notably, neural-targeted knockdown of Atg5 abolished the neuroprotective effects mediated by GA. Inhibition of autophagy using 3-MA blocked the attenuation on apoptosis induced by GA. Moreover, molecular docking, CETSA, and DARTS analysis demonstrated that GA specifically targeted PI3K and further inhibited the activation of PI3K/AKT/mTOR signaling pathway. LY294002, which inhibits PI3K, reversed GA-induced autophagy and neuroprotective effects on OGD/R-treated cells. CONCLUSION We demonstrated, for the first time, that GA protects against IS through promoting the PI3K/AKT/mTOR-dependent autophagy pathway. Our findings provide a novel mechanistic insight into the anti-IS effect of GA in regulating autophagy.
Collapse
Affiliation(s)
- Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China.
| | - Dong Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
3
|
Ghosh B, Datta A, Gupta V, Sodnar B, Sarkar A, Singh U, Raut S, Suthar P, Thongire V, Sarmah D, Kaur H, Borah A, Saraf S, Bhattacharya P. Simvastatin exerts neuroprotective effects post-stroke by ameliorating endoplasmic reticulum stress and regulating autophagy/apoptosis balance through pAMPK/LC3B/ LAMP2 axis. Exp Neurol 2024; 381:114940. [PMID: 39214348 DOI: 10.1016/j.expneurol.2024.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Statins have evident neuroprotective role in acute ischemic stroke(AIS). The pleiotropic effect by which statin exerts neuroprotective effects, needs to be explored for considering it as one of the future adjunctive therapies in AIS. Endoplasmic reticulum(ER) assists cellular survival by reducing protein aggregates during ischemic conditions. ER-stress mediated apoptosis and autophagy are predominant reasons for neuronal death in AIS. Statin exerts both anti-apoptotic and anti-autophagic effect in neurons under ischemic stress. Although the influence of statin on autophagic neuroprotection has been reported with contradictory results. Thus, in our study we have attempted to understand its influence on autophagic protection while inhibiting upregulation of autophagic death(autosis). Previously we reported, statin can alleviate apoptosis via modulating cardiolipin mediated mitochondrial dysfunction. However, the clearance of damaged mitochondria is essential for prolonged cell survival. In our study, we tried to decipher the mechanism by which statin leads to neuronal survival by the mitophagy mediated cellular clearance. Simvastatin was administered to Sprague Dawley(SD) rats both as prophylaxis and treatment. The safety and efficacy of the statin was validated by assessment of infarct size and functional outcome. A reduction in oxidative and ER-stress were observed in both the prophylactic and treatment groups. The influence of statin on autophagy/apoptosis balance was evaluated by molecular assessment of mitophagy and cellular apoptosis. Statin reduces the post-stroke ER-stress and predominantly upregulated autophagolysosome mediated mitophagy than apoptotic cell death by modulating pAMPK/LC3B/LAMP2 axis. Based on the above findings statin could be explored as an adjunctive therapy for AIS in future.
Collapse
Affiliation(s)
- Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Vishal Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Babasaheb Sodnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pramod Suthar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Vrushali Thongire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
Huo J, Feng L, Cheng Y, Miao YL, Liu W, Hou MM, Zhang HF, Yang CH, Li Y, Zhang MS, Fan YY. Delayed simvastatin treatment improves neurological recovery after cryogenic traumatic brain injury through downregulation of ELOVL1 by inhibiting mTOR signaling. Brain Res Bull 2024; 217:111072. [PMID: 39243948 DOI: 10.1016/j.brainresbull.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Statins are well-tolerated and widely available lipid-lowering medications with neuroprotective effects against traumatic brain injury (TBI). However, whether delayed statin therapy starting in the subacute phase promotes recovery after TBI is unknown. Elongation of the very long-chain fatty acid protein 1 (ELOVL1) is involved in astrocyte-mediated neurotoxicity, but its role in TBI and the relationship between ELOVL1 and statins are unclear. We hypothesized that delayed simvastatin treatment promotes neurological functional recovery after TBI by regulating the ELOVL1-mediated production of very long-chain fatty acids (VLCFAs). ICR male mice received daily intragastric administration of 1, 2 or 5 mg/kg simvastatin on Days 1-14, 3-14, 5-14, or 7-14 after cryogenic TBI (cTBI). The results showed that simvastatin promoted motor functional recovery in a dose-dependent manner, with a wide therapeutic window of at least 7 days postinjury. Meanwhile, simvastatin inhibited astrocyte and microglial overactivation and glial scar formation, and increased total dendritic length, neuronal complexity and spine density on day 14 after cTBI. The up-regulation of ELOVL1 expression and saturated VLCFAs concentrations in the cortex surrounding the lesion caused by cTBI was inhibited by simvastatin, which was related to the inhibition of the mTOR signaling. Overexpression of ELOVL1 in astrocytes surrounding the lesion using HBAAV2/9-GFAP-m-ELOVL1-3xFlag-EGFP partially attenuated the benefits of simvastatin. These results showed that delayed simvastatin treatment promoted functional recovery and brain tissue repair after TBI through the downregulation of ELOVL1 expression by inhibiting mTOR signaling. Astrocytic ELOVL1 may be a potential target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Jing Huo
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Lin Feng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yao Cheng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yu-Lu Miao
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Wen Liu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Miao-Miao Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui-Feng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Cai-Hong Yang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yan Li
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China.
| | - Yan-Ying Fan
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Ji Y, Tian Y, Zhang H, Ma S, Liu Z, Tian Y, Xu Y. Histone modifications in hypoxic ischemic encephalopathy: Implications for therapeutic interventions. Life Sci 2024; 354:122983. [PMID: 39147319 DOI: 10.1016/j.lfs.2024.122983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain injury induced by many causes of cerebral tissue ischemia and hypoxia. Although HIE may occur at many ages, its impact on the neonatal brain is greater because it occurs during the formative stage. Recent research suggests that histone modifications may occur in the human brain in response to acute stress events, resulting in transcriptional changes and HIE development. Because there are no safe and effective therapies for HIE, researchers have focused on HIE treatments that target histone modifications. In this review, four main histone modifications are explored, histone methylation, acetylation, phosphorylation, and crotonylation, as well as their relevance to HIE. The efficacy of histone deacetylase inhibitors in the treatment of HIE is also explored. In conclusion, targeting histone modifications may be a novel strategy for elucidating the mechanism of HIE, as well as a novel approach to HIE treatment.
Collapse
Affiliation(s)
- Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongwei Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Zakharova IO, Bayunova LV, Avrova DK, Tretyakova AD, Shpakov AO, Avrova NF. The Autophagic and Apoptotic Death of Forebrain Neurons of Rats with Global Brain Ischemia Is Diminished by the Intranasal Administration of Insulin: Possible Mechanism of Its Action. Curr Issues Mol Biol 2024; 46:6580-6599. [PMID: 39057034 PMCID: PMC11276328 DOI: 10.3390/cimb46070392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Insulin is a promising neuroprotector. To better understand the mechanism of insulin action, it was important to show its ability to diminish autophagic neuronal death in animals with brain ischemic and reperfusion injury. In forebrain ischemia and reperfusion, the number of live neurons in the hippocampal CA1 region and frontal cortex of rats decreased to a large extent. Intracerebroventricular administration of the autophagy and apoptosis inhibitors to ischemic rats significantly increased the number of live neurons and showed that the main part of neurons died from autophagy and apoptosis. Intranasal administration of 0.5 IU of insulin per rat (before ischemia and daily during reperfusion) increased the number of live neurons in the hippocampal CA1 region and frontal brain cortex. In addition, insulin significantly diminished the level of autophagic marker LC3B-II in these forebrain regions, which markedly increased during ischemia and reperfusion. Our studies demonstrated for the first time the ability of insulin to decrease autophagic neuronal death, caused by brain ischemia and reperfusion. Insulin administered intranasally activated the Akt-kinase (activating the mTORC1 complex, which inhibits autophagy) and inhibited the AMP-activated protein kinase (which activates autophagy) in the hippocampus and frontal cortex of rats with brain ischemia and reperfusion.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalia F. Avrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Av. 44, St. Petersburg 194223, Russia; (I.O.Z.); (L.V.B.); (D.K.A.); (A.D.T.); (A.O.S.)
| |
Collapse
|
7
|
Bobermin LD, Sesterheim P, da Costa DS, Rezena E, Schmitz I, da Silva A, de Moraes ADM, Souza DO, Wyse AT, Leipnitz G, Netto CA, Quincozes-Santos A, Gonçalves CA. Simvastatin Differentially Modulates Glial Functions in Cultured Cortical and Hypothalamic Astrocytes Derived from Interferon α/β Receptor Knockout mice. Neurochem Res 2024; 49:732-743. [PMID: 38063948 DOI: 10.1007/s11064-023-04073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
Astrocytes have key regulatory roles in central nervous system (CNS), integrating metabolic, inflammatory and synaptic responses. In this regard, type I interferon (IFN) receptor signaling in astrocytes can regulate synaptic plasticity. Simvastatin is a cholesterol-lowering drug that has shown anti-inflammatory properties, but its effects on astrocytes, a main source of cholesterol for neurons, remain to be elucidated. Herein, we investigated the effects of simvastatin in inflammatory and functional parameters of primary cortical and hypothalamic astrocyte cultures obtained from IFNα/β receptor knockout (IFNα/βR-/-) mice. Overall, simvastatin decreased extracellular levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), which were related to a downregulation in gene expression in hypothalamic, but not in cortical astrocytes. Moreover, there was an increase in anti-inflammatory interleukin-10 (IL-10) in both structures. Effects of simvastatin in inflammatory signaling also involved a downregulation of cyclooxygenase 2 (COX-2) gene expression as well as an upregulation of nuclear factor κB subunit p65 (NFκB p65). The expression of cytoprotective genes sirtuin 1 (SIRT1) and nuclear factor erythroid derived 2 like 2 (Nrf2) was also increased by simvastatin. In addition, simvastatin increased glutamine synthetase (GS) activity and glutathione (GSH) levels only in cortical astrocytes. Our findings provide evidence that astrocytes from different regions are important cellular targets of simvastatin in the CNS, even in the absence of IFNα/βR, which was showed by the modulation of cytokine production and release, as well as the expression of cytoprotective genes and functional parameters.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Daniele Schauren da Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Daniel Moreira de Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Chen WH, Chen CH, Hsu MC, Chang RW, Wang CH, Lee TS. Advances in the molecular mechanisms of statins in regulating endothelial nitric oxide bioavailability: Interlocking biology between eNOS activity and L-arginine metabolism. Biomed Pharmacother 2024; 171:116192. [PMID: 38262153 DOI: 10.1016/j.biopha.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A, are widely used to treat hypercholesterolemia. In addition, statins have been suggested to reduce the risk of cardiovascular events owing to their pleiotropic effects on the vascular system, including vasodilation, anti-inflammation, anti-coagulation, anti-oxidation, and inhibition of vascular smooth muscle cell proliferation. The major beneficial effect of statins in maintaining vascular homeostasis is the induction of nitric oxide (NO) bioavailability by activating endothelial NO synthase (eNOS) in endothelial cells. The mechanisms underlying the increased NO bioavailability and eNOS activation by statins have been well-established in various fields, including transcriptional and post-transcriptional regulation, kinase-dependent phosphorylation and protein-protein interactions. However, the mechanism by which statins affect the metabolism of L-arginine, a precursor of NO biosynthesis, has rarely been discussed. Autophagy, which is crucial for energy homeostasis, regulates endothelial functions, including NO production and angiogenesis, and is a potential therapeutic target for cardiovascular diseases. In this review, in addition to summarizing the molecular mechanisms underlying increased NO bioavailability and eNOS activation by statins, we also discuss the effects of statins on the metabolism of L-arginine.
Collapse
Affiliation(s)
- Wen-Hua Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Man-Chen Hsu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ru-Wen Chang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chih-Hsien Wang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
El-Sayyad SM, El-Ella DMA, Hafez MM, Al-Mokaddem AK, Ali BM, Awny MM, El-Emam SZ. Sesamol defends neuronal damage following cerebral ischemia/reperfusion: a crosstalk of autophagy and Notch1/NLRP3 inflammasome signaling. Inflammopharmacology 2024; 32:629-642. [PMID: 37848698 PMCID: PMC10907497 DOI: 10.1007/s10787-023-01355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE Sesamol (SES) is a phenolic compound found in sesame seed oil. Several studies have revealed its anti-inflammatory and antioxidant properties. However, its complete underlying mechanistic perspective about cerebral ischemia/reperfusion (I/R) lesions has not yet been disclosed. Consequently, we aimed to scrutinize its neuroprotective mechanism against cerebral injury during a global cerebral I/R in a rat model, considering its impact on autophagy and Notch1/NLRP3 inflammasome signaling regulation. METHODS To affirm our purpose, adult Wistar rats were allotted into five groups: sham and the other four groups in which transient global cerebral ischemia was induced by bilateral common ligation (2VO) for 1 h, then reperfusion for either 24 h or 5 days: I/R (1/24), I/R (1/5), SES + I/R (1/24), and SES + I/R (1/5). In treated groups, SES (100 mg/kg, p.o., for 21 days) was administered before cerebral I/R induction. The assessment of histopathological changes in brain tissues, immunohistochemistry, biochemical assays, ELISA, and qRT-PCR were utilized to investigate our hypothesis. RESULTS Advantageously, SES halted the structural neuronal damage with lessened demyelination induced by cerebral I/R injury. Restoring oxidant/antioxidant balance was evident by boosting the total antioxidant capacity and waning lipid peroxidation. Furthermore, SES reduced inflammatory and apoptosis markers. Additionally, SES recovered GFAP, Cx43, and autophagy signaling, which in turn switched off the Notch-1/NLRP3 inflammasome trajectory. CONCLUSIONS Our results revealed the neuroprotective effect of SES against cerebral I/R injury through alleviating injurious events and boosting autophagy, consequently abolishing Notch1/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Shorouk Mohamed El-Sayyad
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Dina M Abo El-Ella
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Mohamed M Hafez
- Faculty of Pharmacy, Biochemistry Department, Ahram Canadian University (ACU), Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Faculty of Veterinary Medicine, Department of Pathology, Cairo University, Giza, 12211, Egypt
| | - Bassam Mohamed Ali
- Faculty of Pharmacy, Department of Biochemistry, October 6 University, Giza, 12585, Egypt
| | - Magdy M Awny
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Soad Z El-Emam
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt.
| |
Collapse
|
10
|
Fokina EA, Zakharova IO, Bayunova LV, Avrova DK, Ilyasov IO, Avrova NF. Intranasal Insulin Decreases Autophagic and Apoptotic Death of Neurons in the Rat Hippocampal C1 Region and Frontal Cortex under Forebrain Ischemia–Reperfusion. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
11
|
Tang Y, Xie J, Chen X, Sun L, Xu L, Chen X. A novel link between silent information regulator 1 and autophagy in cerebral ischemia-reperfusion. Front Neurosci 2022; 16:1040182. [PMID: 36507335 PMCID: PMC9726917 DOI: 10.3389/fnins.2022.1040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. Although revascularization via reperfusion combined with advanced anticoagulant therapy is currently a gold standard treatment for patients, the reperfusion itself also results in a serious dysfunction termed cerebral ischemia-reperfusion (I/R) injury. Silent information regulator 1 (sirtuin 1, SIRT1), is a classic NAD+-dependent deacetylase, which has been proposed as an important mediator in the alleviation of cerebral ischemia through modulating multiple physiological processes, including apoptosis, inflammation, DNA repair, oxidative stress, and autophagy. Recent growing evidence suggests that SIRT1-mediated autophagy plays a key role in the pathophysiological process of cerebral I/R injury. SIRT1 could both activate and inhibit the autophagy process by mediating different autophagy pathways, such as the SIRT1-FOXOs pathway, SIRT1-AMPK pathway, and SIRT1-p53 pathway. However, the autophagic roles of SIRT1 in cerebral I/R injury have not been systematically summarized. Here, in this review, we will first introduce the molecular mechanisms and effects of SIRT1 in cerebral ischemia and I/R injury. Next, we will discuss the involvement of autophagy in the pathogenesis of cerebral I/R injury. Finally, we will summarize the latest advances in the interaction between SIRT1 and autophagy in cerebral I/R injury. A good understanding of these relationships would serve to consolidate a framework of mechanisms underlying SIRT1's neuroprotective effects and provides evidence for the development of drugs targeting SIRT1.
Collapse
|
12
|
Luchetti F, Nasoni MG, Burattini S, Mohammadi A, Pagliarini M, Canonico B, Ambrogini P, Balduini W, Reiter RJ, Carloni S. Melatonin Attenuates Ischemic-like Cell Injury by Promoting Autophagosome Maturation via the Sirt1/FoxO1/Rab7 Axis in Hippocampal HT22 Cells and in Organotypic Cultures. Cells 2022; 11:3701. [PMID: 36429130 PMCID: PMC9688641 DOI: 10.3390/cells11223701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Maria G. Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Atefeh Mohammadi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marica Pagliarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
13
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
14
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
15
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
16
|
Tong XK, Royea J, Hamel E. Simvastatin rescues memory and granule cell maturation through the Wnt/β-catenin signaling pathway in a mouse model of Alzheimer's disease. Cell Death Dis 2022; 13:325. [PMID: 35397630 PMCID: PMC8994768 DOI: 10.1038/s41419-022-04784-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022]
Abstract
We previously showed that simvastatin (SV) restored memory in a mouse model of Alzheimer disease (AD) concomitantly with normalization in protein levels of memory-related immediate early genes in hippocampal CA1 neurons. Here, we investigated age-related changes in the hippocampal memory pathway, and whether the beneficial effects of SV could be related to enhanced neurogenesis and signaling in the Wnt/β-catenin pathway. APP mice and wild-type (WT) littermate controls showed comparable number of proliferating (Ki67-positive nuclei) and immature (doublecortin (DCX)-positive) granule cells in the dentate gyrus until 3 months of age. At 4 months, Ki67 or DCX positive cells decreased sharply and remained less numerous until the endpoint (6 months) in both SV-treated and untreated APP mice. In 6 month-old APP mice, dendritic extensions of DCX immature neurons in the molecular layer were shorter, a deficit fully normalized by SV. Similarly, whereas mature granule cells (calbindin-immunopositive) were decreased in APP mice and not restored by SV, their dendritic arborizations were normalized to control levels by SV treatment. SV increased Prox1 protein levels (↑67.7%, p < 0.01), a Wnt/β-catenin signaling target, while significantly decreasing (↓61.2%, p < 0.05) the upregulated levels of the β-catenin-dependent Wnt pathway inhibitor DKK1 seen in APP mice. In APP mice, SV benefits were recapitulated by treatment with the Wnt/β-catenin specific agonist WAY-262611, whereas they were fully abolished in mice that received the Wnt/β-catenin pathway inhibitor XAV939 during the last month of SV treatment. Our results indicate that activation of the Wnt-β-catenin pathway through downregulation of DKK1 underlies SV neuronal and cognitive benefits.
Collapse
Affiliation(s)
- Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.,Department of Biochemistry, Microbiology, Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.
| |
Collapse
|
17
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
18
|
Xu L, Wu XM, Zhang YK, Huang MJ, Chen J. Simvastatin inhibits the inflammation and oxidative stress of human neutrophils in sepsis via autophagy induction. Mol Med Rep 2021; 25:25. [PMID: 34812477 DOI: 10.3892/mmr.2021.12541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022] Open
Abstract
Simvastatin exerts a protective effect during sepsis (SP) in animal models; however, the underlying mechanism is not completely understood, particularly in human SP. Neutrophils are a critical effector in the host inflammatory response to SP. Therefore, the present study aimed to investigate the effect of simvastatin on neutrophils in human SP. Neutrophils were isolated from the peripheral venous blood of adult patients with SP and healthy volunteers (HP). Cell viability was analyzed using the MTT assay. Intracellular reactive oxygen species (ROS) generation and the concentrations of inflammatory mediators were also assessed using flow cytometry and ELISA. The results demonstrated that the cell viability of neutrophils from the SP group was significantly decreased compared with that in the HP group, and that treatment with simvastatin partly reversed the reduced cell viability. Furthermore, simvastatin administration significantly decreased ROS production and the concentrations of TNF‑α and IL‑6, which were significantly increased in neutrophils isolated from the SP group. Simvastatin also enhanced autophagy induction, as indicated by the promotion of the conversion of LC3I to LC3II and the increased expression levels of Beclin 1 in SP neutrophils. Treatment with 3‑methyladenine, an autophagy inhibitor, completely blocked the protective effects of simvastatin on neutrophils from SP, including the effects of simvastatin on the inhibition of inflammation, oxidative stress and improving cell viability. Collectively, the present study provided evidence for the simvastatin‑induced autophagic process of neutrophils involved in human SP, which protects neutrophils and partially attenuates the inflammatory response and oxidative stress. Therefore, the augmentation of neutrophil autophagy may serve as a potential therapeutic target for patients with SP.
Collapse
Affiliation(s)
- Li Xu
- Intensive Care Unit, Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiao-Min Wu
- Intensive Care Unit, Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yu-Kun Zhang
- Intensive Care Unit, Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ming-Jie Huang
- Intensive Care Unit, Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jun Chen
- Intensive Care Unit, Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
19
|
Guo Y, Guo X, Zhao K, Bao Q, Yang J, Yang M. Statin Use and Outcomes of Patients With Acute Ischemic Stroke Treated With Intravenous Thrombolysis: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:734927. [PMID: 34630305 PMCID: PMC8492958 DOI: 10.3389/fneur.2021.734927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The data on the relationship between statin use and clinical outcomes after intravenous thrombolysis (IVT) for acute ischemic stroke (AIS) are in controversy. Objective: This systematic review and meta-analysis aimed to evaluate the safety and efficacy of statins administered prior to onset and during hospitalization in patients with AIS treated with IVT. Methods: We searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials from inception until June 8, 2021. Comparative studies investigating statin effect on intracranial hemorrhage (ICH), functional outcomes, and mortality in adults with AIS treated with IVT were screened. Random-effect meta-analyses of odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were performed. The protocol was registered in PROSPERO (CRD42021254919). Results: Twenty-two observational studies were included, which involved 17,554 patients. The pooled estimates showed that pre-stroke statin use was associated with a higher likelihood of symptomatic ICH (OR 1.31; 95% CI 1.07–1.59; p = 0.008) and any ICH (OR 1.21; 95% CI 1.03–1.43; p = 0.02). However, the pre-stroke statin use was not significantly associated with the 3-month mortality, 3-month favorable functional outcome (FFO, modified Rankin Scale [mRS] score 0–1), and 3-month functional independence (FI; mRS score 0–2). However, in-hospital statin use was associated with a reduced risk of symptomatic ICH (OR 0.46; 95% CI 0.21–1.00; p = 0.045), any ICH (OR 0.51; 95% CI 0.27–0.98; p = 0.04), and 3-month mortality (OR 0.42; 95% CI 0.29–0.62; p < 0.001) and an increased probability of 3-month FFO (OR 1.33; 95% CI 1.02–1.744; p = 0.04) and 3-month FI (OR 1.41; 95% C, 1.11–1.80; p = 0.005). Conclusions: The present systematic review and meta-analysis suggests that in-hospital statin use after IVT may be safe and may have a favorable impact on clinical outcomes, a finding not observed in studies restricted to patients with pre-stroke statin use.
Collapse
Affiliation(s)
- Yu Guo
- Graduate School, Qinghai University, Xining, China
| | - Xinmei Guo
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Kai Zhao
- Graduate School, Qinghai University, Xining, China
| | - Qiangji Bao
- Graduate School, Qinghai University, Xining, China
| | - Jincai Yang
- Graduate School, Qinghai University, Xining, China
| | - Mingfei Yang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
20
|
Al-Kuraishy HM, Al-Gareeb AI, Naji MT. Statin therapy associated with decreased neuronal injury measured by serum S100β levels in patients with acute ischemic stroke. Int J Crit Illn Inj Sci 2021; 11:246-252. [PMID: 35070915 PMCID: PMC8725813 DOI: 10.4103/ijciis.ijciis_7_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute ischemic strokes (AIS) are a common cause of morbidity, mortality, and disability. The serum biomarker S100β correlates with poor neurological outcomes in the setting of AIS. This study describes the impact of statin treatment on S100β levels following AIS. Methods This was a prospective case-control study of AIS patients compared to healthy controls. Patients were stratified into three groups: (1) AIS patients on statin therapy, (2) AIS patients not on statin therapy, and (3) healthy controls. Demographics, clinical parameters, stroke risk scores (SRS), and S100β levels were recorded for all patients. Results Blood pressure, lipids, and SRS scores were higher in stroke versus control patients (all P < 0.05), and lower in Group I versus II (all P < 0.05). S100β levels were higher in stroke versus nonstroke patients (P = 0.001), and lower in Group I versus II (P = 0.001). Furthermore, patients on atorvastatin showed greater S100β reductions than those on rosuvastatin therapy (P = 0.01). Conclusion In acute stroke patients, statins therapy correlated with reductions in the neuronal injury biomarker S100β, with greater reductions observed for atorvastatin than rosuvastatin therapy.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| | - Marwa Thaier Naji
- Department of Pharmacology, Toxicology and Medicine, College of Medicine Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
21
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
22
|
Nasef NA, Keshk WA, El-Meligy SM, Allah AAA, Ibrahim WM. Modulatory effect of simvastatin on redox status, caspase-3 expression, p-protein kinase B (p-Akt), and brain-derived neurotrophic factor (BDNF) in an ethanol-induced neurodegeneration model. Can J Physiol Pharmacol 2021; 99:478-489. [PMID: 33002367 DOI: 10.1139/cjpp-2020-0360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurodegenerative diseases are a common cause of morbidity and mortality worldwide, with oxidative stress, inflammation, and protein aggregation representing the main underlying mechanisms that ultimately lead to cell death. Ethanol has shown strong neurodegenerative consequences in experimental animal brains. Statins are a class of lipid-lowering drugs with many pleotropic effects. Therefore, the aim of the present study was to explore the modulatory effect of simvastatin (10 mg·kg-1·day-1) before and after the development of neurodegeneration (for 55 and 25 days, respectively) on redox state, caspase-3 expression, p-protein kinase B (p-Akt), and brain-derived neurotrophic factor (BDNF) in ethanol-induced (15% ethanol solution for 55 days) neurodegeneration. Seventy female Albino Swiss mice were included and randomly divided into five groups: C, control group; E, ethanol group; ES, group treated with simvastatin from the first day of ethanol intake; E + S, group treated with simvastatin after neurodegeneration development; and S, simvastatin group. Administration of simvastatin from the first day improved the biochemical changes, suppressed apoptosis, and induced autophagy and neurogenesis; however, its administration after the development of neurodegeneration resulted in partial improvement. The histopathological findings confirmed the biochemical changes. In conclusion, simvastatin has a neuroprotective effect against the development of ethanol-induced neurodegeneration and its progression.
Collapse
Affiliation(s)
- Nahla A Nasef
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa A Keshk
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Salwa M El-Meligy
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed A Abd Allah
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Medical Biochemistry & Molecular Biology Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
Wang D, Wei Y, Tian J, He D, Zhang R, Ji X, Huang X, Sun J, Gao J, Wang Z, Pang Q, Liu Q. Oxiracetam Mediates Neuroprotection Through the Regulation of Microglia Under Hypoxia-Ischemia Neonatal Brain Injury in Mice. Mol Neurobiol 2021; 58:3918-3937. [PMID: 33886092 DOI: 10.1007/s12035-021-02376-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
In neonatal hypoxic-ischemic brain damage (HIBD), in addition to damage caused by hypoxia and ischemia, over-activation of inflammation leads to further deterioration of the condition, thus greatly shortening the optimal treatment time window. Ischemic penumbra, the edematous area encompassing the infarct core, is characterized by typical activation of microglia and overt inflammation, and prone to incorporate into the infarct core gradually after ischemia onset. If treated in time, the cells located in the penumbra can survive, thereby impeding the expansion of the infarction. We demonstrated for the first time that in the acute phase of HIBD in neonatal mice, treatment of Oxiracetam (ORC) significantly curtailed the size of ischemic penumbra together with drastic reduction of infarction. By staining various cellular markers, we found that the penumbra was defined and concentrated with activated microglia. We also analyzed transmission electron microscopy and Luminex assay results to elucidate the mechanisms involved. We further confirmed that ORC switched polarization of microglia from the inflammatory towards the alternatively activated phenotype, thus promoting microglia from being neurotoxic into neuroprotective. Meanwhile, ORC decreased proliferation of microglia; however, their functions of phagocytosis and autophagy were otherwise enhanced. Last, we clarified that ORC promoted autophagy through the AMPK/mTOR pathway, which further induced the transition of the inflammatory to the alternatively activated phenotype in microglia. The pro-inflammatory factors secretion was inhibited as well, thereby reducing the progression of the infarction. Taken together, it is concluded that Oxiracetam reduced the expansion of ischemic infarction in part via regulating the interplay between microglia activation and autophagy, which would delay the progression of HIBD and effectively prolong the time window for the clinical treatment of HIBD.
Collapse
Affiliation(s)
- Dan Wang
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Department of Reproductive Medicine, Dongchangfu County Maternal and Child Health Hospital, Liaocheng, 252000, Shandong, China
| | - Yanbang Wei
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jingxia Tian
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoming Huang
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Sun
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jiajia Gao
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zixiao Wang
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Dave AM, Peeples ES. Cholesterol metabolism and brain injury in neonatal encephalopathy. Pediatr Res 2021; 90:37-44. [PMID: 33106607 PMCID: PMC8511855 DOI: 10.1038/s41390-020-01218-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023]
Abstract
Neonatal encephalopathy (NE) results from impaired cerebral blood flow and oxygen delivery to the brain. The pathophysiology of NE is complex and our understanding of its underlying pathways continues to evolve. There is considerable evidence that cholesterol dysregulation is involved in several adult diseases, including traumatic brain injury, stroke, Huntington's disease, and Parkinson's disease. Although the research is less robust in pediatrics, there is emerging evidence that aberrations in cholesterol metabolism may also be involved in the pathophysiology of neonatal NE. This narrative review provides an overview of cholesterol metabolism in the brain along with several examples from the adult literature where pathologic alterations in cholesterol metabolism have been associated with inflammatory and ischemic brain injury. Using those data as a background, the review then discusses the current preclinical data supporting the involvement of cholesterol in the pathogenesis of NE as well as how brain-specific cholesterol metabolites may serve as serum biomarkers for brain injury. Lastly, we review the potential for using the cholesterol metabolic pathways as therapeutic targets. Further investigation of the shifts in cholesterol synthesis and metabolism after hypoxia-ischemia may prove vital in understanding NE pathophysiology as well as providing opportunities for rapid diagnosis and therapeutic interventions. IMPACT: This review summarizes emerging evidence that aberrations in cholesterol metabolism may be involved in the pathophysiology of NE. Using data from NE as well as analogous adult disease states, this article reviews the potential for using cholesterol pathways as targets for developing novel therapeutic interventions and using cholesterol metabolites as biomarkers for injury. When possible, gaps in the current literature were identified to aid in the development of future studies to further investigate the interactions between cholesterol pathways and NE.
Collapse
Affiliation(s)
- Amanda M Dave
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Mohammadzadeh N, Montecucco F, Carbone F, Xu S, Al-Rasadi K, Sahebkar A. Statins: Epidrugs with effects on endothelial health? Eur J Clin Invest 2020; 50:e13388. [PMID: 32854143 DOI: 10.1111/eci.13388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epigenetic events involving the methylation of CpG cites in DNA, histone modifications and noncoding RNAs correlated with many essential processes in human cells and diseases, such as cancer and cardiovascular diseases. HMG-CoA reductase inhibitors (statins)-the LDL cholesterol-lowering drugs-are broadly used in cardio- and cerebro-vascular diseases. It is well established that statins exert pleiotropic functions, but how they exert effects on epigenetic modifications independently of HMG-CoA reductase inhibition is not yet clear. Thereby, understanding these mechanisms may pave the way for further clinical application of statin therapy. DESIGN Following and electronic database search, studies reporting substantial effects of statins on epigenetic reprogramming in both cultured cells and in vivo models were retrieved and reviewed. RESULTS Epigenetic mechanisms play an essential role in cellular development and function, and data collected in the past few years have revealed that many of the pleiotropic properties of statins are mediated by epigenetic mechanisms. Furthermore, those 'nonclassical' effects are not limited to CV field but they would extend to other conditions such as malignancies. CONCLUSION This review suggests that the epigenetic effects of statins mediate, at least in part, the pleiotropic actions of these drugs but further validation of such effects in clinical studies is yet to be provided.
Collapse
Affiliation(s)
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|