1
|
Zhang Y, Jing M, Wang L, Liang Z, Xu Q, Li Q, Li S. Combining fire needle plus cupping with famciclovir and gabapentin in the treatment of acute herpes zoster: a revised intervention approach. Arch Dermatol Res 2024; 317:112. [PMID: 39666082 PMCID: PMC11638291 DOI: 10.1007/s00403-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to investigate the efficacy and safety of fire needle plus cupping (FC) combined with oral famciclovir and gabapentin for the treatment of acute-phase herpes zoster (AHZ). This study was conducted as a superiority, randomized controlled trial in which 84 patients with AHZ who met the diagnostic criteria were selected and randomly assigned to three groups on a 1:1 basis. Group A: received oral famciclovir with gabapentin treatment (FG); Group B: received fire needle plus cupping (FC) with FG. The primary outcome was the difference in patients' pain levels as assessed by the VAS scale. Secondary outcomes were changes in sign-symptom scores, incidence of adverse effects, and incidence of PHN. After one week of treatment, both groups showed decreased VAS scores and symptom-sign scores compared to baseline. However, the decrease in VAS scores was significantly higher in Group B compared to Group A (p < 0.0001). Similarly, the improvement in symptom-sign scores was significantly better in Group B (p < 0.0001). Group A experienced a higher rate of adverse reactions (21.95%) compared to Group B (4.76%), with a significant difference between the groups (p = 0.021). Furthermore, the incidence of PHN was significantly lower in Group B (4.76%) compared to Group A (29.27%) (p = 0.003). Fire needle therapy combined with medication demonstrated superior analgesic effects, improved symptom relief, and reduced adverse reactions and the incidence of PHN compared to medication alone in the treatment of AHZ. Importantly, the fire needle and cupping therapy should be considered an add-on therapy to standard drug treatment, rather than a standalone treatment. Additionally, due to the lack of a sham-treated control group, the placebo effect associated with invasive therapies such as fire needling and cupping. Future studies should include a sham control group to better isolate the true effects of the treatment. Clinical trial registration: This study was registered with the Chinese Clinical Trial Registry under the code ChiCTR1800015372 ( https://www.chictr.org.cn ). Registered on 28 March 2018. All experiments on the participants were following the Declaration of Helsinki.
Collapse
Affiliation(s)
- Ying Zhang
- The Fourth Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Yuxi City, 653100, Yunnan Province, China
| | - Ming Jing
- The Fourth Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Yuxi City, 653100, Yunnan Province, China
| | - Lan Wang
- Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China
| | - Zuohui Liang
- People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, No. 21 Nie Er Road, Hongta District, Yuxi City, 650500, Yunnan Province, China
| | - Qiannan Xu
- People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, No. 21 Nie Er Road, Hongta District, Yuxi City, 650500, Yunnan Province, China
| | - Qifu Li
- Yunnan University of Chinese Medicine, Kunming City, 650500, Yunnan Province, China
| | - Shihua Li
- People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, No. 21 Nie Er Road, Hongta District, Yuxi City, 650500, Yunnan Province, China.
| |
Collapse
|
2
|
Song C, Qiu J, Luo M, Fu Y, Hu S, Liu W, Zhang D, Chen M, Cao Z, Yang X, Ke B. Identification of N-(((1S,3R,5S)-adamantan-1-yl)methyl)-3-((4-chlorophenyl)sulfonyl)benzenesulfonamide as novel Nav1.8 inhibitor with analgesic profile. Bioorg Med Chem Lett 2024; 110:129862. [PMID: 38944398 DOI: 10.1016/j.bmcl.2024.129862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Chronic pain is a common and challenging clinical problem that significantly impacts patients' quality of life. The sodium channel Nav1.8 plays a crucial role in the occurrence and development of chronic pain, making it one of the key targets for treating chronic pain. In this article, we combined virtual screening with cell membrane chromatography techniques to establish a novel method for rapid high-throughput screening of selective Nav1.8 inhibitors. Using this approach, we identified a small molecule compound 6, which not only demonstrated high affinity and inhibitory activity against Nav1.8 but also exhibited significant inhibitory effects on CFA-induced chronic inflammatory pain. Compared to the positive drug VX-150, compound 6 showed a more prolonged analgesic effect, making it a promising candidate as a Nav1.8 inhibitor with potential clinical applications. This discovery provides a new therapeutic option for the treatment of chronic pain.
Collapse
Affiliation(s)
- Chi Song
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Jie Qiu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Menglan Luo
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yihang Fu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Shilong Hu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Wencheng Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Di Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Meiyuan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Zhihua Cao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Xi Yang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
3
|
Xu S, Wang Y. Transient Receptor Potential Channels: Multiple Modulators of Peripheral Neuropathic Pain in Several Rodent Models. Neurochem Res 2024; 49:872-886. [PMID: 38281247 DOI: 10.1007/s11064-023-04087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Neuropathic pain, a prevalent chronic condition in clinical settings, has attracted widespread societal attention. This condition is characterized by a persistent pain state accompanied by affective and cognitive disruptions, significantly impacting patients' quality of life. However, current clinical therapies fall short of addressing its complexity. Thus, exploring the underlying molecular mechanism of neuropathic pain and identifying potential targets for intervention is highly warranted. The transient receptor potential (TRP) receptors, a class of widely distributed channel proteins, in the nervous system, play a crucial role in sensory signaling, cellular calcium regulation, and developmental influences. TRP ion channels are also responsible for various sensory responses including heat, cold, pain, and stress. This review highlights recent advances in understanding TRPs in various rodent models of neuropathic pain, aiming to uncover potential therapeutic targets for clinical management.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
4
|
Wang Y, Hu S, Chen Y, Chen M, Zhang D, Liu W, Chen C, Gan Y, Luo M, Ke B. Discovery of a novel series of pyridone amides as Na V1.8 inhibitors. Bioorg Med Chem Lett 2024; 101:129655. [PMID: 38350529 DOI: 10.1016/j.bmcl.2024.129655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
The NaV1.8 channel, mainly found in the peripheral nervous system, is recognized as one of the key factors in chronic pain. The molecule VX-150 was initially promising in targeting this channel, but the phase II trials of VX-150 did not show expected pain relief results. By analyzing the interaction mode of VX-150 and NaV1.8, we developed two series with a total of 19 molecules and examined their binding affinity to NaV1.8 in vitro and analgesic effect in vivo. One compound, named 2j, stood out with notable activity against the NaV1.8 channel and showed effective pain relief in models of chronic inflammatory pain and neuropathic pain. Our research points to 2j as a strong contender for developing safer pain-relief treatments.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shilong Hu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhao Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meiyuan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Di Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wencheng Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chunxia Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Menglan Luo
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Yang R, Wang QQ, Feng Y, Li XH, Li GX, She FL, Zhu XJ, Li CL. Over-expression of miR-3584-5p Represses Nav1.8 Channel Aggravating Neuropathic Pain caused by Chronic Constriction Injury. Mol Neurobiol 2023; 60:5237-5255. [PMID: 37280408 DOI: 10.1007/s12035-023-03394-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Nav1.8, a tetrodotoxin-resistant voltage-gated sodium channels (VGSCs) subtype encoded by SCN10A, which plays an important role in the production and transmission of peripheral neuropathic pain signals. Studies have shown that VGSCs may be key targets of MicroRNAs (miRNAs) in the regulation of neuropathic pain. In our study, bioinformatics analysis showed that the targeting relationship between miR-3584-5p and Nav1.8 was the most closely. The purpose of this study was to investigate the roles of miR-3584-5p and Nav1.8 in neuropathic pain. The effects of miR-3584-5p on chronic constriction injury (CCI)-induced neuropathic pain in rats was investigated by intrathecal injection of miR-3584-5p agomir (an agonist, 20 μM, 15 μL) or antagomir (an antagonist, 20 μM, 15 μL). The results showed that over-expression of miR-3584-5p aggravated neuronal injury by hematoxylin-eosin (H&E) staining and mechanical/thermal hypersensitivity in CCI rats. MiR-3584-5p indirectly inhibited the expression of Nav1.8 by up-regulating the expression of key proteins in the ERK5/CREB signaling pathway, and also inhibited the current density of the Nav1.8 channel, changed its channel dynamics characteristic, thereby accelerating the transmission of pain signals, and further aggravating pain. Similarly, in PC12 and SH-SY5Y cell cultures, miR-3584-5p increased the level of reactive oxygen species (ROS) and inhibited mitochondrial membrane potential (Δψm) in the mitochondrial pathway, decreased the ratio of apoptosis-related factor Bcl-2/Bax, and thus promoted neuronal apoptosis. In brief, over-expression of miR-3584-5p aggravates neuropathic pain by directly inhibiting the current density of Nav1.8 channel and altering its channel dynamics, or indirectly inhibiting Nav1.8 expression through ERK5/CREB pathway, and promoting apoptosis through mitochondrial pathway.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Qian-Qian Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yuan Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xue-Hao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Gui-Xia Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Feng-Lin She
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xi-Jin Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
6
|
Liu B, Wu W, Cui L, Zheng X, Li N, Zhang X, Duan G. A novel co-target of ACY1 governing plasma membrane translocation of SphK1 contributes to inflammatory and neuropathic pain. iScience 2023; 26:106989. [PMID: 37378314 PMCID: PMC10291574 DOI: 10.1016/j.isci.2023.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies validate that inhibiting sodium channel 1.8 (Nav1.8) effectively relieves inflammatory and neuropathic pain. However, Nav1.8 blockers have cardiac side effects in addition to analgesic effects. Here, we constructed a spinal differential protein expression profile using Nav1.8 knockout mice to screen common downstream proteins of Nav1.8 in inflammatory and neuropathic pain. We found that aminoacylase 1 (ACY1) expression was increased in wild-type mice compared to Nav1.8 knockout mice in both pain models. Moreover, spinal ACY1 overexpression induced mechanical allodynia in naive mice, while ACY1 suppression alleviated inflammatory and neuropathic pain. Further, ACY1 could interact with sphingosine kinase 1 and promote its membrane translocation, resulting in sphingosine-1-phosphate upregulation and the activation of glutamatergic neurons and astrocytes. In conclusion, ACY1 acts as a common downstream effector protein of Nav1.8 in inflammatory and neuropathic pain and could be a new and precise therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LingLing Cui
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuemei Zheng
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Cui Y, Zhou X, Li Q, Wang D, Zhu J, Zeng X, Han Q, Yang R, Xu S, Zhang D, Meng X, Zhang S, Sun Z, Yin H. Efficacy of different acupuncture therapies on postherpetic neuralgia: A Bayesian network meta-analysis. Front Neurosci 2023; 16:1056102. [PMID: 36704010 PMCID: PMC9871906 DOI: 10.3389/fnins.2022.1056102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Background Postherpetic neuralgia (PHN) is a common, complex, and refractory type of neuropathic pain. Several systematic reviews support the efficacy of acupuncture and related treatments for PHN. Nevertheless, the efficacy of various acupuncture-related treatments for PHN remains debatable. Objective We aimed to assess the efficacy and safety of acupuncture-related treatments for PHN, identify the most effective acupuncture-related treatments, and expound on the current inadequacies and prospects in the applications of acupuncture-related therapies. Methods We searched PubMed, Cochrane Central Register of Controlled Trials, Embase, Web of Science, Google Scholar, four Chinese databases (China National Knowledge Infrastructure, China Biomedical, Chongqing VIP, and Wan Fang databases), clinical research registration platform (World Health Organization International Clinical Trial Registration platform, China Clinical Trial Registration Center) for relevant studies. We also examined previous meta-analyses; gray literature; and reference lists of the selected studies. We then evaluated the risk of bias in the included studies and performed a Bayesian multiple network meta-analysis. Results We included 29 randomized controlled trials comprising 1,973 patients, of which five studies showed a high risk of bias. The pairwise meta-analysis results revealed that the efficacy of all acupuncture-related treatments for pain relief related to PHN was significantly better than antiepileptics. The network meta-analysis results showed that pricking and cupping plus antiepileptics were the most effective treatment, followed by electroacupuncture (EA) plus antiepileptics for pain relief in patients with PHN. EA plus antiepileptics ranked the best regarding reduced Pittsburgh Sleep Quality Index (PSQI) and Self-Rating Depression Scale (SDS) scores in patients with PHN. No results were found regarding the total response rate or quality of life in this study. Acupuncture-related treatments showed a lower incidence of adverse events than that of antiepileptics. Conclusion Acupuncture-related therapies are potential treatment options for PHN and are safe. Pricking and cupping plus antiepileptics, are the most effective acupuncture-related techniques for pain relief, while EA plus antiepileptics is the best acupuncture-related technique for improving PHN-related insomnia and depression symptoms. However, owing to the limitations of this study, these conclusions should be cautiously interpreted, and future high-quality studies are needed. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021226422, identifier CRD42021226422.
Collapse
Affiliation(s)
- Yang Cui
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Quan Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Delong Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiamin Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiangxin Zeng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qichen Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Yang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Xu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongxu Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiangyue Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, Harbin, China,The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,Zhongren Sun,
| | - Hongna Yin
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Hongna Yin,
| |
Collapse
|
8
|
Xu S, Dong H, Zhao Y, Feng W. Differential Expression of Long Non-Coding RNAs and Their Role in Rodent Neuropathic Pain Models. J Pain Res 2021; 14:3935-3950. [PMID: 35002313 PMCID: PMC8722684 DOI: 10.2147/jpr.s344339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, which is accompanied by an unpleasant sensation, affects the patient's quality of life severely. Considering the complexity of the neuropathic pain, there are huge unmet medical needs for it while current effective therapeutics remain far from satisfactory. Accordingly, exploration of mechanisms of neuropathic pain could provide new therapeutic insights. While numerous researches have pointed out the contribution of sensory neuron-immune cell interactions, other mechanisms of action, such as long non-coding RNAs (lncRNAs), also could contribute to the neuropathic pain observed in vivo. LncRNAs have more than 200 nucleotides and were originally considered as transcriptional byproducts. However, recent studies have suggested that lncRNAs played a significant role in gene regulation and disease pathogenesis. A substantial number of long non-coding RNAs were expressed differentially in neuropathic pain models. Besides, therapies targeting specific lncRNAs can significantly ameliorate the development of neuropathic pain, which reveals the contribution of lncRNAs in the generation and maintenance of neuropathic pain and provides a new therapeutic strategy. The primary purpose of this review is to introduce recent studies of lncRNAs on different neuropathic pain models.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
9
|
Heinrichs B, Liu B, Zhang J, Meents JE, Le K, Erickson A, Hautvast P, Zhu X, Li N, Liu Y, Spehr M, Habel U, Rothermel M, Namer B, Zhang X, Lampert A, Duan G. The Potential Effect of Na v 1.8 in Autism Spectrum Disorder: Evidence From a Congenital Case With Compound Heterozygous SCN10A Mutations. Front Mol Neurosci 2021; 14:709228. [PMID: 34385907 PMCID: PMC8354588 DOI: 10.3389/fnmol.2021.709228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Apart from the most prominent symptoms in Autism spectrum disorder (ASD), namely deficits in social interaction, communication and repetitive behavior, patients often show abnormal sensory reactivity to environmental stimuli. Especially potentially painful stimuli are reported to be experienced in a different way compared to healthy persons. In our present study, we identified an ASD patient carrying compound heterozygous mutations in the voltage-gated sodium channel (VGSC) Na v 1.8, which is preferentially expressed in sensory neurons. We expressed both mutations, p.I1511M and p.R512∗, in a heterologous expression system and investigated their biophysical properties using patch-clamp recordings. The results of these experiments reveal that the p.R512∗ mutation renders the channel non-functional, while the p.I1511M mutation showed only minor effects on the channel's function. Behavioral experiments in a Na v 1.8 loss-of-function mouse model additionally revealed that Na v 1.8 may play a role in autism-like symptomatology. Our results present Na v 1.8 as a protein potentially involved in ASD pathophysiology and may therefore offer new insights into the genetic basis of this disease.
Collapse
Affiliation(s)
- Björn Heinrichs
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jannis E. Meents
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Kim Le
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Xiwen Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure-Function Relationships: Decoding the Human Brain at Systemic Levels, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation, Hanover, Germany
| | - Barbara Namer
- Research Group Neurosciences of the Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Yang M, Zhou M. μ-conotoxin TsIIIA, a peptide inhibitor of human voltage-gated sodium channel hNa v1.8. Toxicon 2020; 186:29-34. [PMID: 32758497 DOI: 10.1016/j.toxicon.2020.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
TsIIIA, the first μ-conotoxin from Conus tessulatus, can selectively inhibit rat tetrodotoxin-resistant sodium channels. TsIIIA also shows potent analgesic activity in a mice hotplate analgesic assay, but its effect on human sodium channels remains unknown. In this study, eight human sodium channel subtypes, hNav1.1- hNav1.8, were expressed in HEK293 or ND7/23 cells and tested on the chemically synthesized TsIIIA. Patch clamp experiments showed that 10 μM TsIIIA had no effects on the tetrodotoxin-sensitive hNav1.1, hNav1.2, hNav1.3, hNav1.4, hNav1.6 and hNav1.7, as well as tetrodotoxin-resistant hNav1.5. For tetrodotoxin-resistant hNav1.8, concentrations of 1, 5 and 10 μM TsIIIA reduced the hNav1.8 currents to 59.26%, 36.21% and 24.93% respectively. Further detailed dose-effect experiments showed that TsIIIA inhibited hNav1.8 currents with an IC50 value of 2.11 μM. In addition, 2 μM TsIIIA did not induce a shift in the current-voltage relationship of hNav1.8. Taken together, the hNav1.8 peptide inhibitor TsIIIA provides a pharmacological probe for sodium channels and a potential therapeutic agent for pain.
Collapse
Affiliation(s)
- Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maojun Zhou
- Department of Oncology, State Local Joint Engineering Laboratory for Anticancer Drugs, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|