1
|
Han Y, Chen K, Yu H, Cui C, Li H, Hu Y, Zhang B, Li G. Maf1 loss regulates spinogenesis and attenuates cognitive impairment in Alzheimer's disease. Brain 2024; 147:2128-2143. [PMID: 38226680 PMCID: PMC11146433 DOI: 10.1093/brain/awae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Alzheimer's disease is neurodegenerative and characterized by progressive cognitive impairment. Synaptic dysfunction appears in the early stage of Alzheimer's disease and is significantly correlated with cognitive impairment. However, the specific regulatory mechanism remains unclear. Here, we found the transcription factor Maf1 to be upregulated in Alzheimer's disease and determined that conditional knockout of Maf1 in a transgenic mouse model of Alzheimer's disease restored learning and memory function; the downregulation of Maf1 reduced the intraneuronal calcium concentration and restored neuronal synaptic morphology. We also demonstrated that Maf1 regulated the expression of NMDAR1 by binding to the promoter region of Grin1, further regulating calcium homeostasis and synaptic remodelling in neurons. Our results clarify the important role and mechanism of the Maf1-NMDAR1 signalling pathway in stabilizing synaptic structure, neuronal function and behaviour during Alzheimer's disease pathogenesis. This therefore serves as a potential diagnostic and therapeutic target for the early stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kui Chen
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongbo Hu
- Department of Neurology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), the Second Military Medical University, Shanghai 200092, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Tsang CK, Zheng XS. Role of RNA polymerase III transcription and regulation in ischaemic stroke. RNA Biol 2024; 21:1-10. [PMID: 39363536 PMCID: PMC11457610 DOI: 10.1080/15476286.2024.2409554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - X.F. Steven Zheng
- Rutgers Cancer Institute, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
Chen D, Li Q, Xu Y, Wei Y, Li J, Zhu X, Li H, Lu Y, Liu X, Yan D. Leveraging a disulfidptosis‑related lncRNAs signature for predicting the prognosis and immunotherapy of glioma. Cancer Cell Int 2023; 23:316. [PMID: 38066643 PMCID: PMC10709922 DOI: 10.1186/s12935-023-03147-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Gliomas, a prevalent form of primary brain tumors, are linked with a high mortality rate and unfavorable prognoses. Disulfidptosis, an innovative form of programmed cell death, has received scant attention concerning disulfidptosis-related lncRNAs (DRLs). The objective of this investigation was to ascertain a prognostic signature utilizing DRLs to forecast the prognosis and treatment targets of glioma patients. METHODS RNA-seq data were procured from The Cancer Genome Atlas database. Disulfidptosis-related genes were compiled from prior research. An analysis of multivariate Cox regression and the least absolute selection operator was used to construct a risk model using six DRLs. The risk signature's performance was evaluated via Kaplan-Meier survival curves and receiver operating characteristic curves. Additionally, functional analysis was carried out using GO, KEGG, and single-sample GSEA to investigate the biological functions and immune infiltration. The research also evaluated tumor mutational burden, therapeutic drug sensitivity, and consensus cluster analysis. Reverse transcription quantitative PCR was conducted to validate the expression level of DRLs. RESULTS A prognostic signature comprising six DRLs was developed to predict the prognosis of glioma patients. High-risk patients had significantly shorter overall survival than low-risk patients. The robustness of the risk model was validated by receiver operating characteristic curves and subgroup survival analysis. Risk model was used independently as a prognostic indicator for the glioma patients. Notably, the low-risk patients displayed a substantial decrease in the immune checkpoints, the proportion of immune cells, ESTIMATE and immune score. IC50 values from the different risk groups allowed us to discern three drugs for the treatment of glioma patients. Lastly, the potential clinical significance of six DRLs was determined. CONCLUSIONS A novel six DRLs signature was developed to predict prognosis and may provide valuable insights for patients with glioma seeking novel immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiaoqiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, 400010, Chongqing, China
| | - Yuan Xu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yanfei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jianguo Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yan Lu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Tsang CK, Mi Q, Su G, Hwa Lee G, Xie X, D'Arcangelo G, Huang L, Steven Zheng XF. Maf1 is an intrinsic suppressor against spontaneous neural repair and functional recovery after ischemic stroke. J Adv Res 2023; 51:73-90. [PMID: 36402285 PMCID: PMC10491990 DOI: 10.1016/j.jare.2022.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Spontaneous recovery after CNS injury is often very limited and incomplete, leaving most stroke patients with permanent disability. Maf1 is known as a key growth suppressor in proliferating cells. However, its role in neuronal cells after stroke remains unclear. OBJECTIVE We aimed to investigate the mechanistic role of Maf1 in spontaneous neural repair and evaluated the therapeutic effect of targeting Maf1 on stroke recovery. METHODS We used mouse primary neurons to determine the signaling mechanism of Maf1, and the cleavage-under-targets-and-tagmentation-sequencing to map the whole-genome promoter binding sites of Maf1 in isolated mature cortical neurons. Photothrombotic stroke model was used to determine the therapeutic effect on neural repair and functional recovery by AAV-mediated Maf1 knockdown. RESULTS We found that Maf1 mediates mTOR signaling to regulate RNA polymerase III (Pol III)-dependent rRNA and tRNA transcription in mouse cortical neurons. mTOR regulates neuronal Maf1 phosphorylation and subcellular localization. Maf1 knockdown significantly increases Pol III transcription, neurite outgrowth and dendritic spine formation in neurons. Conversely, Maf1 overexpression suppresses such activities. In response to photothrombotic stroke in mice, Maf1 expression is increased and accumulates in the nucleus of neurons in the peripheral region of infarcted cortex, which is the key region for neural remodeling and repair during spontaneous recovery. Intriguingly, Maf1 knockdown in the peri-infarct cortex significantly enhances neural plasticity and functional recovery. Mechanistically, Maf1 not only interacts with the promoters and represses Pol III-transcribed genes, but also those of CREB-associated genes that are critical for promoting plasticity during neurodevelopment and neural repair. CONCLUSION These findings indicate Maf1 as an intrinsic neural repair suppressor against regenerative capability of mature CNS neurons, and suggest that Maf1 is a potential therapeutic target for enhancing functional recovery after ischemic stroke and other CNS injuries.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Qiongjie Mi
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Guangpu Su
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gum Hwa Lee
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li'an Huang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou, Guangdong, China.
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
5
|
Chen D, Sun YY, Zhou LY, Han X, Yang S, Hong FY, Yuan Y, Wu XH, Huang GH, Cheng YC, Huang J, Feng DF. Knockdown of Porf-2 restores visual function after optic nerve crush injury. Cell Death Dis 2023; 14:570. [PMID: 37640747 PMCID: PMC10462692 DOI: 10.1038/s41419-023-06087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Retinal ganglion cells (RGCs), the sole output neurons in the eyes, are vulnerable to diverse insults in many pathological conditions, which can lead to permanent vision dysfunction. However, the molecular and cellular mechanisms that contribute to protecting RGCs and their axons from injuries are not completely known. Here, we identify that Porf-2, a member of the Rho GTPase activating protein gene group, is upregulated in RGCs after optic nerve crush. Knockdown of Porf-2 protects RGCs from apoptosis and promotes long-distance optic nerve regeneration after crush injury in both young and aged mice in vivo. In vitro, we find that inhibition of Porf-2 induces axon growth and growth cone formation in retinal explants. Inhibition of Porf-2 provides long-term and post-injury protection to RGCs and eventually promotes the recovery of visual function after crush injury in mice. These findings reveal a neuroprotective impact of the inhibition of Porf-2 on RGC survival and axon regeneration after optic nerve injury, providing a potential therapeutic strategy for vision restoration in patients with traumatic optic neuropathy.
Collapse
Affiliation(s)
- Di Chen
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yi-Yu Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lai-Yang Zhou
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xu Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Shuo Yang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Fei-Yang Hong
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Yuan
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Hua Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yuan-Chi Cheng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Ju Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dong-Fu Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China.
| |
Collapse
|
6
|
McCartan R, Gratkowski A, Browning M, Hahn-Townsend C, Ferguson S, Morin A, Bachmeier C, Pearson A, Brown L, Mullan M, Crawford F, Tzekov R, Mouzon B. Human amnionic progenitor cell secretome mitigates the consequence of traumatic optic neuropathy in a mouse model. Mol Ther Methods Clin Dev 2023; 29:303-318. [PMID: 37359418 PMCID: PMC10285248 DOI: 10.1016/j.omtm.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Traumatic optic neuropathy (TON) is a condition in which acute injury to the optic nerve from direct or indirect trauma results in vision loss. The most common cause of TON is indirect injury to the optic nerve caused by concussive forces that are transmitted to the optic nerve. TON occurs in up to 5% of closed-head trauma patients and there is currently no known effective treatment. One potential treatment option for TON is ST266, a cell-free biological solution containing the secretome of amnion-derived multipotent progenitor (AMP) cells. We investigated the efficacy of intranasal ST266 in a mouse model of TON induced by blunt head trauma. Injured mice treated with a 10-day regimen of ST266 showed an improvement in spatial memory and learning, a significant preservation of retinal ganglion cells, and a decrease in neuropathological markers in the optic nerve, optic tract, and dorsal lateral geniculate nucleus. ST266 treatment effectively downregulated the NLRP3 inflammasome-mediated neuroinflammation pathway after blunt trauma. Overall, treatment with ST266 was shown to improve functional and pathological outcomes in a mouse model of TON, warranting future exploration of ST266 as a cell-free therapeutic candidate for testing in all optic neuropathies.
Collapse
Affiliation(s)
- Robyn McCartan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Scott Ferguson
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Corbin Bachmeier
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- Bay Pines Veterans’ Hospital, Saint Petersburg, FL 33708, USA
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, PA 15219, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | | | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Zhou LY, Chen D, Guo XR, Niu YQ, Xu YS, Feng DF, Li TC. Intravitreal injection of Huperzine A promotes retinal ganglion cells survival and axonal regeneration after optic nerve crush. Front Cell Neurosci 2023; 17:1145574. [PMID: 37293627 PMCID: PMC10244636 DOI: 10.3389/fncel.2023.1145574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Traumatic optic neuropathy (TON) is a condition that causes massive loss of retinal ganglion cells (RGCs) and their axonal fibers, leading to visual insufficiency. Several intrinsic and external factors can limit the regenerative ability of RGC after TON, subsequently resulting in RGC death. Hence, it is important to investigate a potential drug that can protect RGC after TON and enhance its regenerative capacity. Herein, we investigated whether Huperzine A (HupA), extracted from a Chinese herb, has neuroprotective effects and may enhance neuronal regeneration following the optic nerve crush (ONC) model. We compared the three modes of drug delivery and found that intravitreal injection of HupA could promote RGC survival and axonal regeneration after ONC. Mechanistically, HupA exerted its neuroprotective and axonal regenerative effects through the mTOR pathway; these effects could be blocked by rapamycin. To sum up, our findings suggest a promising application of HupA in the clinical treatment of traumatic optic nerve.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ran Guo
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Yu-Qian Niu
- Fengxian District Central Hospital Graduate Student Training Base, Jinzhou Medical University, Shanghai, China
| | - Yong-Sai Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Tie-Chen Li
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|