1
|
Mitsuhashi M, Yamaguchi R, Kawasaki T, Ueno S, Sun Y, Isa K, Takahashi J, Kobayashi K, Onoe H, Takahashi R, Isa T. Stage-dependent role of interhemispheric pathway for motor recovery in primates. Nat Commun 2024; 15:6762. [PMID: 39174504 PMCID: PMC11341697 DOI: 10.1038/s41467-024-51070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Whether and how the non-lesional sensorimotor cortex is activated and contributes to post-injury motor recovery is controversial. Here, we investigated the role of interhemispheric pathway from the contralesional to ipsilesional premotor cortex in activating the ipsilesional sensorimotor cortex and promoting recovery after lesioning the lateral corticospinal tract at the cervical cord, by unidirectional chemogenetic blockade in macaques. The blockade impaired dexterous hand movements during the early recovery stage. Electrocorticographical recording showed that the low frequency band activity of the ipsilesional premotor cortex around movement onset was decreased by the blockade during the early recovery stage, while it was increased by blockade during the intact state and late recovery stage. These results demonstrate that action of the interhemispheric pathway changed from inhibition to facilitation, to involve the ipsilesional sensorimotor cortex in hand movements during the early recovery stage. The present study offers insights into the stage-dependent role of the interhemispheric pathway and a therapeutic target in the early recovery stage after lesioning of the corticospinal tract.
Collapse
Affiliation(s)
- Masahiro Mitsuhashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Reona Yamaguchi
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Toshinari Kawasaki
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoko Ueno
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Yiping Sun
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Graduate University of Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan.
| |
Collapse
|
2
|
Ha LJ, Yeo HG, Kim YG, Baek I, Baeg E, Lee YH, Won J, Jung Y, Park J, Jeon CY, Kim K, Min J, Song Y, Park JH, Nam KR, Son S, Yoo SBM, Park SH, Choi WS, Lim KS, Choi JY, Cho JH, Lee Y, Choi HJ. Hypothalamic neuronal activation in non-human primates drives naturalistic goal-directed eating behavior. Neuron 2024; 112:2218-2230.e6. [PMID: 38663401 DOI: 10.1016/j.neuron.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024]
Abstract
Maladaptive feeding behavior is the primary cause of modern obesity. While the causal influence of the lateral hypothalamic area (LHA) on eating behavior has been established in rodents, there is currently no primate-based evidence available on naturalistic eating behaviors. We investigated the role of LHA GABAergic (LHAGABA) neurons in eating using chemogenetics in three macaques. LHAGABA neuron activation significantly increased naturalistic goal-directed behaviors and food motivation, predominantly for palatable food. Positron emission tomography and magnetic resonance spectroscopy validated chemogenetic activation. Resting-state functional magnetic resonance imaging revealed that the functional connectivity (FC) between the LHA and frontal areas was increased, while the FC between the frontal cortices was decreased after LHAGABA neuron activation. Thus, our study elucidates the role of LHAGABA neurons in eating and obesity therapeutics for primates and humans.
Collapse
Affiliation(s)
- Leslie Jaesun Ha
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Inhyeok Baek
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yunkyo Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Jisun Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Youngkyu Song
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeong-Heon Park
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sangkyu Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung-Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Radiological and Medico-Oncological Sciences, Korea National University of Science and, Technology, Seoul, Republic of Korea.
| | - Jee-Hyun Cho
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Phylogenetic view of the compensatory mechanisms in motor and sensory systems after neuronal injury. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100058. [PMID: 36304591 PMCID: PMC9593282 DOI: 10.1016/j.crneur.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Through phylogeny, novel neural circuits are added on top of ancient circuits. Upon injury of a novel circuit which enabled fine control, the ancient circuits can sometimes take over its function for recovery; however, the recovered function is limited according to the capacity of the ancient circuits. In this review, we discuss two examples of functional recovery after neural injury in nonhuman primate models. The first is the recovery of dexterous hand movements following damage to the corticospinal tract. The second is the recovery of visual function after injury to the primary visual cortex (V1). In the former case, the functions of the direct cortico-motoneuronal pathway, which specifically developed in higher primates for the control of fractionated digit movements, can be partly compensated for by other descending motor pathways mediated by rubrospinal, reticulospinal, and propriospinal neurons. However, the extent of recovery depends on the location of the damage and which motor systems take over its function. In the latter case, after damage to V1, which is highly developed in primates, either the direct pathway from the lateral geniculate nucleus to extrastriate visual cortices or that from the midbrain superior colliculus-pulvinar-extrastriate/parietal cortices partly takes over the function of V1. However, the state of visual awareness is no longer the same as in the intact state, which might reflect the limited capacity of the compensatory pathways in visual recognition. Such information is valuable for determining the targets of neuromodulatory therapies and setting treatment goals after brain and spinal cord injuries.
Collapse
|
4
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|