1
|
Garcia-Rivas V, Soares AR, Thomas MA, Na JJ, Smith A, Picciotto MR, Mineur YS. Alcohol drinking is attenuated by PDE4 inhibition but partial microglia depletion is not sufficient to block stress-induced escalation of alcohol intake in female mice. Alcohol 2025; 122:31-42. [PMID: 39725336 DOI: 10.1016/j.alcohol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Stress is a major contributing factor to binge drinking and development of alcohol use disorders (AUD), particularly in women. Both stress and chronic ethanol can enhance neuroinflammatory processes, which may dysregulate limbic circuits involved in ethanol reinforcement. Clinical and preclinical studies have identified sex differences in alcohol intake in response to neuroinflammatory triggers. Since both cyclic AMP (cAMP) signaling and microglial activation contribute to neuroinflammation, we explored their contribution to stress-induced ethanol drinking in mice. To this end, we first trained C57BL/6J male and female mice to volitionally drink ethanol through a modified version of the "Drinking-in-the-Dark" paradigm. We then assessed whether exposure to foot shock stress followed by repeated exposure to the previously stress-paired context might alter volitional ethanol drinking. We observed that stress exposure resulted in a delayed increase in ethanol intake, but only in female mice. The anti-inflammatory drug Apremilast, an inhibitor of phosphodiesterase type 4 (PDE4; the primary enzyme for cAMP degradation in the brain), reduced ethanol intake and decreased preference for ethanol regardless of stress exposure in females. In contrast, a partial pharmacological depletion of microglia via PLX3397 treatment did not significantly alter baseline ethanol drinking or stress-induced ethanol drinking in female mice. This study shows that female mice are more susceptible to stress-induced ethanol drinking than males, and that this occurs even after partial microglial depletion. In addition, modulation of cAMP signaling by Apremilast administration reduced ethanol drinking regardless of stress exposure, supporting the idea that it might be useful for treatment of AUD.
Collapse
Affiliation(s)
- Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA; Yale Interdepartmental Neuroscience Program, USA
| | - Merrilee A Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Jessica J Na
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Asia Smith
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA; Department of Biology, Howard University, Washington DC, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA; Yale Interdepartmental Neuroscience Program, USA.
| | - Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
2
|
Unadkat P, Rebeiz T, Ajmal E, De Souza V, Xia A, Jinu J, Powell K, Li C. Neurobiological Mechanisms Underlying Psychological Dysfunction After Brain Injuries. Cells 2025; 14:74. [PMID: 39851502 PMCID: PMC11763422 DOI: 10.3390/cells14020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Despite the presentation of similar psychological symptoms, psychological dysfunction secondary to brain injury exhibits markedly lower treatment efficacy compared to injury-independent psychological dysfunction. This gap remains evident, despite extensive research efforts. This review integrates clinical and preclinical evidence to provide a comprehensive overview of the neurobiological mechanisms underlying neuropsychological disorders, focusing on the role of key brain regions in emotional regulation across various forms of brain injuries. It examines therapeutic interventions and mechanistic targets, with the primary goal of identifying pathways for targeted treatments. The review highlights promising therapeutic avenues for addressing injury-associated psychological dysfunction, emphasizing Nrf2, neuropeptides, and nonpharmacological therapies as multi-mechanistic interventions capable of modulating upstream mediators to address the complex interplay of factors underlying psychological dysfunction in brain injury. Additionally, it identifies sexually dimorphic factors as potential areas for further exploration and advocates for detailed investigations into sex-specific patterns to uncover additional contributors to these disorders. Furthermore, it underscores significant gaps, particularly the inadequate consideration of interactions among causal factors, environmental influences, and individual susceptibilities. By addressing these gaps, this review provides new insights and calls for a paradigm shift toward a more context-specific and integrative approach to developing targeted therapies for psychological dysfunction following brain injuries.
Collapse
Affiliation(s)
- Prashin Unadkat
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Tania Rebeiz
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- SUNY Downstate College of Medicine, Brooklyn, NY 11225, USA
| | - Vincent De Souza
- Department of Neurosurgery, Staten Island University Hospital at Northwell Health, Staten Island, NY 10305, USA
| | - Angela Xia
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Julia Jinu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Shen H, Zhang C, Zhang Q, Lv Q, Liu H, Yuan H, Wang C, Meng F, Guo Y, Pei J, Yu C, Tie J, Chen X, Yu H, Zhang G, Wang X. Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids. J Neuroinflammation 2024; 21:290. [PMID: 39508236 PMCID: PMC11539449 DOI: 10.1186/s12974-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear. METHODS Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining. RESULTS Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs. CONCLUSION SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.
Collapse
Affiliation(s)
- Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, 110001, P. R. China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, P. R. China
| | - Qing Lv
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, P. R. China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110122, P. R. China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
4
|
Saikia BB, Bhowmick S, Malat A, Preetha Rani MR, Thaha A, Abdul-Muneer PM. ICAM-1 Deletion Using CRISPR/Cas9 Protects the Brain from Traumatic Brain Injury-Induced Inflammatory Leukocyte Adhesion and Transmigration Cascades by Attenuating the Paxillin/FAK-Dependent Rho GTPase Pathway. J Neurosci 2024; 44:e1742232024. [PMID: 38326036 PMCID: PMC10941244 DOI: 10.1523/jneurosci.1742-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.
Collapse
Affiliation(s)
- Bibhuti Ballav Saikia
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Saurav Bhowmick
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Anitha Malat
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - M R Preetha Rani
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Almas Thaha
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - P M Abdul-Muneer
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110
| |
Collapse
|
5
|
Radabaugh HL, Ferguson AR, Bramlett HM, Dietrich WD. Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation. Neurotherapeutics 2023; 20:1433-1445. [PMID: 37525025 PMCID: PMC10684440 DOI: 10.1007/s13311-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
The use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the TBI research field. A concerted effort to address this lack of translatability is long overdue. Given the inherent heterogeneity of TBI and the replication crisis that continues to plague biomedical research, this is a complex task that will require a multifaceted approach centered around rigor and reproducibility. Here, we discuss the role of three primary focus areas for better aligning pre-clinical research with clinical TBI management. These focus areas are (1) reporting and standardization of protocols, (2) replication of prior knowledge including the confirmation of expected pharmacodynamics, and (3) the broad application of open science through inter-center collaboration and data sharing. We further discuss current efforts that are establishing the core framework needed for successfully addressing the translatability crisis of TBI.
Collapse
Affiliation(s)
- Hannah L Radabaugh
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Bhowmick S, Rani MRP, Singh S, Abdul-Muneer PM. Discovery of novel microRNAs and their pathogenic responsive target genes in mild traumatic brain injury. Exp Brain Res 2023:10.1007/s00221-023-06672-z. [PMID: 37466694 DOI: 10.1007/s00221-023-06672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. They are profound mediators of molecular and cellular changes in several pathophysiological conditions. Since miRNAs play major roles in regulating gene expression after traumatic brain injury (TBI), their possible role in diagnosis, prognosis, and therapy is not much explored. In this study, we aimed to identify specific miRNAs that are involved in the pathophysiological conditions in the first 24 h after mild TBI (mTBI). The genome-wide expression of miRNAs was evaluated by applying RNA sequence in the injury area of the cerebral cortex 24 after inflicting the injury using a mouse model of mild fluid percussion injury (FPI; 10 psi). Here, we identified different annotated, conserved, and novel miRNAs. A total of 978 miRNAs after 24 h of TBI were identified, and among these, 906 miRNAs were differentially expressed between control and mTBI groups. In this study, 146 miRNAs were identified as novel to mTBI and among them, 21 miRNAs were significant (p < 0.05). Using q-RT-PCR, we validated 10 differentially and significantly expressed novel miRNAs. Further, we filtered the differentially expressed miRNAs that were linked with proinflammatory cytokines, apoptosis, matrix metalloproteinases (MMPs), and tight junction and junctional adhesion molecule genes. Overall, this work shows that mTBI induces widespread changes in the expression of miRNAs that may underlie the progression of the TBI pathophysiology. The detection of several novel TBI-responsive miRNAs and their solid link with pathophysiological genes may help in identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS Injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James St, Edison, NJ, 08820, USA
| | - M R Preetha Rani
- Laboratory of CNS Injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James St, Edison, NJ, 08820, USA
| | - Shubham Singh
- Laboratory of CNS Injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James St, Edison, NJ, 08820, USA
| | - P M Abdul-Muneer
- Laboratory of CNS Injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James St, Edison, NJ, 08820, USA.
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| |
Collapse
|