1
|
Azapagic A, Agarwal J, Gale B, Shea J, Wojtalewicz S, Sant H. A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model. Biomed Microdevices 2024; 26:34. [PMID: 39102047 DOI: 10.1007/s10544-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Critical-sized peripheral nerve injuries pose a significant clinical challenge and lead to functional loss and disability. Current regeneration strategies, including autografts, synthetic nerve conduits, and biologic treatments, encounter challenges such as limited availability, donor site morbidity, suboptimal recovery, potential immune responses, and sustained stability and bioactivity. An obstacle in peripheral nerve regeneration is the immune response that can lead to inflammation and scarring that impede the regenerative process. Addressing both the immunological and regenerative needs is crucial for successful nerve recovery. Here, we introduce a novel biodegradable tacrolimus-eluting nerve guidance conduit engineered from a blend of poly (L-lactide-co-caprolactone) to facilitate peripheral nerve regeneration and report the testing of this conduit in 15-mm critical-sized gaps in the sciatic nerve of rats. The conduit's diffusion holes enable the local release of tacrolimus, a potent immunosuppressant with neuro-regenerative properties, directly into the injury site. A series of in vitro experiments were conducted to assess the ability of the conduit to maintain a controlled tacrolimus release profile that could promote neurite outgrowth. Subsequent in vivo assessments in rat models of sciatic nerve injury revealed significant enhancements in nerve regeneration, as evidenced by improved axonal growth and functional recovery compared to controls using placebo conduits. These findings indicate the synergistic effects of combining a biodegradable conduit with localized, sustained delivery of tacrolimus, suggesting a promising approach for treating peripheral nerve injuries. Further optimization of the design and long-term efficacy studies and clinical trials are needed before the potential for clinical translation in humans can be considered.
Collapse
Affiliation(s)
- Azur Azapagic
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA.
| | - Jayant Agarwal
- Department of Surgery, Division of Plastic Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Bruce Gale
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
- Department of Biomedical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Susan Wojtalewicz
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
| | - Himanshu Sant
- Department of Chemical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Yang J, Zhang S, Li X, Chen Z, Xu J, Chen J, Tan Y, Li G, Yu B, Gu X, Xu L. Convergent and divergent transcriptional reprogramming of motor and sensory neurons underlying response to peripheral nerve injury. J Adv Res 2024:S2090-1232(24)00292-3. [PMID: 39002719 DOI: 10.1016/j.jare.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited. OBJECTIVES This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair. METHODS We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs). RESULTS We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury. CONCLUSIONS This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang 618000, China; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Shuqiang Zhang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Zhifeng Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jie Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jing Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Ya Tan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Bin Yu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaosong Gu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Lian Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China; Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu 226000, China.
| |
Collapse
|
3
|
Bolívar S, Sanz E, Ovelleiro D, Zochodne DW, Udina E. Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury. eLife 2024; 12:RP91316. [PMID: 38742628 PMCID: PMC11093584 DOI: 10.7554/elife.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.
Collapse
Affiliation(s)
- Sara Bolívar
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| | - Elisenda Sanz
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
| | - David Ovelleiro
- Peripheral Nervous System, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Esther Udina
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
4
|
Yu D, Zeng X, Aljuboori ZS, Dennison R, Wu L, Anderson JA, Teng YD. T12-L3 Nerve Transfer-Induced Locomotor Recovery in Rats with Thoracolumbar Contusion: Essential Roles of Sensory Input Rerouting and Central Neuroplasticity. Cells 2023; 12:2804. [PMID: 38132124 PMCID: PMC10741684 DOI: 10.3390/cells12242804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Locomotor recovery after spinal cord injury (SCI) remains an unmet challenge. Nerve transfer (NT), the connection of a functional/expendable peripheral nerve to a paralyzed nerve root, has long been clinically applied, aiming to restore motor control. However, outcomes have been inconsistent, suggesting that NT-induced neurological reinstatement may require activation of mechanisms beyond motor axon reinnervation (our hypothesis). We previously reported that to enhance rat locomotion following T13-L1 hemisection, T12-L3 NT must be performed within timeframes optimal for sensory nerve regrowth. Here, T12-L3 NT was performed for adult female rats with subacute (7-9 days) or chronic (8 weeks) mild (SCImi: 10 g × 12.5 mm) or moderate (SCImo: 10 g × 25 mm) T13-L1 thoracolumbar contusion. For chronic injuries, T11-12 implantation of adult hMSCs (1-week before NT), post-NT intramuscular delivery of FGF2, and environmentally enriched/enlarged (EEE) housing were provided. NT, not control procedures, qualitatively improved locomotion in both SCImi groups and animals with subacute SCImo. However, delayed NT did not produce neurological scale upgrading conversion for SCImo rats. Ablation of the T12 ventral/motor or dorsal/sensory root determined that the T12-L3 sensory input played a key role in hindlimb reanimation. Pharmacological, electrophysiological, and trans-synaptic tracing assays revealed that NT strengthened integrity of the propriospinal network, serotonergic neuromodulation, and the neuromuscular junction. Besides key outcomes of thoracolumbar contusion modeling, the data provides the first evidence that mixed NT-induced locomotor efficacy may rely pivotally on sensory rerouting and pro-repair neuroplasticity to reactivate neurocircuits/central pattern generators. The finding describes a novel neurobiology mechanism underlying NT, which can be targeted for development of innovative neurotization therapies.
Collapse
Affiliation(s)
- Dou Yu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Xiang Zeng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Zaid S. Aljuboori
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Liquan Wu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Jamie A. Anderson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
- Neurotrauma Recovery Research, Spaulding Rehabilitation Hospital Network, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
5
|
He Q, Cheng Z, Zhou Q, Tong F, Li Y, Zhou X, Yu M, Ji Y, Ding F. Sensory and motor fibroblasts have different protein expression patterns and exert different growth promoting effects on sensory and motor neurons. Exp Neurol 2023; 361:114314. [PMID: 36586550 DOI: 10.1016/j.expneurol.2022.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Functional reconstruction after peripheral nerve injury depends on the ability of the regenerated sensory and motor axons to re-innervate the suitable target organs. Therefore, it is essential to explore the cellular mechanisms of peripheral nerve-specific regeneration. In a previous study, we found that sensory and motor fibroblasts can guide Schwann cells to migrate towards the same phenotype. In the present paper, we analyzed the different effects of sensory and motor fibroblasts on sensory or motor neurons. The fibroblasts and neurons co-culture assay showed that compared with motor fibroblasts, sensory fibroblasts promote the neurite outgrowth of sensory neurons on a larger scale, and vice versa. Furthermore, a higher proportion of sensory or motor fibroblasts migrated towards their respective (sensory or motor) neurons. Meanwhile, a comparative proteomic approach was applied to obtain the protein expression profiles of sensory and motor fibroblasts. Among a total of 2597 overlapping proteins identified, we counted 148 differentially expressed items, of those 116 had a significantly higher expression in sensory fibroblasts, and 32 had a significantly greater expression in motor fibroblasts. Functional categorization revealed that differentially expressed proteins were involved in regeneration, axon guidance and cytoskeleton organization, all of which might play a critical role in peripheral nerve-specific regeneration. After nerve crush injury, ITB1 protein expression decreased significantly in motor nerves and increased in sensory nerves. In vitro, ITB1 significantly promoted axonal regeneration of sensory neurons, but had no significant effect on motor neurons. Overall, sensory and motor fibroblasts express different proteins and exert different growth promoting effects on sensory and motor neurons. This comparative proteomic database of sensory and motor fibroblasts could provide future directions for in-depth research on peripheral nerve-specific regeneration. Data are available via ProteomeXchange with identifier PXD034827.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Zhenghang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Yan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|