1
|
Wang H, Wu S, Lu J, Su Y, Wang J, Wang Y, Xu D, Liu Y, Gao J, Bai W, Cui J. Changes in sensory and motor neurons populations following LPC-induced sciatic nerve demyelination in rats: A study using CTB retrograde tracing. Neuroscience 2025; 569:277-287. [PMID: 39929343 DOI: 10.1016/j.neuroscience.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/18/2025]
Abstract
Numerous studies have reported changes in sensory and motor neurons following nerve injury. However, the alterations in the number and subtypes of these neurons after peripheral nerve demyelination remain unclear. This study examined the sciatic nerve's sensory and motor functions and demyelination status in rats at days 0, 7, 14, and 28 post-lysolecithin (LPC) injection. Three rats from each group were injected with cholera toxin subunit B (CTB) distal to the demyelinated region, followed by immunofluorescence analysis of sensory and motor neuron changes. Compared to day 0, days 7 and 14 showed a significant decline in mechanical pain thresholds and sciatic nerve function, with substantial demyelination observed. The number of CTB-labeled large and medium-sized sensory neurons decreased, while small sensory neurons remained unchanged. LPC demyelination reduced calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) positive neurons in the L4-5 dorsal root ganglia, with no changes in neurofilament 200 (NF200) positive neurons. Additionally, alpha motor neurons decreased, but gamma motor neurons were unchanged, with significant microglial activation observed. By day 28, the numbers of medium-sized sensory and alpha motor neurons had nearly returned to baseline. These findings indicate significant changes in sensory and motor neuron populations post-demyelination, potentially contributing to dysfunction in peripheral demyelinating diseases. CTB tracing may effectively evaluate demyelination and remyelination.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University Nanchang, Jiangxi Province, China
| | - Shuang Wu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaying Lu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihan Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junhong Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Li C, Rassekh N, O'Daly A, Kebaisch F, Wolinsky R, Vyas A, Skolasky R, Hoke A, Brushart T. Preferential motor reinnervation is modulated by both repair site and distal nerve environments. Exp Neurol 2025; 385:115066. [PMID: 39579958 PMCID: PMC11783203 DOI: 10.1016/j.expneurol.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
To restore function after nerve injury, axons must regenerate from the injury site to the periphery, then reinnervate appropriate end organs when they arrive. Only 10 % of adults who suffer nerve injury will regain normal function, often because axons regenerate to functionally inappropriate targets (Brushart, 2011). The peripheral destination of these axons is largely determined by the pathways they enter at the site of nerve repair. To improve clinical outcomes, it is thus critical to improve the accuracy of axon pathfinding. In rodents, motor axons regenerating in mixed nerve preferentially reinnervate pathways leading to muscle, a process termed preferential motor reinnervation (PMR). Previous experiments have shown that PMR can be enhanced by predegenerating nerve grafts to enhance growth factor production and remove inhibitory factors (Abdullah et al., 2013). The current experiments explore the relative contributions of motor pathways, sensory pathways, and the repair environment to this enhancement. Sensory and/or motor pathways within rat femoral nerve grafts were predegenerated for 3 weeks to optimize growth factor production (Brushart et al., 2013) or for 12 weeks to deplete it. Optimizing the environment within previously motor Schwann cell tubes promoted PMR, regardless of whether adjacent sensory pathways were optimized or chronically denervated. However, this positive effect was abolished when sensory pathways were undergoing acute Wallerian degeneration immediately after nerve repair. The repair environment thus precluded motor axon pathfinding in spite of an optimized distal motor pathway. When sensory pathways were optimized and motor pathways were chronically denervated, not only was PMR abolished, but motoneurons failed to respond to the greater volume of growth factors in the sensory nerve. Small sensory neurons, however, selectively reinnervated cutaneous nerve under these conditions. These experiments thus strengthen the concept that, in adult rats, sensory and motor pathways have unique identities capable of influencing both sensory and motor axon regeneration. Furthermore, they demonstrate that, in the rat, delaying nerve repair for 3 weeks to enhance growth factor production and clear the products of acute Wallerian degeneration can enhance regeneration specificity without the need for exogenous treatments.
Collapse
Affiliation(s)
- C Li
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America
| | - N Rassekh
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America
| | - A O'Daly
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America
| | - F Kebaisch
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America
| | - R Wolinsky
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America
| | - A Vyas
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America
| | - R Skolasky
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America
| | - A Hoke
- Department of Neurology, Johns Hopkins University, 855 N Wolfe St, Baltimore, MD 21287, United States of America; The Solomon H Snyder Department of Neuroscience, Johns Hopkins University, 725 N Wolfe St, Baltimore, MD 21205, United States of America
| | - T Brushart
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N Caroline St, Baltimore, MD 21287, United States of America; Department of Neurology, Johns Hopkins University, 855 N Wolfe St, Baltimore, MD 21287, United States of America.
| |
Collapse
|
3
|
Trudrung M, Mickelson E, Attaluri P, George RE, Gander B, Hanna A. Femoral to sciatic nerve transfer: A cadaver study. Surg Neurol Int 2025; 16:73. [PMID: 40041072 PMCID: PMC11878700 DOI: 10.25259/sni_60_2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 03/06/2025] Open
Abstract
Background Proximal sciatic nerve injuries are a challenge to treat due to the limited options for donor nerves and the long distance needed for regeneration. Methods In our cadaveric study using five human cadavers, we aimed to evaluate the feasibility of transferring the tibial and common peroneal components of the sciatic nerve to the femoral nerve motor branches of the vastus medialis (VM) and vastus lateralis without the need for interposition nerve graft. The femoral nerve branches of the VM and lateralis were exposed anteriorly. The sciatic nerve was exposed posteriorly and passed through a narrow window within the adductor magnus and medial to the femur. The sciatic nerve was then separated into its tibial and peroneal components, which were then coapted to the VM and lateralis motor branches of the femoral nerve. Results Using the entire tibial and peroneal components of the sciatic nerve, we were able to gain more length and directly coapt the femoral nerve branches without utilizing interposition grafts. The disadvantage of this technique is suturing to a mixed nerve with motor and sensory components, which could compromise functional outcomes. Further studies are needed to determine how the procedure will impact a patient's gait cycle. Conclusion Clinical application is needed to determine preliminary outcomes before widespread utilization of this technique.
Collapse
Affiliation(s)
- Melissa Trudrung
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Ethan Mickelson
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Pradeep Attaluri
- Division of Plastic Surgery, Department of General Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Robert Edward George
- Division of Plastic Surgery, Department of General Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Brian Gander
- Division of Plastic Surgery, Department of General Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| |
Collapse
|
4
|
Topley M, Sparks P, Crotty A, Kawaja M, Hendry JM. The epidermal growth factor receptor inhibitor gefitinib enhances in vitro and in vivo sensory axon regeneration and functional recovery following transection in a mouse median nerve injury model. Muscle Nerve 2025; 71:113-123. [PMID: 39529451 PMCID: PMC11632577 DOI: 10.1002/mus.28291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The epidermal growth factor receptor (EGFR; ErbB1), a membrane bound receptor tyrosine kinase, is hypothesized to have an inhibitory influence on peripheral nerve regeneration. This study examines the impact of EGFR inhibition on nerve regeneration using the commercially available small molecule inhibitor gefitinib. METHOD In vitro assays included neurite outgrowth of cultured dorsal root ganglion (DRG) neurons from adult C57Bl/6 wildtype mice on immobilized chondroitin sulfate proteoglycans (CSPG). Following forelimb median nerve injury, EGFR expression, number of regenerated neurons (using retrograde labeling) and myelination of motor and sensory neurons were compared between mice that received either gefitinib or vehicle. Functional recovery was assessed using grip strength. RESULTS EGFR expression on DRG and spinal motor neurons was confirmed. Gefitinib significantly increased neurite outgrowth in medium sized (30-50 μm) DRG neurons, resulting in longer neurites (183 ± 36 μm) compared with CSPG alone (49 ± 9 μm). After median nerve injury, significantly greater numbers of sensory neurons (638 ± 112 vs. 301 ± 81), but not motor neurons (31 ± 12 vs. 42 ± 13) regenerated in animals treated with gefitinib compared with controls. Regenerated axons in gefitinib treated animals displayed significantly greater diameter and increased g-ratio compared with controls. Grip strength recovered more quickly in animals receiving gefitinib compared with controls (27.6 vs. 19.1 g 18 days post-injury). DISCUSSION This study provides data supporting the role of EGFR as a negative regulator of sensory but not motor neuron regeneration. Further, it demonstrates versatile potential uses of existing pharmaceuticals.
Collapse
Affiliation(s)
- Maxwell Topley
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Payton Sparks
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Marian University College of Osteopathic MedicineIndianapolisIndianaUSA
| | - Anne‐Marie Crotty
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Michael Kawaja
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - J. Michael Hendry
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
- Kingston Health Sciences CenterKingstonOntarioCanada
| |
Collapse
|
5
|
Azapagic A, Agarwal J, Gale B, Shea J, Wojtalewicz S, Sant H. A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model. Biomed Microdevices 2024; 26:34. [PMID: 39102047 DOI: 10.1007/s10544-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Critical-sized peripheral nerve injuries pose a significant clinical challenge and lead to functional loss and disability. Current regeneration strategies, including autografts, synthetic nerve conduits, and biologic treatments, encounter challenges such as limited availability, donor site morbidity, suboptimal recovery, potential immune responses, and sustained stability and bioactivity. An obstacle in peripheral nerve regeneration is the immune response that can lead to inflammation and scarring that impede the regenerative process. Addressing both the immunological and regenerative needs is crucial for successful nerve recovery. Here, we introduce a novel biodegradable tacrolimus-eluting nerve guidance conduit engineered from a blend of poly (L-lactide-co-caprolactone) to facilitate peripheral nerve regeneration and report the testing of this conduit in 15-mm critical-sized gaps in the sciatic nerve of rats. The conduit's diffusion holes enable the local release of tacrolimus, a potent immunosuppressant with neuro-regenerative properties, directly into the injury site. A series of in vitro experiments were conducted to assess the ability of the conduit to maintain a controlled tacrolimus release profile that could promote neurite outgrowth. Subsequent in vivo assessments in rat models of sciatic nerve injury revealed significant enhancements in nerve regeneration, as evidenced by improved axonal growth and functional recovery compared to controls using placebo conduits. These findings indicate the synergistic effects of combining a biodegradable conduit with localized, sustained delivery of tacrolimus, suggesting a promising approach for treating peripheral nerve injuries. Further optimization of the design and long-term efficacy studies and clinical trials are needed before the potential for clinical translation in humans can be considered.
Collapse
Affiliation(s)
- Azur Azapagic
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA.
| | - Jayant Agarwal
- Department of Surgery, Division of Plastic Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Bruce Gale
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
- Department of Biomedical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Susan Wojtalewicz
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
| | - Himanshu Sant
- Department of Chemical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| |
Collapse
|
6
|
Yang J, Zhang S, Li X, Chen Z, Xu J, Chen J, Tan Y, Li G, Yu B, Gu X, Xu L. Convergent and divergent transcriptional reprogramming of motor and sensory neurons underlying response to peripheral nerve injury. J Adv Res 2024:S2090-1232(24)00292-3. [PMID: 39002719 DOI: 10.1016/j.jare.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited. OBJECTIVES This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair. METHODS We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs). RESULTS We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury. CONCLUSIONS This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang 618000, China; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Shuqiang Zhang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Zhifeng Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jie Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jing Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Ya Tan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Bin Yu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaosong Gu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Lian Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China; Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu 226000, China.
| |
Collapse
|
7
|
Bolívar S, Sanz E, Ovelleiro D, Zochodne DW, Udina E. Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury. eLife 2024; 12:RP91316. [PMID: 38742628 PMCID: PMC11093584 DOI: 10.7554/elife.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.
Collapse
Affiliation(s)
- Sara Bolívar
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| | - Elisenda Sanz
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
| | - David Ovelleiro
- Peripheral Nervous System, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Esther Udina
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
8
|
Yu D, Zeng X, Aljuboori ZS, Dennison R, Wu L, Anderson JA, Teng YD. T12-L3 Nerve Transfer-Induced Locomotor Recovery in Rats with Thoracolumbar Contusion: Essential Roles of Sensory Input Rerouting and Central Neuroplasticity. Cells 2023; 12:2804. [PMID: 38132124 PMCID: PMC10741684 DOI: 10.3390/cells12242804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Locomotor recovery after spinal cord injury (SCI) remains an unmet challenge. Nerve transfer (NT), the connection of a functional/expendable peripheral nerve to a paralyzed nerve root, has long been clinically applied, aiming to restore motor control. However, outcomes have been inconsistent, suggesting that NT-induced neurological reinstatement may require activation of mechanisms beyond motor axon reinnervation (our hypothesis). We previously reported that to enhance rat locomotion following T13-L1 hemisection, T12-L3 NT must be performed within timeframes optimal for sensory nerve regrowth. Here, T12-L3 NT was performed for adult female rats with subacute (7-9 days) or chronic (8 weeks) mild (SCImi: 10 g × 12.5 mm) or moderate (SCImo: 10 g × 25 mm) T13-L1 thoracolumbar contusion. For chronic injuries, T11-12 implantation of adult hMSCs (1-week before NT), post-NT intramuscular delivery of FGF2, and environmentally enriched/enlarged (EEE) housing were provided. NT, not control procedures, qualitatively improved locomotion in both SCImi groups and animals with subacute SCImo. However, delayed NT did not produce neurological scale upgrading conversion for SCImo rats. Ablation of the T12 ventral/motor or dorsal/sensory root determined that the T12-L3 sensory input played a key role in hindlimb reanimation. Pharmacological, electrophysiological, and trans-synaptic tracing assays revealed that NT strengthened integrity of the propriospinal network, serotonergic neuromodulation, and the neuromuscular junction. Besides key outcomes of thoracolumbar contusion modeling, the data provides the first evidence that mixed NT-induced locomotor efficacy may rely pivotally on sensory rerouting and pro-repair neuroplasticity to reactivate neurocircuits/central pattern generators. The finding describes a novel neurobiology mechanism underlying NT, which can be targeted for development of innovative neurotization therapies.
Collapse
Affiliation(s)
- Dou Yu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Xiang Zeng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Zaid S. Aljuboori
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Liquan Wu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Jamie A. Anderson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
- Neurotrauma Recovery Research, Spaulding Rehabilitation Hospital Network, Mass General Brigham, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
9
|
He Q, Cheng Z, Zhou Q, Tong F, Li Y, Zhou X, Yu M, Ji Y, Ding F. Sensory and motor fibroblasts have different protein expression patterns and exert different growth promoting effects on sensory and motor neurons. Exp Neurol 2023; 361:114314. [PMID: 36586550 DOI: 10.1016/j.expneurol.2022.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Functional reconstruction after peripheral nerve injury depends on the ability of the regenerated sensory and motor axons to re-innervate the suitable target organs. Therefore, it is essential to explore the cellular mechanisms of peripheral nerve-specific regeneration. In a previous study, we found that sensory and motor fibroblasts can guide Schwann cells to migrate towards the same phenotype. In the present paper, we analyzed the different effects of sensory and motor fibroblasts on sensory or motor neurons. The fibroblasts and neurons co-culture assay showed that compared with motor fibroblasts, sensory fibroblasts promote the neurite outgrowth of sensory neurons on a larger scale, and vice versa. Furthermore, a higher proportion of sensory or motor fibroblasts migrated towards their respective (sensory or motor) neurons. Meanwhile, a comparative proteomic approach was applied to obtain the protein expression profiles of sensory and motor fibroblasts. Among a total of 2597 overlapping proteins identified, we counted 148 differentially expressed items, of those 116 had a significantly higher expression in sensory fibroblasts, and 32 had a significantly greater expression in motor fibroblasts. Functional categorization revealed that differentially expressed proteins were involved in regeneration, axon guidance and cytoskeleton organization, all of which might play a critical role in peripheral nerve-specific regeneration. After nerve crush injury, ITB1 protein expression decreased significantly in motor nerves and increased in sensory nerves. In vitro, ITB1 significantly promoted axonal regeneration of sensory neurons, but had no significant effect on motor neurons. Overall, sensory and motor fibroblasts express different proteins and exert different growth promoting effects on sensory and motor neurons. This comparative proteomic database of sensory and motor fibroblasts could provide future directions for in-depth research on peripheral nerve-specific regeneration. Data are available via ProteomeXchange with identifier PXD034827.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Zhenghang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Yan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|