1
|
Dupont C, Blake B, Voss AA, Rich MM. BK channels promote action potential repolarization in skeletal muscle but contribute little to myotonia. Pflugers Arch 2024; 476:1693-1702. [PMID: 39150500 PMCID: PMC11461784 DOI: 10.1007/s00424-024-03005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Patients with myotonia congenita suffer from slowed relaxation of muscle (myotonia), due to hyperexcitability caused by loss-of-function mutations in the ClC-1 chloride channel. A recent study suggested that block of large-conductance voltage- and Ca2+- activated K+ channels (BK) may be effective as therapy. The mechanism underlying efficacy was suggested to be lessening of the depolarizing effect of build-up of K+ in t-tubules of muscle during repetitive firing. BK channels are widely expressed in the nervous system and have been shown to play a central role in regulation of excitability, but their contribution to muscle excitability has not been determined. We performed intracellular recordings as well as force measurements in both wild type and BK-/- mouse extensor digitorum longus muscles. Action potential width was increased in BK-/- muscle due to slowing of repolarization, consistent with the possibility K+ build-up in t-tubules is lessened by block of BK channels in myotonic muscle. However, there was no difference in the severity of myotonia triggered by block of muscle Cl- channels with 9-anthracenecarboxylic acid (9AC) in wild type and BK-/- muscle fibers. Further study revealed no difference in the interspike membrane potential during repetitive firing suggesting there was no reduction in K+ build-up in t-tubules of BK-/- muscle. Force recordings following block of muscle Cl- channels demonstrated little reduction in myotonia in BK-/- muscle. In contrast, the current standard of care, mexiletine, significantly reduced myotonia. Our data suggest BK channels regulate muscle excitability, but are not an attractive target for therapy of myotonia.
Collapse
Affiliation(s)
- Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Brianna Blake
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
2
|
Myers JH, Denman K, Dupont C, Foy BD, Rich MM. Reduced K + build-up in t-tubules contributes to resistance of the diaphragm to myotonia. J Physiol 2024. [PMID: 39392724 DOI: 10.1113/jp286636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
Patients with myotonia congenita suffer from slowed muscle relaxation caused by hyperexcitability. The diaphragm is only mildly affected in myotonia congenita; discovery of the mechanism underlying its resistance to myotonia could identify novel therapeutic targets. Intracellular recordings from two mouse models of myotonia congenita revealed the diaphragm had less myotonia than either the extensor digitorum longus (EDL) or the soleus muscles. A mechanism contributing to resistance of the diaphragm to myotonia was reduced depolarization of the interspike membrane potential during repetitive firing of action potentials, a process driven by build-up of K+ in small invaginations of muscle membrane known as t-tubules. We explored differences between diaphragm and EDL that might underlie reduction of K+ build-up in diaphragm t-tubules. Smaller size of diaphragm fibres, which promotes diffusion of K+ out of t-tubules, was identified as a contributor. Intracellular recording revealed slower repolarization of action potentials in diaphragm suggesting reduced Kv conductance. Higher resting membrane conductance was identified suggesting increased Kir conductance. Computer simulation found that a reduction of Kv conductance had little effect on K+ build-up whereas increased Kir conductance lessened build-up, although the effect was modest. Our data and computer simulation suggest opening of K+ channels during action potentials has little effect on K+ build-up whereas opening of K+ channels during the interspike interval slightly lessens K+ build-up. We conclude that activation of K+ channels may lessen myotonia by opposing depolarization to action potential threshold without worsening K+ build-up in t-tubules. KEY POINTS: In mouse models of the muscle disease myotonia congenita, the diaphragm has much less myotonia (muscle stiffness) than the extensor digitorum longus or soleus muscles. Identifying why the diaphragm is resistant to myotonia may help in developing novel therapy. We found the reason the diaphragm has less myotonia is that it is less prone to depolarization caused by K+ build-up in t-tubules during repetitive firing of action potentials. Smaller fibre size contributes to resistance to K+ build-up with differences in K+ currents playing little role. Our data suggest drugs that open K+ channels may be effective in treating myotonia as they may lessen excitability without worsening K+ build-up in t-tubules.
Collapse
Affiliation(s)
- Jessica H Myers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kirsten Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Brent D Foy
- Department of Physics, Wright State University, Dayton, Ohio, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
3
|
Gaitán-Peñas H, Pérez-Rius C, Muhaisen A, Castellanos A, Errasti-Murugarren E, Barrallo-Gimeno A, Alcaraz-Pérez F, Estévez R. Characterization of ClC-1 chloride channels in zebrafish: a new model to study myotonia. J Physiol 2024; 602:3975-3994. [PMID: 39031529 DOI: 10.1113/jp286530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024] Open
Abstract
The function of the chloride channel ClC-1 is crucial for the control of muscle excitability. Thus, reduction of ClC-1 functions by CLCN1 mutations leads to myotonia congenita. Many different animal models have contributed to understanding the myotonia pathophysiology. However, these models do not allow in vivo screening of potentially therapeutic drugs, as the zebrafish model does. In this work, we identified and characterized the two zebrafish orthologues (clc-1a and clc-1b) of the ClC-1 channel. Both channels are mostly expressed in the skeletal muscle as revealed by RT-PCR, western blot, and electrophysiological recordings of myotubes, and clc-1a is predominantly expressed in adult stages. Characterization in Xenopus oocytes shows that the zebrafish channels display similar anion selectivity and voltage dependence to their human counterparts. However, they show reduced sensitivity to the inhibitor 9-anthracenecarboxylic acid (9-AC), and acidic pH inverts the voltage dependence of activation. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement, which could be reverted by expression of human ClC-1 but not by some ClC-1 containing myotonia mutations. Treatment of clc-1-depleted zebrafish with mexiletine, a typical drug used in human myotonia, improves the motor behaviour. Our work extends the repertoire of ClC channels to evolutionary structure-function studies and proposes the zebrafish clcn1 crispant model as a simple tool to find novel therapies for myotonia. KEY POINTS: We have identified two orthologues of ClC-1 in zebrafish (clc-1a and clc-1b) which are mostly expressed in skeletal muscle at different developmental stages. Functional characterization of the activity of these channels reveals many similitudes with their mammalian counterparts, although they are less sensitive to 9-AC and acidic pH inverts their voltage dependence of gating. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement which could be reverted by expression of human ClC-1. Myotonia-like symptoms caused by clc-1a/b depletion can be reverted by mexiletine, suggesting that this model could be used to find novel therapies for myotonia.
Collapse
Affiliation(s)
- Héctor Gaitán-Peñas
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Carla Pérez-Rius
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
| | - Ashraf Muhaisen
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
| | - Aida Castellanos
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ekaitz Errasti-Murugarren
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
| | - Alejandro Barrallo-Gimeno
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Department of Surgery, Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Raúl Estévez
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona-IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Cisco LA, Sipple MT, Edwards KM, Thornton CA, Lueck JD. Verapamil mitigates chloride and calcium bi-channelopathy in a myotonic dystrophy mouse model. J Clin Invest 2024; 134:e173576. [PMID: 38165038 PMCID: PMC10760957 DOI: 10.1172/jci173576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) involves misregulated alternative splicing for specific genes. We used exon or nucleotide deletion to mimic altered splicing of genes central to muscle excitation-contraction coupling in mice. Mice with forced skipping of exon 29 in the CaV1.1 calcium channel combined with loss of ClC-1 chloride channel function displayed markedly reduced lifespan, whereas other combinations of splicing mimics did not affect survival. The Ca2+/Cl- bi-channelopathy mice exhibited myotonia, weakness, and impairment of mobility and respiration. Chronic administration of the calcium channel blocker verapamil rescued survival and improved force generation, myotonia, and respiratory function. These results suggest that Ca2+/Cl- bi-channelopathy contributes to muscle impairment in DM1 and is potentially mitigated by common clinically available calcium channel blockers.
Collapse
Affiliation(s)
| | | | | | - Charles A. Thornton
- Department of Neurology
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John D. Lueck
- Department of Pharmacology and Physiology
- Department of Neurology
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|