1
|
Natto MJ, Miyamoto Y, Munday JC, AlSiari TA, Al-Salabi MI, Quashie NB, Eze AA, Eckmann L, De Koning HP. Comprehensive characterization of purine and pyrimidine transport activities in Trichomonas vaginalis and functional cloning of a trichomonad nucleoside transporter. Mol Microbiol 2021; 116:1489-1511. [PMID: 34738285 PMCID: PMC8688338 DOI: 10.1111/mmi.14840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Trichomoniasis is a common and widespread sexually-transmitted infection, caused by the protozoan parasite Trichomonas vaginalis. T. vaginalis lacks the biosynthetic pathways for purines and pyrimidines, making nucleoside metabolism a drug target. Here we report the first comprehensive investigation into purine and pyrimidine uptake by T. vaginalis. Multiple carriers were identified and characterized with regard to substrate selectivity and affinity. For nucleobases, a high-affinity adenine transporter, a possible guanine transporter and a low affinity uracil transporter were found. Nucleoside transporters included two high affinity adenosine/guanosine/uridine/cytidine transporters distinguished by different affinities to inosine, a lower affinity adenosine transporter, and a thymidine transporter. Nine Equilibrative Nucleoside Transporter (ENT) genes were identified in the T. vaginalis genome. All were expressed equally in metronidazole-resistant and -sensitive strains. Only TvagENT2 was significantly upregulated in the presence of extracellular purines; expression was not affected by co-culture with human cervical epithelial cells. All TvagENTs were cloned and separately expressed in Trypanosoma brucei. We identified the main broad specificity nucleoside carrier, with high affinity for uridine and cytidine as well as purine nucleosides including inosine, as TvagENT3. The in-depth characterization of purine and pyrimidine transporters provides a critical foundation for the development of new anti-trichomonal nucleoside analogues.
Collapse
Affiliation(s)
- Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tahani A. AlSiari
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mohammed I. Al-Salabi
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neils B. Quashie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana
| | - Anthonius A. Eze
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Current affiliation: Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Ferla M, Tasca T. The Role of Purinergic Signaling in Trichomonas vaginalis Infection. Curr Top Med Chem 2021; 21:181-192. [PMID: 32888270 DOI: 10.2174/1568026620999200904122212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/25/2020] [Accepted: 08/14/2020] [Indexed: 11/22/2022]
Abstract
Trichomoniasis, one of the most common non-viral sexually transmitted infections worldwide, is caused by the parasite Trichomonas vaginalis. The pathogen colonizes the human urogenital tract, and the infection is associated with complications such as adverse pregnancy outcomes, cervical cancer, and an increase in HIV transmission. The mechanisms of pathogenicity are multifactorial, and controlling immune responses is essential for infection maintenance. Extracellular purine nucleotides are released by cells in physiological and pathological conditions, and they are hydrolyzed by enzymes called ecto-nucleotidases. The cellular effects of nucleotides and nucleosides occur via binding to purinoceptors, or through the uptake by nucleoside transporters. Altogether, enzymes, receptors and transporters constitute the purinergic signaling, a cellular network that regulates several effects in practically all systems including mammals, helminths, protozoa, bacteria, and fungi. In this context, this review updates the data on purinergic signaling involved in T. vaginalis biology and interaction with host cells, focusing on the characterization of ecto-nucleotidases and on purine salvage pathways. The implications of the final products, the nucleosides adenosine and guanosine, for human neutrophil response and vaginal epithelial cell damage reveal the purinergic signaling as a potential new mechanism for alternative drug targets.
Collapse
Affiliation(s)
- Micheli Ferla
- Research Team on Trichomonas, Pharmaceutical Sciences Graduation Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Research Team on Trichomonas, Pharmaceutical Sciences Graduation Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Xie E, Su Y, Deng S, Kontopyrgou M, Zhang D. Significant influence of phosphorus resources on the growth and alkaline phosphatase activities of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115807. [PMID: 33096390 DOI: 10.1016/j.envpol.2020.115807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
It is well-accepted that phosphorus, particularly orthophosphate, is a determinant factor in aquatic eutrophication. However, numerous kinds of phosphorus sources exist in real world scenario, and limited studies have characterized the pairwise relationships among abundant different phosphorus sources and the physiological behaviour of algae. The present study developed a high-throughput assay to investigate the effects of 59 different phosphorus sources (equal initial concentration of total phosphorus) on the growth and alkaline phosphatase (AKP) activities of Microcystis aeruginosa, a model cyanobacteria whose predominance holds sway in lake eutrophication. M. aeruginosa cultivated with nucleoside monophosphates (NMPs) had higher growth, relative AKP activities and residual orthophosphate, which were positively intercorrelated. Oppositely, non-NMPs cultivation of M. aeruginosa led to negative relationships between the relative AKP activities and their growth or residual orthophosphate. These results indicated distinct mechanisms for M. aeruginosa to utilize different phosphorus sources in real-world scenario, and both phosphorus source and content are determinant factors on the growth and physiological behaviour of M. aeruginosa. Given the complicated and vast phosphorus pool in the natural environment, phosphorus resources might significantly alter the abundance and physiological behaviour of M. aeruginosa and other bloom-forming algae, then influence the phytoplanktonic community structure and affect the possibility and intensity of algal bloom. Our work hints the underestimation of the restriction factors in lake eutrophication and provides a new tool to study the driven forces of phytoplanktonic community dynamics as phosphorus from both internal and external sources.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, 350007, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China
| | - Maria Kontopyrgou
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 2YW, United Kingdom
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Menezes CB, Rigo GV, Bridi H, Trentin DDS, Macedo AJ, von Poser GL, Tasca T. The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem Biol Drug Des 2017; 90:811-819. [PMID: 28390095 DOI: 10.1111/cbdd.13002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Trichomonas vaginalis causes trichomoniasis, a neglected sexually transmitted disease. Due to severe health consequences and treatment failure, new therapeutic alternatives are crucial. Phloroglucinols from southern Brazilian Hypericum species demonstrated anti-T. vaginalis and anti-Leishmania amazonensis activities. The modulation of biochemical pathways involved in the control of inflammatory response by ectonucleotidases, NTPDase, and ecto-5'-nucleotidase represents new targets for combating protozoa. This study investigated the activity of phloroglucinol derivatives of Hypericum species from southern Brazil against T. vaginalis as well as its ability on modulating parasite ectonucleotidases and, consequently, immune parameters through ATP and adenosine effects. Phloroglucinol derivatives screening revealed activity for isoaustrobrasilol B (IC50 38 μm) with no hemolytic activity. Although the most active compound induced cytotoxicity against a mammalian cell lineage, the in vivo model evidenced absence of toxicity. Isoaustrobrasilol B significantly inhibited NTPDase and ecto-5'-nucleotidase activities, and the immune modulation attributed to extracellular nucleotide accumulation was evaluated. The production of ROS and IL-6 by T. vaginalis-stimulated neutrophils was not affected by the treatment. Conversely, IL-8 levels were significantly enhanced. The associative mechanism of trophozoites death and ectonucleotidases modulation by isoaustrobrasilol B may increase the susceptibility of T. vaginalis to host innate immune cell like neutrophils consequently, contributing to parasite clearance.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Graziela Vargas Rigo
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Bridi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danielle da Silva Trentin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Menezes CB, Frasson AP, Meirelles LC, Tasca T. Adenosine, but not guanosine, protects vaginal epithelial cells from Trichomonas vaginalis cytotoxicity. Microbes Infect 2016; 19:122-131. [PMID: 27871906 DOI: 10.1016/j.micinf.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis causes the most common non-viral sexually transmitted disease worldwide. The cytoadherence and cytotoxicity upon the vaginal epithelial cells are crucial for the infection. Extracellular nucleotides are released during cell damage and, along with their nucleosides, can activate purinoceptors. The opposing effects of nucleotides versus nucleosides are regulated by ectonucleotidases. Herein we evaluated the hemolysis and cytolysis induced by T. vaginalis, as well as the extracellular nucleotide hydrolysis along with the effects mediated by nucleotides and nucleosides on cytotoxicity. In addition, the gene expression of purinoceptors in host cells was determined. The hemolysis and cytolysis exerted by all T. vaginalis isolates presented positive Pearson correlation. All T. vaginalis isolates were able to hydrolyze nucleotides, showing higher NTPDase than ecto-5'-nucleotidase activity. The most cytotoxic isolate, TV-LACM6, hydrolyzes ATP, GTP with more efficiency than AMP and GMP. The vaginal epithelial cell line (HMVII) expressed the genes for all subtypes of P1, P2X and P2Y receptors. Finally, when nucleotides and nucleosides were tested, the cytotoxic effect elicited by TV-LACM6 was increased with nucleotides. In contrast, the cytotoxicity was reversed by adenosine in presence of EHNA, but not by guanosine, contributing to the understanding of the purinergic signaling role on T. vaginalis cytotoxicity.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Domo Salute Consultoria Regulatória Ltda, Rua Cristóvão Colombo 2948/411, CEP 90560-002, Porto Alegre, RS, Brazil
| | - Lucia Collares Meirelles
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016; 39:234-243. [PMID: 27793265 PMCID: PMC6138788 DOI: 10.1016/j.bj.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Menezes CB, Durgante J, de Oliveira RR, Dos Santos VHJM, Rodrigues LF, Garcia SC, Dos Santos O, Tasca T. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction. Mol Biochem Parasitol 2016; 207:10-8. [PMID: 27150347 DOI: 10.1016/j.molbiopara.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/14/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022]
Abstract
Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final accumulation of the nucleoside. The transcript levels of the five TvNTPDases gene sequences were analyzed by qRT-PCR and the highest gene expressions were found for TvNTPDase 2 and 4. The extracellular guanosine uptake was observed as (13C)GTP nucleotide into parasite DNA and it was lower than that observed for adenosine, labeled as (13C)ATP. These findings indicate the T. vaginalis preference for adenosine uptake and the accumulation of guanosine in the extracellular milieu, corroborating with HPLC data. Our data demonstrate, for the first time, the cascade of guanine nucleotides in T. vaginalis and open possibilities on the study of guanine-related purines other than the classical intracellular activity of G proteins for signal transduction.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Juliano Durgante
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Rafael Rodrigues de Oliveira
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Victor Hugo Jacks Mendes Dos Santos
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Luiz Frederico Rodrigues
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Odelta Dos Santos
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Vieira PDB, Silva NLF, Kist LW, Oliveira GMTD, Bogo MR, Carli GAD, Macedo AJ, Tasca T. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis. Mem Inst Oswaldo Cruz 2015; 110:201-8. [PMID: 25946243 PMCID: PMC4489450 DOI: 10.1590/0074-02760140320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/26/2015] [Indexed: 12/14/2022] Open
Abstract
Extracellular ATP may act as a danger signalling molecule, inducing inflammation and
immune responses in infection sites. The ectonucleotidases NTPDase and
ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these
enzymes have been previously characterised in Trichomonas vaginalis.
Iron plays an important role in the complex trichomonal pathogenesis. Herein, the
effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in
T. vaginalis isolates from female and male patients were
evaluated. Iron from different sources sustained T. vaginalis
growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase
activity in isolates from female patients and conversely reduced the enzyme activity
in isolates from male patients. Iron treatments could not alter the NTPDase
transcript levels in T. vaginalis. Furthermore, our results reveal a
distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male
patients influenced by iron from HB and HM. Our data indicate the participation of
NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection
through ATP degradation and adenosine production influenced by iron.
Collapse
Affiliation(s)
| | | | - Luiza Wilges Kist
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Geraldo Atillio de Carli
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Tiana Tasca
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
9
|
Frasson AP, Dos Santos O, Meirelles LC, Macedo AJ, Tasca T. Five putative nucleoside triphosphate diphosphohydrolase genes are expressed in Trichomonas vaginalis. FEMS Microbiol Lett 2015; 363:fnv221. [PMID: 26590960 DOI: 10.1093/femsle/fnv221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis.
Collapse
Affiliation(s)
- Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Odelta Dos Santos
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Lúcia Collares Meirelles
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Alexandre José Macedo
- Laboratório de Diversidade Microbiana, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Frasson AP, Charão MF, Rosemberg DB, de Souza AP, Garcia SC, Bonorino C, Bogo MR, De Carli GA, Tasca T. Analysis of the NTPDase and ecto-5'-nucleotidase profiles in serum-limited Trichomonas vaginalis. Mem Inst Oswaldo Cruz 2013; 107:170-7. [PMID: 22415254 DOI: 10.1590/s0074-02762012000200004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/09/2011] [Indexed: 02/02/2023] Open
Abstract
Trichomonas vaginalis is a parasite of the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ectonucleoside triphosphate diphosphohydrolase (NTPDase) family members, which hydrolyse extracellular ATP and ADP and ecto-5'-nucleotidase, which hydrolyses AMP, have been characterised in T. vaginalis. For trichomonad culture, the growth medium is supplemented with 10% serum, which is an important source of nutrients, such as adenosine. Here, we investigated the ATP metabolism of T. vaginalis trophozoites from long-term cultures and clinical isolates under limited bovine serum conditions (1% serum). The specific enzymatic activities were expressed as nmol inorganic phosphate (Pi) released/min/mg protein, the gene expression patterns were determined by reverse transcriptase-polymerase chain reaction, the extracellular adenine nucleotide hydrolysis was analysed by high performance liquid chromatography and the cell cycle analysis was assessed by flow cytometry. Serum limitation led to the profound activation of NTPDase and ecto-5'-nucleotidase activities. Furthermore, the levels of NTPDase A and B transcripts increased and extracellular ATP metabolism was activated, which led to enhanced ATP hydrolysis and the formation of ADP and AMP. Moreover, the cell cycle was arrested at the G0/G1 stage, which suggested adenosine uptake. Our data suggest that under conditions of serum limitation, NTPDase and ecto-5'-nucleotidase play a role in providing the adenosine required for T. vaginalis growth and that this process contributes to the establishment of parasitism.
Collapse
Affiliation(s)
- Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Haskó G, Pacher P. Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 2012; 32:865-9. [PMID: 22423038 PMCID: PMC3387535 DOI: 10.1161/atvbaha.111.226852] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/20/2012] [Indexed: 01/16/2023]
Abstract
Following its release into the extracellular space in response to metabolic disturbances, the endogenous nucleoside adenosine exerts a range of immunomodulatory effects and cells of the mononuclear phagocyte system are among its major targets. Adenosine governs mononuclear phagocyte functions via 4 G-protein-coupled cell membrane receptors, which are denoted A(1), A(2A), A(2B), and A(3) receptors. Adenosine promotes osteoclast differentiation via A(1) receptors and alters monocyte to dendritic cell differentiation through A(2B) receptors. Adenosine downregulates classical macrophage activation mainly through A(2A) receptors. In contrast A(2B) receptor activation upregulates alternative macrophage activation. Adenosine promotes angiogenesis, which is mediated by inducing the production of vascular endothelial growth factor by mononuclear phagocytes through A(2A), A(2B), and A(3) receptors. By regulating mononuclear phagocyte function adenosine dictates the course of inflammatory and vascular diseases and cancer.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, 07103, USA.
| | | |
Collapse
|
12
|
Frasson AP, De Carli GA, Bonan CD, Tasca T. Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis. Purinergic Signal 2012; 8:1-9. [PMID: 21833696 PMCID: PMC3286535 DOI: 10.1007/s11302-011-9254-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/26/2011] [Indexed: 12/16/2022] Open
Abstract
Trichomonas vaginalis is a parasite from the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. The neutrophil infiltration has been considered to be primarily responsible for cytological changes observed at infection site, and the chemoattractants can play an important role in this leukocytic recruitment. Nitric oxide (NO) is one of the most widespread mediator compounds, and it is implicated in modulation of immunological mechanisms. Extracellular nucleotides and nucleosides are signaling molecules involved in several processes, including immune responses and control of leukocyte trafficking. Ectonucleoside triphosphate diphosphohydrolase members, ecto-5'-nucleotidase, and adenosine deaminase (ectoADA) have been characterized in T. vaginalis. Herein, we investigated the effects of purinergic system on NO production by neutrophils stimulated with T. vaginalis. The trophozoites were able to induce a high NO synthesis by neutrophils through iNOS pathway. The extracellular nucleotides ATP, ADP, and ATPγS (a non-hydrolyzable ATP analog) showed no significant change in NO secretion. In contrast, adenosine and its degradation product, inosine, promoted a low production of the compound. The immunosuppressive effect of adenosine upon NO release by neutrophils occurred due to adenosine A(2A) receptor activation. The ecto-5'-nucleotidase activity displayed by T. vaginalis was shown to be important in adenosine generation, indicating the efficiency of purinergic cascade. Our data suggest the influence of purinergic signaling, specifically adenosinergic system, on NO production by neutrophils in T. vaginalis infection, contributing to the immunological aspects of disease.
Collapse
Affiliation(s)
- Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS Brazil
| | - Geraldo Attilio De Carli
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, 90610-000 Porto Alegre, RS Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS Brazil
| |
Collapse
|
13
|
Leishmania amazonensis: characterization of an ecto-3'-nucleotidase activity and its possible role in virulence. Exp Parasitol 2011; 129:277-83. [PMID: 21827749 DOI: 10.1016/j.exppara.2011.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 11/22/2022]
Abstract
Ecto-3'-nucleotidase/nuclease (3'NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3'mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3'-nucleotidase activity (La3'-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3'-nucleotidase inhibitor and approach the possible involvement of ecto-3'-nucleotidase in cellular adhesion. La3'-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3'-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu(2+) ions. Interestingly, ecto-3'-nucleotidase activity is 60-fold higher than that of ecto-5'-nucleotidase in L. amazonensis. Additionally, ecto-3'-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage-parasite attachment/invasion was increased by 400% in the presence of adenosine 3'-monophosphate (3'AMP); however, this effect was reverted by TTM treatment. We believe that La3'-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.
Collapse
|
14
|
Weizenmann M, Frasson AP, de Barros MP, Vieira PDB, Rosemberg DB, De Carli GA, Bogo MR, Bonan CD, Tasca T. Kinetic characterization and gene expression of adenosine deaminase in intact trophozoites of Trichomonas vaginalis. FEMS Microbiol Lett 2011; 319:115-24. [PMID: 21477257 DOI: 10.1111/j.1574-6968.2011.02283.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trichomonas vaginalis is a parasite that resides in the human urogenital tract and causes trichomonosis, the most prevalent nonviral sexually transmitted disease. Nucleoside triphosphate diphosphohydrolase (NTPDase), which hydrolyzes extracellular di- and triphosphate nucleotides, and ecto-5'-nucleotidase, which hydrolyzes AMP, have been characterized in T. vaginalis. The aim of this study was to characterize the adenosine deaminase (ADA) activity in intact trophozoites of T. vaginalis. A strong inhibition in adenosine deamination was observed in the presence of calcium and magnesium, which was prevented by EDTA. The apparent K(M) value for adenosine was 1.13 ± 0.07mM. The calculated V(max) was 2.61 ± 0.054 nmol NH(3) min(-1) mg(-1) protein. Adenosine deamination was inhibited in the presence of erythro-9-(2-hydroxy-3-nonyl)adenine. Semi-quantitative reverse transcriptase-PCR experiments were performed and both ADA-related genes ada(125) and ada(231) mRNA were expressed, although ada(231) in higher quantity when compared with the ada(125) : α-tubulin ratio. Furthermore, a phylogenetic analysis showed that the T. vaginalis sequences formed a clade with Entamoeba histolytica and Dictyostelium discoideum sequences, and it strongly suggests homologous functions in the T. vaginalis genome. The presence of ADA activity in T. vaginalis may be important to modulate the adenosine/inosine levels during infection and, consequently, to maintain the anti-inflammatory properties through different nucleoside-signalling mechanisms.
Collapse
Affiliation(s)
- Marina Weizenmann
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Characterization of an ecto-5'-nucleotidase activity present on the cell surface of Tritrichomonas foetus. Vet Parasitol 2011; 179:50-6. [PMID: 21367528 DOI: 10.1016/j.vetpar.2011.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/24/2011] [Accepted: 01/30/2011] [Indexed: 12/20/2022]
Abstract
Tritrichomonas foetus is the causative agent of sexually transmitted trichomoniasis in cattle. In females, the infection can be associated with infertility, vaginitis, endometritis, abortion or pyometra, leading to significant economic losses in cattle raising. T. foetus is devoid of the ability to synthesize purine nucleotides de novo, depending instead on salvaging purines from the host environment. Ecto-5'-nucleotidase catalyzes the final step of extracellular nucleotide degradation, the hydrolysis of nucleoside 5'-monophosphates to the corresponding nucleosides and Pi. In this work we show that living, intact cells of T. foetus were able to hydrolyze 5'AMP at a rate of 12.57 ± 1.23 nmol Pi × h(-1) × 10(-7) cells at pH 7.2 and the 5'AMP hydrolysis is due to a plasma membrane-bound ecto-enzyme activity. The apparent K(m) for 5'AMP was 0.49 ± 0.06 mM. In addition to 5'AMP, the enzyme hydrolyzed all substrate monophosphates tested except 3'AMP. No divalent metals or metal chelators were able to modulate enzyme activity. Phosphatase inhibitors did not have an effect on ecto-5'-nucleotidase activity while ammonium molybdate did inhibit the activity in a dose dependent manner. The presence of adenosine in the culture medium negatively modulated the enzyme. These results indicate the existence of an ecto-5'-nucleotidase that may play a role in the salvage of purines.
Collapse
|
16
|
Vieira DP, Paletta-Silva R, Saraiva EM, Lopes AH, Meyer-Fernandes JR. Leishmania chagasi: An ecto-3′-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite–macrophage interaction. Exp Parasitol 2011; 127:702-7. [DOI: 10.1016/j.exppara.2010.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/03/2010] [Accepted: 11/10/2010] [Indexed: 01/22/2023]
|
17
|
Russo-Abrahão T, Cosentino-Gomes D, Gomes MT, Alviano DS, Alviano CS, Lopes AH, Meyer-Fernandes JR. Biochemical properties of Candida parapsilosis ecto-5'-nucleotidase and the possible role of adenosine in macrophage interaction. FEMS Microbiol Lett 2011; 317:34-42. [PMID: 21241359 DOI: 10.1111/j.1574-6968.2011.02216.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida parapsilosis is considered to be an emerging fungal pathogen because it is associated with an increasing range of infections. In this work, we biochemically characterized ecto-5'-nucleotidase activity on the surface of living, intact C. parapsilosis cells. At a pH of 4.5, intact cells were able to hydrolyze 5'-AMP at a rate of 52.44 ± 7.01 nmol Pi h(-1) 10(-7) cells. 5'-AMP, 5'-IMP and 5'-UMP were hydrolyzed at similar rates, whereas 5'-GMP and 5'-CMP hydrolyzed at lower rates. Enzyme activity was increased by about 42% with addition of Mg(2+) or Ca(2+), and the optimum pH was in the acidic range. An inhibitor of phosphatase activities, sodium orthovanadate, showed no effect on AMP hydrolysis; however, as expected, ammonium molybdate, a classical nucleotidase inhibitor, inhibited the activity in a dose-dependent manner. The results indicated that the existence of an ecto-5'-nucleotidase could play a role in the control of extracellular nucleotide concentrations.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Russo-Abrahão T, Cosentino-Gomes D, Daflon-Yunes N, Meyer-Fernandes JR. Giardia duodenalis: biochemical characterization of an ecto-5'-nucleotidase activity. Exp Parasitol 2010; 127:66-71. [PMID: 20599434 DOI: 10.1016/j.exppara.2010.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 12/01/2022]
Abstract
In this work, we biochemically characterized the ecto-5'-nucleotidase activity present on the surface of the living trophozoites of Giardia duodenalis. Two sequences of the 5'-nucleotidase family protein were identified in the Giardia genome. Anti-mouse CD73 showed a high reaction with the cell surface of parasites. At pH 7.2, intact cells were able to hydrolyze 5'-AMP at a rate of 10.66 ± 0.92 nmol Pi/h/10(7) cells. AMP is the best substrate for this enzyme, and the optimum pH lies in the acidic range. No divalent cations had an effect on the ecto-5'-nucleotidase activity, and the same was seen for NaF, an acid phosphatase inhibitor. Ammonium molybdate, a potent inhibitor of nucleotidases, inhibited the enzyme activity in a dose-dependent manner. The presence of adenosine in the culture medium negatively modulated the enzyme. The results indicate the existence of an ecto-5'-nucleotidase that could play a role in the salvage of purines.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
19
|
Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JAS, Tasca T. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5'-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int 2010; 59:226-31. [PMID: 20176129 DOI: 10.1016/j.parint.2010.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 12/19/2022]
Abstract
Drug discovery from plants plays an important role in the pharmaceutical therapy field and the alkaloids lycorine and candimine are candidates for this purpose. Trichomonas vaginalis is a parasite that infects the human urogenital tract and causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ecto-nucleotidases including nucleoside triphosphate diphosphohydrolase (NTPDase) members, which hydrolyses extracellular ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and ecto-5'-nucleotidase, which hydrolyses AMP (adenosine monophosphate), have been characterized in T. vaginalis. Because purine nucleotides are released from cells under physiological and stress conditions, the goal of this study was to evaluate the effect of lycorine and candimine on T. vaginalis NTPDase and ecto-5'-nculeotidase activities. The alkaloids (50 to 250microM) were tested against both long-term-grown and clinical isolates. Specific enzymatic activities were expressed as nmolPi released/min/mg protein. The effect of both alkaloids at NTPDase A and B expression levels was investigated. When the alkaloids were added directly to the reaction mixture, no effect on ATP, ADP or AMP hydrolysis was observed. NTPDase and ecto-5'-nucleotidase activities were strongly inhibited by candimine and lycorine on 24h-treated parasites. This effect was abolished when 24-treated parasites were innoculated in a culture medium without alkaloid. Transcript levels of NTPDase A or B were not altered by the alkaloids. Considering the cytotoxic and proinflammatory roles of ATP besides the anti-inflammatory effects of adenosine, the regulation of extracellular nucleotide levels could be relevant in increasing susceptibility of T. vaginalis to host immune response in the presence of lycorine and candimine.
Collapse
Affiliation(s)
- Raquel B Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Rückert C, Stuepp CDS, Gottardi B, Rosa J, Cisilotto J, Borges FP, Bogo MR, Tasca T, De Carli GA, Bonan CD. Steroid hormones alter AMP hydrolysis in intact trophozoites of Trichomonas vaginalis. Parasitol Res 2009; 105:1701-6. [PMID: 19756747 DOI: 10.1007/s00436-009-1618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Trichomonas vaginalis infection may be influenced by the vaginal concentrations of estrogens. We have investigated the effects of 17beta-estradiol and dehydroepiandrosterone sulfate (DHEAS) on the ecto-5'-nucleotidase activity in fresh clinical (VP60) and in long-term-grown (30236 ATCC) isolates of T. vaginalis. In vitro exposure to DHEAS and 17beta-estradiol did not induce any changes in adenosine monophosphate (AMP) hydrolysis in these isolates. The treatment of parasites in the presence of DHEAS (0.01-1.0 microM) for 2 h inhibited AMP hydrolysis in VP60 isolate, whereas there were no significant changes in nucleotide hydrolysis in the presence of 17beta-estradiol. DHEAS and 17beta-estradiol (0.01-1.0 microM) for 2 h inhibited AMP hydrolysis in 30236 isolate. The 12 treatment with 0.1 microM DHEAS inhibited AMP hydrolysis, whereas 17beta-estradiol did not alter the nucleotide hydrolysis in VP60 isolate. Our findings have shown that the complex effect of steroid hormones and their receptors on T. vaginalis may promote changes in ecto-5'-nucleotidase activity during exposure to these hormones.
Collapse
Affiliation(s)
- Caroline Rückert
- Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 90619-900, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
22
|
Borges FP, de Brum Vieira P, Wiltuschnig RCM, Tasca T, De Carli GA, Bonan CD. Characterization of nucleoside triphosphate diphosphohydrolase activity in Trichomonas gallinae and the influence of penicillin and streptomycin in extracellular nucleotide hydrolysis. FEMS Microbiol Lett 2008; 283:189-95. [PMID: 18422631 DOI: 10.1111/j.1574-6968.2008.01172.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.
Collapse
Affiliation(s)
- Fernanda Pires Borges
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Influence of dTMP on the phenotypic appearance and intracellular persistence of Staphylococcus aureus. Infect Immun 2007; 76:1333-9. [PMID: 18160477 DOI: 10.1128/iai.01075-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thymidine-dependent small-colony variants (SCVs) of Staphylococcus aureus are frequently associated with persistent and recurrent infections in cystic fibrosis patients. The phenotypic appearance of S. aureus SCVs or normal-colony variants (NCVs) is postulated to be affected by the intracellular amount of dTMP. This hypothesis was proven by metabolic pathway assays revealing altered intracellular dTMP concentrations, followed by investigation of the associated phenotype. Inhibition of the staphylococcal thymidylate synthase, which generated intracellular dTMP from dUMP, using 5-fluorouracil and co-trimoxazole resulted in an SCV phenotype. Inhibition of a nucleoside transporter, which provided the bacterial cell with extracellular thymidine, caused growth inhibition of SCVs. In turn, reversion of SCVs to NCVs was achieved by supplying extracellular dTMP. High-performance liquid chromatography additionally confirmed the intracellular lack of dTMP in SCVs, in contrast to NCVs. Moreover, the dTMP concentration is postulated to influence the intracellular persistence of S. aureus. Cell culture experiments with cystic fibrosis cells revealed that clinical and co-trimoxazole-induced SCVs with a diminished amount of dTMP showed significantly better intracellular persistence than NCVs. In conclusion, these results show that the dTMP concentration plays a key role in both the phenotypic appearance and the intracellular persistence of S. aureus.
Collapse
|
24
|
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2007; 106:3338-63. [PMID: 16895331 DOI: 10.1021/cr050318f] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasa Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Sopina VA. Phosphatase activity in Amoeba proteus at pH 9.0. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Borges FP, Gottardi B, Stuepp C, Larré AB, Tasca T, De Carli GA, Bonan CD. Characterization of an ecto-5'-nucleotidase (EC 3.1.3.5) activity in intact trophozoites of Trichomonas gallinae. Vet Parasitol 2006; 143:106-11. [PMID: 16962709 DOI: 10.1016/j.vetpar.2006.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/19/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
This study describes the enzymatic properties of an ecto-5'-nucleotidase in Trichomonas gallinae. The enzyme hydrolyzes nucleoside monophosphates at pH 7.2 and is activated by divalent cations, such as magnesium. Ecto-5'-nucleotidase activity was insensitive to levamisole, tetramisole (alkaline phosphatase inhibitors), and AMPCP (adenosine 5'-[alpha,beta-methylene]diphosphate), an ecto-5'-nucleotidase inhibitor, whereas 0.1mM ammonium molybdate (considered a potent inhibitor of 5'-nucleotidase activity) completely inhibited the enzyme activity. The apparent K(M) (Michaelis constant) and Vmax (maximum velocity) values for Mg2+-AMP were 466+/-57 microM and 3.7+/-0.59 nmolPi/min/10(6) trichomonads, respectively. Considering that trichomonads lack the ability to synthesize purines and pyrimidines de novo, the presence of an ecto-5'-nucleotidase in intact trophozoites of T. gallinae could be important in regulating the extracellular nucleotide levels and generating adenosine, essential for the survival strategies of the parasite.
Collapse
Affiliation(s)
- Fernanda Pires Borges
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Tasca T, Bonan CD, De Carli GA, Sarkis JJF, Alderete JF. Heterogeneity in extracellular nucleotide hydrolysis among clinical isolates of Trichomonas vaginalis. Parasitology 2005; 131:71-8. [PMID: 16038398 PMCID: PMC2562646 DOI: 10.1017/s0031182005007377] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trichomonas vaginalis is a parasitic protozoan that causes trichomonosis, a sexually-transmitted disease, with serious sequelae to women and men. As the host-parasite relationship is complex, it is important to investigate biochemical aspects of the parasite that contribute to our understanding of trichomonal biology and pathogenesis. Nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1), which hydrolyses extracellular ATP and ADP, and ecto-5'-nucleotidase, which hyrolyses AMP, have been characterized in laboratory isolates of T. vaginalis. Here we show that the extracellular ATP: ADP hydrolysis ratio varies among fresh clinical isolates, which presented higher ATPase and ADPase activities than long-term-grown isolates. Growth of parasites in iron-replete and iron-depleted medium resulted in different, albeit minor, patterns in extracellular ATP and ADP hydrolysis among isolates. Importantly, some isolates had low or absent ecto-5'-nucleotidase activity, regardless of environmental conditions tested. For isolates with ecto-5'-nucleotidase activity, high- and low-iron trichomonads had increased and decreased levels of activity, respectively, compared to organisms grown in normal TYM-serum medium. This suggests a regulation in expression of either the enzyme amounts and/or activity under the control of iron. Finally, we found no correlation between the presence or absence of dsRNA virus infection among trichomonad isolates and NTPDase and ecto-5'-nucleotidase activities.
Collapse
Affiliation(s)
- T Tasca
- Department of Microbiology, MC7758, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
28
|
Tasca T, Bonan CD, De Carli GA, Sarkis JJF. Trichomonas vaginalis: cytochemical localization of a NTPDase1 and an ecto-5'-nucleotidase and effects of adenine nucleotides on cellular viability. Parasitol Res 2004; 93:300-3. [PMID: 15175877 DOI: 10.1007/s00436-004-1126-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 04/07/2004] [Indexed: 11/29/2022]
Abstract
Nucleoside triphosphate diphosphohydrolase 1 (NTPDase1), which hydrolyzes extracellular ATP and ADP, and ecto-5'-nucleotidase, which hydrolyzes AMP, are characterized for Trichomonas vaginalis. Ultrastructural cytochemical microscopy showed NTPDase1 and ecto-5'-nucleotidase activities on the surface of the parasites. High levels of extracellular adenine nucleotides and adenosine did not exert cytolytic effects in intact cells of T. vaginalis. Our results suggest that these enzymes are relevant for the survival of the parasite during exposure to extracellular nucleotides. Since the ecto-localization of these enzymes is essential for the maintenance of adenosine extracellular levels, this nucleoside could be important for the purine salvage pathway in the parasite.
Collapse
Affiliation(s)
- Tiana Tasca
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, Brazil
| | | | | | | |
Collapse
|