1
|
Effect of Entamoeba histolytica infection on gut microbial diversity and composition in diarrheal patients from New Delhi. Parasitol Res 2023; 122:285-298. [PMID: 36399171 DOI: 10.1007/s00436-022-07728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
During amoebiasis, colonization of the gut by Entamoeba histolytica can lead to alterations of the host microbiota. In this study, we have compared the gut microbiota of patients of amoebiasis with healthy controls using 16S rRNA gene variable regions, (V1-V3) and (V3-V5), of the bacterial genome. From this 16S rRNA gene amplicon data, one paired-end and two single-end datasets were selected and compared by the number of OTUs obtained, sequence count, and diversity analysis. Our results showed that the V1-V3-paired-end dataset gave the maximum number of OTUs in comparison to the two single-end datasets studied. The amoebiasis samples showed a significant drop in richness in the alpha diversity measurements and lower intra group similarity compared to the healthy controls. Bacteria of genus Prevotella, Sutterella, and Collinsella were more abundant in healthy controls whereas Escherichia, Klebsiella, and Ruminococcus were more abundant in the E. histolytica-positive patients. All the healthy controls harbored bacteria belonging to Faecalibacterium, Prevotella, Ruminococcus, Subdoligranulum, and Escherichia genera while all the E. histolytica-positive patient samples contained genus Enterobacter. The compositional changes in the gut microbiome observed in our study indicated a higher prevalence of pathogenic bacteria along with a depletion of beneficial bacteria in E. histolytica-infected individuals when compared with healthy controls. These results underline the interplay between E. histolytica and the human gut microbiome, giving important inputs for future studies and treatments.
Collapse
|
2
|
Restrepo CM, Llanes A, Lleonart R. Use of AFLP for the study of eukaryotic pathogens affecting humans. INFECTION GENETICS AND EVOLUTION 2017; 63:360-369. [PMID: 28935612 DOI: 10.1016/j.meegid.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/29/2022]
Abstract
Amplified fragment length polymorphism (AFLP) is a genotyping technique based on PCR amplification of specific restriction fragments from a particular genome. The methodology has been extensively used in plant biology to solve a variety of scientific questions, including taxonomy, molecular epidemiology, systematics, population genetics, among many others. The AFLP share advantages and disadvantages with other types of molecular markers, being particularly useful in organisms with no previous DNA sequence knowledge. In eukaryotic pathogens, the technique has not been extensively used, although it has the potential to solve many important issues as it allows the simultaneous examination of hundreds or even thousands of polymorphic sites in the genome of the organism. Here we describe the main applications published on the use of AFLP in eukaryotic pathogens, with emphasis in species of the groups fungi, protozoa and helminths, and discuss the role of this methodology in the context of new techniques derived from the advances of the next generation sequencing.
Collapse
Affiliation(s)
- Carlos M Restrepo
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India..
| | - Alejandro Llanes
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama.; Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Ricardo Lleonart
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 219, Ciudad del Saber, Apartado 0843-01103, Ciudad de Panamá, Panama..
| |
Collapse
|
3
|
Iyer LR, Banyal N, Naik S, Paul J. Antioxidant enzyme profile of two clinical isolates of Entamoeba histolytica varying in sensitivity to antiamoebic drugs. World J Clin Infect Dis 2017; 7:21-31. [DOI: 10.5495/wjcid.v7.i2.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/12/2016] [Accepted: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the sensitivity and antioxidant enzyme response in two clinical isolates of Entamoeba histolytica (E. histolytica) during treatment with antiamoebic drugs, auranofin and metronidazole.
METHODS E. histolytica were isolated from stool samples and maintained in Robinson’s biphasic culture medium. Clinial isolates were maintained in xenic culture medium, and harvested for determination of minimum inhibitory concentrations to the two antiamoebic drugs, Metronidazole and Auranofin using microtiter plate tests. The percent survival of the two isolates were determined using the trypan blue cell count. Isolate 980 was treated with 70 μmol/L and 2 μmol/L while isolate 989 was treated with 20 μmol/L and 0.5 μmol/L of metronidazole and auranofin respectively for 24 h. Fifty thousand cells of each isolate were harvested after 24 h of treatment for analysis of the mRNA expressions of the antioxidant enzymes, thioredoxin reductase, peroxiredoxin and FeSOD using the specific primers. Cell lysate was used for determination of enzyme activity of thioredoxin reductase by measuring DTNB reduction spectrophotometrically at 412 nm.
RESULTS Minimum inhibitory concentration of the clinical isolates 980 and 989 for auranofin was 3 μmol/L and 1 μmol/L respectively while that for metronidazole was 80 μmol/L and 30 μmol/L respectively. Thioredoxin reductase, peroxiredoxin and FeSOD expression levels were significantly reduced in the isolate 980 when treated with Auranofin. Metronidazole treatment showed a down regulation of thioredoxin reductase. Though not significant both at the mRNA and the enzyme activity levels. Peroxiredoxin and FeSOD however remained unchanged. Auranofin treatment of isolate 989, showed an upregulation in expression of thioredoxin reductase while Peroxiredoxin and FeSOD did not show any change in expression. Upon treatment with metronidazole, isolate 989 showed an increase in thioredoxin reductase expression. Peroxiredoxin and FeSOD expressions however remain unchanged both at mRNA and enzyme activity level.
CONCLUSION Clinical isolates from New Delhi NCR region show different sensitivities to antiamoebic drugs. Auranofin is effective against isolate showing higher tolerance to metronidazole as shown by its inhibition in thioredoxin reductase activity.
Collapse
|
4
|
SINE polymorphism reveals distinct strains of Entamoeba histolytica from North India. Exp Parasitol 2017; 175:28-35. [DOI: 10.1016/j.exppara.2017.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 11/17/2022]
|
5
|
Burden of major diarrheagenic protozoan parasitic co-infection among amoebic dysentery cases from North East India: a case report. Parasitology 2015; 142:1318-25. [PMID: 26099490 DOI: 10.1017/s0031182015000669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intestinal diarrheagenic polyparasitic infections are among the major public health concerns in developing countries. Here we examined stool specimens by microscopy, DNA dot blot and polymerase chain reaction (PCR) to evaluate the co-infection of four principal protozoans among amoebic dysentery cases from Northeast Indian population. The multiplex PCR confirmed Entamoeba histolytica (8.1%), Entamoeba dispar (4.8%) and mixed infection of both the parasites (3.4%) in 68 of 356 stool specimens that were positive in microscopy and/or HMe probe based DNA dot blot screening. The prevailing parasite that co-exists with E. histolytica was Giardia duodenalis (34.1%), followed by Enterocytozoon bieneusi (22.0%), Cryptosporidium parvum (14.6%) and Cyclospora cayetanensis (7.3%, P = 0.017). Symptomatic participants (odds ratio (OR) = 4.07; 95% confidence interval (CI) = 1.06, 15.68; P = 0.041), monsoon season (OR = 7.47; 95% CI = 1.40, 39.84; P = 0.046) and participants with family history of parasitic infection (OR = 4.50; 95% CI = 1.16, 17.51; P = 0.030) have significant association with overall co-infection rate. According to molecular consensus, comprehensive microscopy yielded 3.4% (12/356) false-negative and 7.6% (27/356) false-positive outcome, suggesting an improved broad-spectrum PCR-based diagnostic is required to scale down the poor sensitivity and specificity as well as implementation of integrated control strategy.
Collapse
|
6
|
Nath J, Ghosh SK, Singha B, Paul J. Molecular Epidemiology of Amoebiasis: A Cross-Sectional Study among North East Indian Population. PLoS Negl Trop Dis 2015; 9:e0004225. [PMID: 26633890 PMCID: PMC4669114 DOI: 10.1371/journal.pntd.0004225] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/21/2015] [Indexed: 12/30/2022] Open
Abstract
Background Epidemiological studies carried out using culture or microscopy in most of the amoebiasis endemic developing countries, yielded confusing results since none of these could differentiate the pathogenic Entamoeba histolytica from the non-pathogenic Entamoeba dispar and Entamoeba moshkovskii. The Northeastern part of India is a hot spot of infection since the climatic conditions are most conducive for the infection and so far no systemic study has been carried out in this region. Methodology/Principal Findings Following a cross-sectional study designed during the period 2011–2014, a total of 1260 fecal samples collected from the Northeast Indian population were subjected to microscopy, fecal culture and a sensitive and specific DNA dot blot screening assay developed in our laboratory targeting the Entamoeba spp. Further species discrimination using PCR assay performed in microscopy, culture and DNA dot blot screening positive samples showed E. histolytica an overall prevalence rate of 11.1%, 8.0% and 13.7% respectively. In addition, infection rates of nonpathogenic E. dispar and E. moshkovskii were 11.8% (95% CI = 10.2, 13.8) and 7.8% (95% CI = 6.4, 9.4) respectively. The spatial distributions of infection were 18.2% (107/588) of Assam, 11.7% (23/197) of Manipur, 10.2% (21/207) of Meghalaya, and 8.2% (22/268) of Tripura states. Association study of the disease with demographic features suggested poor living condition (OR = 3.21; 95% CI = 1.83, 5.63), previous history of infection in family member (OR = 3.18; 95% CI = 2.09, 4.82) and unhygienic toilet facility (OR = 1.79; 95% CI = 1.28, 2.49) as significant risk factors for amoebiasis. Children in age group <15 yr, participants having lower levels of education, and daily laborers exhibited a higher infection rate. Conclusions/Significance Despite the importance of molecular diagnosis of amoebiasis, molecular epidemiological data based on a large sample size from endemic countries are rarely reported in the literature. Improved and faster method of diagnosis employed here to dissect out the pathogenic from the nonpathogenic species would help the clinicians to prescribe the appropriate anti-amoebic drug. Most epidemiologic studies in developing countries carried out for amoebiasis is either based on microscopy alone or culture/ microscopy used as a screening tool, have poor sensitivity and specificity and thus fails to figure out its true magnitude. The purpose of this study was to assess the true prevalence of amoebiasis in selected North Eastern states of India using DNA based screening technique followed by PCR assay for species discrimination. In addition, PCR assay confirmed that only 55.8% of the samples, resembling E. histolytica by microscopy, were true E. histolytica, implying that remaining 44.2% of so-called infections were due to other nonpathogenic Entamoeba spp. We found a higher prevalence of amebiasis (13.7%) using DNA dot blot screening compared to conventional microscopy and culture based screening. Poor living condition, previous history of infection in a family member, unhygienic toilet facility, children in age group <15 yr, participants having lower levels of education and daily laborers were identified as significant risk factors for amoebiasis. Thus, the techniques like DNA dot blot hybridization and PCR based detection adopted in the present study over and above the conventional screening methods can reduce misdiagnosis of the disease appreciably from the population living in this endemic area.
Collapse
Affiliation(s)
- Joyobrato Nath
- Department of Zoology, Gurucharan College, Silchar, Assam, India
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | - Baby Singha
- Department of Zoology, Gurucharan College, Silchar, Assam, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
7
|
The trend in distribution of Q223R mutation of leptin receptor gene in amoebic liver abscess patients from North India: a prospective study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:847132. [PMID: 25114924 PMCID: PMC4121093 DOI: 10.1155/2014/847132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/06/2014] [Indexed: 02/06/2023]
Abstract
Host genetic susceptibility is an important risk factor in infectious diseases. We explored the distribution of Q223R mutation in leptin receptor gene of amoebic liver abscess (ALA) patients of North India. A total of 55 ALA samples along with 102 controls were subjected to PCR-RFLP analysis. The frequency of allele “G” (coding for arginine) was in general high in Indian population irrespective of the disease. Our results of Fisher exact test shows that heterozygous mutant (QQ versus QR, P = 0.049) and homozygous mutant (QQ versus RR, P = 0.004) were significantly associated with amoebic liver abscess when compared with homozygous wild (QQ).
Collapse
|
8
|
Differential expression and immunolocalization of antioxidant enzymes in Entamoeba histolytica isolates during metronidazole stress. BIOMED RESEARCH INTERNATIONAL 2014; 2014:704937. [PMID: 25013795 PMCID: PMC4074981 DOI: 10.1155/2014/704937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 12/18/2022]
Abstract
Entamoeba histolytica infections are endemic in the Indian subcontinent. Five to eight percent of urban population residing under poor sanitary conditions suffers from Entamoeba infections. Metronidazole is the most widely prescribed drug used for amoebiasis. In order to understand the impact of metronidazole stress on the parasite, we evaluated the expression of two antioxidant enzymes, peroxiredoxin and FeSOD, in Entamoeba histolytica isolates during metronidazole stress. The results reveal that, under metronidazole stress, the mRNA expression levels of these enzymes did not undergo any significant change. Interestingly, immunolocalization studies with antibodies targeting peroxiredoxin indicate differential localization of the protein in the cell during metronidazole stress. In normal conditions, all the Entamoeba isolates exhibit presence of peroxiredoxin in the nucleus as well as in the membrane; however with metronidazole stress the protein localized mostly to the membrane. The change in the localization pattern was more pronounced when the cells were subjected to short term metronidazole stress compared to cells adapted to metronidazole. The protein localization to the cell membrane could be the stress response mechanism in these isolates. Colocalization pattern of peroxiredoxin with CaBp1, a cytosolic protein, revealed that the membrane and nuclear localization was specific to peroxiredoxin during metronidazole stress.
Collapse
|
9
|
Systematic detection and association of Entamoeba species in stool samples from selected sites in India. Epidemiol Infect 2014; 143:108-19. [PMID: 24703238 DOI: 10.1017/s0950268814000715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study developed a fast and high throughput dot-blot technique to evaluate the presence of Entamoeba in stool samples (n = 643) followed by a PCR-based method to validate and differentiate the two species E. histolytica and E. dispar. The prevalence rate of the parasite has been detected in a cross-sectional study carried out in the population of the Eastern and Northern parts of India. Of the various demographic features, prevalence was highest in the monsoon season (P = 0·017), in the <15 years age group (P = 0·015). In HIV-positive individuals, the prevalence rate was significantly high (P = 0·008) in patients with a CD4 cell count <200 as well as in patients without antiretroviral therapy (ART) (P = 0·011). Our analysis further confirmed that risk factors such as toilet facilities, living conditions, hygienic practices, drinking water source, occupation and level of education are important predictors as they were found to contribute significantly in the prevalence of the parasite.
Collapse
|
10
|
Kumari V, Iyer LR, Roy R, Bhargava V, Panda S, Paul J, Verweij JJ, Clark CG, Bhattacharya A, Bhattacharya S. Genomic distribution of SINEs in Entamoeba histolytica strains: implication for genotyping. BMC Genomics 2013; 14:432. [PMID: 23815468 PMCID: PMC3716655 DOI: 10.1186/1471-2164-14-432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/20/2013] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The major clinical manifestations of Entamoeba histolytica infection include amebic colitis and liver abscess. However the majority of infections remain asymptomatic. Earlier reports have shown that some E. histolytica isolates are more virulent than others, suggesting that virulence may be linked to genotype. Here we have looked at the genomic distribution of the retrotransposable short interspersed nuclear elements EhSINE1 and EhSINE2. Due to their mobile nature, some EhSINE copies may occupy different genomic locations among isolates of E. histolytica possibly affecting adjacent gene expression; this variability in location can be exploited to differentiate strains. RESULTS We have looked for EhSINE1- and EhSINE2-occupied loci in the genome sequence of Entamoeba histolytica HM-1:IMSS and searched for homologous loci in other strains to determine the insertion status of these elements. A total of 393 EhSINE1 and 119 EhSINE2 loci were analyzed in the available sequenced strains (Rahman, DS4-868, HM1:CA, KU48, KU50, KU27 and MS96-3382. Seventeen loci (13 EhSINE1 and 4 EhSINE2) were identified where a EhSINE1/EhSINE2 sequence was missing from the corresponding locus of other strains. Most of these loci were unoccupied in more than one strain. Some of the loci were analyzed experimentally for SINE occupancy using DNA from strain Rahman. These data helped to correctly assemble the nucleotide sequence at three loci in Rahman. SINE occupancy was also checked at these three loci in 7 other axenically cultivated E. histolytica strains and 16 clinical isolates. Each locus gave a single, specific amplicon with the primer sets used, making this a suitable method for strain typing. Based on presence/absence of SINE and amplification with locus-specific primers, the 23 strains could be divided into eleven genotypes. The results obtained by our method correlated with the data from other typing methods. We also report a bioinformatic analysis of EhSINE2 copies. CONCLUSIONS Our results reveal several loci with extensive polymorphism of SINE occupancy among different strains of E. histolytica and prove the principle that the genomic distribution of SINEs is a valid method for typing of E. histolytica strains.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Lakshmi Rani Iyer
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Riti Roy
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Varsha Bhargava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suchita Panda
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jaco J Verweij
- Laboratory for Medical Microbiology and Immunology, Laboratory for Clinical Pathology, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - C Graham Clark
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Verma AK, Verma R, Ahuja V, Paul J. Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiol 2012; 12:183. [PMID: 22913622 PMCID: PMC3534334 DOI: 10.1186/1471-2180-12-183] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 07/30/2012] [Indexed: 02/07/2023] Open
Abstract
Background Amebic dysentery is caused by the protozoan parasite Entamoeba histolytica and the ingestion of quadrinucleate cyst of E. histolytica from fecally contaminated food or water initiates infection. Excystation occurs in the lumen of small intestine, where motile and potentially invasive trophozoites germinate from cysts. The ability of trophozoites to interact and digest gut bacteria is apparently important for multiplication of the parasite and its pathogenicity; however the contribution of resident bacterial flora is not well understood. We quantified the population of Bacteroides, Bifidobacterium, Ruminococcus, Lactobacillus, Clostridium leptum subgroup, Clostridium coccoides subgroup, Eubacterium, Campylobacter, Methanobrevibacter smithii and Sulphur reducing bacteria using genus specific primers in healthy (N = 22) vs amebic patients (E. histolytica positive, N = 17) stool samples by Real-time PCR. Results Absolute quantification of Bacteroides (p = .001), Closrtridium coccoides subgroup (p = 0.002), Clostridium leptum subgroup (p = 0.0001), Lactobacillus (p = 0.037), Campylobacter (p = 0.0014) and Eubacterium (p = 0.038) show significant drop in their population however, significant increase in Bifdobacterium (p = 0.009) was observed where as the population of Ruminococcus (p = 0.33) remained unaltered in healthy vs amebic patients (E. histolytica positive). We also report high prevalence of nimE gene in stool samples of both healthy volunteers and amebic patients. No significant decrease in nimE gene copy number was observed before and after the treatment with antiamebic drug. Conclusions Our results show significant alteration in predominant gut bacteria in E. histolytica infected individuals. The frequent episodes of intestinal amoebic dysentery thus result in depletion of few predominant genera in gut that may lead to poor digestion and absorption of food in intestine. It further disturbs the homeostasis between gut epithelium and bacterial flora. The decrease in beneficial bacterial population gives way to dysbiosis of gut bacteria which may contribute to final outcome of the disease. Increase in the copy number of nimE gene harboring bacteria in our population reflects possible decrease in the availability of metronidazole drug during treatment of amoebiasis.
Collapse
Affiliation(s)
- Anil Kumar Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
12
|
Huntley DM, Pandis I, Butcher SA, Ackers JP. Bioinformatic analysis of Entamoeba histolytica SINE1 elements. BMC Genomics 2010; 11:321. [PMID: 20497534 PMCID: PMC2996970 DOI: 10.1186/1471-2164-11-321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasive amoebiasis, caused by infection with the human parasite Entamoeba histolytica remains a major cause of morbidity and mortality in some less-developed countries. Genetically E. histolytica exhibits a number of unusual features including having approximately 20% of its genome comprised of repetitive elements. These include a number of families of SINEs - non-autonomous elements which can, however, move with the help of partner LINEs. In many eukaryotes SINE mobility has had a profound effect on gene expression; in this study we concentrated on one such element - EhSINE1, looking in particular for evidence of recent transposition. RESULTS EhSINE1s were detected in the newly reassembled E. histolytica genome by searching with a Hidden Markov Model developed to encapsulate the key features of this element; 393 were detected. Examination of their sequences revealed that some had an internal structure showing one to four 26-27 nt repeats. Members of the different classes differ in a number of ways and in particular those with two internal repeats show the properties expected of fairly recently transposed SINEs - they are the most homogeneous in length and sequence, they have the longest (i.e. the least decayed) target site duplications and are the most likely to show evidence (in a cDNA library) of active transcription. Furthermore we were able to identify 15 EhSINE1s (6 pairs and one triplet) which appeared to be identical or very nearly so but inserted into different sites in the genome; these provide good evidence that if mobility has now ceased it has only done so very recently. CONCLUSIONS Of the many families of repetitive elements present in the genome of E. histolytica we have examined in detail just one - EhSINE1. We have shown that there is evidence for waves of transposition at different points in the past and no evidence that mobility has entirely ceased. There are many aspects of the biology of this parasite which are not understood, in particular why it is pathogenic while the closely related species E. dispar is not, the great genetic diversity found amongst patient isolates and the fact, which may be related, that only a small proportion of those infected develop clinical invasive amoebiasis. Mobile genetic elements, with their ability to alter gene expression may well be important in unravelling these puzzles.
Collapse
Affiliation(s)
- Derek M Huntley
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | |
Collapse
|
13
|
WANG M, XU JS, WANG LL, ZHANG XY, ZHOU ZY. Pathogenicity and genetic divergence of two isolates of microsporidia Nosema bombycis. YI CHUAN = HEREDITAS 2009; 31:1121-6. [DOI: 10.3724/sp.j.1005.2009.01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Mirelman D, Anbar M, Bracha R. Epigenetic transcriptional gene silencing in Entamoeba histolytica. IUBMB Life 2008; 60:598-604. [PMID: 18493998 DOI: 10.1002/iub.96] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human intestinal pathogen Entamoeba histolytica has a number of virulence factors which can cause damage to the host. Transcriptional silencing of the gene coding for one of its major toxic molecules, the amoebapore (Ehap-a), occurred following the transfection of amoebic trophozoites with a plasmid containing the 5' promoter region of Ehap-a as well as a truncated segment of a neighboring, upstream SINE1 element that is transcribed from the opposite strand. Silencing was dependent on the presence of the truncated SINE1 sequences. Small amounts of short (approximately 140 n), ssRNA molecules with homology to SINE1 were detected in the silenced amoeba but no siRNA. The silenced Ehap-a gene domain had a chromatin modification indicating transcriptional inactivation without any DNA methylation. Removal of the plasmid did not restore transcription of Ehap-a. Transcription analysis by microarrays revealed that a number of additional genes were silenced and some were also up-regulated. Transfections of amoeba which already had a silenced Ehap-a, with a plasmid containing a second gene ligated to the 5' upstream region of Ehap-a, enabled the silencing, in-trans, of other genes of choice. The nonvirulent phenotype of the gene-silenced amoeba was demonstrated in various assays and the results suggest that they may have a potential use for vaccination.
Collapse
Affiliation(s)
- David Mirelman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
15
|
Rai AK, Chakravorty R, Paul J. Detection of Giardia, Entamoeba, and Cryptosporidium in unprocessed food items from northern India. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9824-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Paul J, Srivastava S, Bhattacharya S. Molecular methods for diagnosis of Entamoeba histolytica in a clinical setting: an overview. Exp Parasitol 2006; 116:35-43. [PMID: 17189632 PMCID: PMC4247990 DOI: 10.1016/j.exppara.2006.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 10/13/2006] [Accepted: 11/08/2006] [Indexed: 11/19/2022]
Abstract
The range of clinical outcomes following Entamoeba histolytica infection is likely to be influenced by the different strains of the parasite already existing in our population. There is a need for developing faster, reliable and reproducible methods for identifying the different strains of E. histolytica. This would have a major impact on the subsequent course of treatment given to patients. In the post-genomic era, different loci of the Entamoeba genome have been targeted for developing suitable probes and genetic markers. This review highlights the development made in this direction and the possibility of using these methods for routine testing of this parasite in clinical samples.
Collapse
Affiliation(s)
- Jaishree Paul
- Jawaharlal Nehru University, School of Life Sciences, Delhi 110067, India.
| | | | | |
Collapse
|
17
|
Mirelman D, Anbar M, Nuchamowitz Y, Bracha R. Epigenetic silencing of gene expression in Entamoeba histolytica. Arch Med Res 2006; 37:226-33. [PMID: 16380323 DOI: 10.1016/j.arcmed.2005.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 09/30/2005] [Indexed: 01/21/2023]
Abstract
Transcriptional silencing of an amebapore (ap-a) gene occurred in Entamoeba histolytica following the transfection of plasmids containing a DNA segment (473 bp) homologous to the 5' upstream region of the gene. This segment contains the promoter region of the ap-a gene, a T-rich stretch, followed by a truncated SINE1 (short interspersed element) that is transcribed from the opposite strand. The downstream silencing of the ap-a gene did not occur with plasmids containing the entire SINE1 sequence or lacking the entire SINE1 sequences including the T-rich stretch. Such plasmids promoted the overexpression of the ap-a gene. The transcription of the SINE element required both the T-rich stretch as well as sequences from the 5' end of SINE. RNA extracts from gene-silenced cultures showed small amounts of short (approximately 140 nt), single-stranded molecules with homology to SINE1 transcripts but no siRNA. Chromatin immunoprecipitation (ChIP) analysis of silenced G3 trophozoites with an antibody against methylated K4 of histone H3 revealed a demethylation of K4 at the domain of the ap-a gene indicating transcriptional inactivation. These results suggest the involvement of the SINE1 element in triggering the gene silencing and the role of histone modification in its epigenetic maintenance. The avirulent phenotype of the silenced trophozoites was demonstrated in various assays and the results suggest they may have a potential use for vaccination.
Collapse
Affiliation(s)
- David Mirelman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
18
|
Anbar M, Bracha R, Nuchamowitz Y, Li Y, Florentin A, Mirelman D. Involvement of a short interspersed element in epigenetic transcriptional silencing of the amoebapore gene in Entamoeba histolytica. EUKARYOTIC CELL 2006; 4:1775-84. [PMID: 16278444 PMCID: PMC1287852 DOI: 10.1128/ec.4.11.1775-1784.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional silencing of an amoebapore (ap-a) gene occurred in Entamoeba histolytica following the transfection of plasmids containing a DNA segment (473 bp) homologous to the 5' upstream region of the gene (R. Bracha, Y. Nuchamowitz, and D. Mirelman, Eukaryot. Cell 2:295-305, 2003). This segment contains the promoter region of the ap-a gene, a T-rich stretch, followed by a truncated SINE1 (short interspersed element 1) that is transcribed from the antisense strand. Transfection of plasmids containing truncated SINE1 sequences which lack their 3' regulatory elements upstream of the ap-a gene was essential for the downstream silencing of the ap-a gene while transfection with plasmids containing the entire SINE1 sequence or without the T-rich stretch promoted the overexpression of the ap-a gene. Both the T-rich stretch and sequences of the 5' SINE1 were essential for the transcription of SINE1. RNA extracts from gene-silenced cultures showed small amounts of short (approximately 140-nucleotide), single-stranded molecules with homology to SINE1 but no short interfering RNA. Chromatin immunoprecipitation analysis with an antibody against methylated K4 of histone H3 showed a demethylation of K4 at the domain of the ap-a gene, indicating transcriptional inactivation. These results suggest the involvement of SINE1 in triggering the gene silencing and the role of histone modification in its epigenetic maintenance.
Collapse
Affiliation(s)
- Michael Anbar
- Department of Biological Chemistry, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|