1
|
Choudhuri S, Rios L, Vázquez-Chagoyán JC, Garg NJ. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert Rev Vaccines 2021; 20:1395-1406. [PMID: 34406892 DOI: 10.1080/14760584.2021.1969230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative stress in achieving an efficient therapeutic vaccine against CD. AREAS COVERED This review covers the immune and nonimmune mechanisms of reactive oxygen species production and immune response patterns during T. cruzi infection in CD. A discussion on immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, and the role of antioxidants as adjuvants is discussed to provide promising insights to developing future treatment strategies against CD. EXPERT OPINION Administration of therapeutic vaccines can be a good option to confront persistent parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and small molecules to control the pathological oxidative insult would be effective in the conservation of cardiac structure and function in CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados En Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Nisha Jain Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Tx, USA
| |
Collapse
|
2
|
Majeau A, Murphy L, Herrera C, Dumonteil E. Assessing Trypanosoma cruzi Parasite Diversity through Comparative Genomics: Implications for Disease Epidemiology and Diagnostics. Pathogens 2021; 10:212. [PMID: 33669197 PMCID: PMC7919814 DOI: 10.3390/pathogens10020212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Chagas disease is an important vector-borne neglected tropical disease that causes great health and economic losses. The etiological agent, Trypanosoma cruzi, is a protozoan parasite endemic to the Americas, comprised by important diversity, which has been suggested to contribute to poor serological diagnostic performance. Current nomenclature describes seven discrete typing units (DTUs), or lineages. We performed the first large scale analysis of T. cruzi diversity among 52 previously published genomes from strains covering multiple countries and parasite DTUs and assessed how different markers summarize this genetic diversity. We also examined how seven antigens currently used in commercial serologic tests are conserved across this diversity of strains. DTU structuration was confirmed at the whole-genome level, with evidence of sub-DTU diversity, associated in part to geographic structuring. We observed very comparable phylogenetic tree topographies for most of the 32 markers investigated, with clear clustering of sequences by DTU, and a few of these markers suggested some degree of intra-lineage diversity. At least three of the currently used antigens represent poorly conserved sequences, with sequences used in tests quite divergent from sequences in many strains. Most markers are well suited for estimating parasite diversity to DTU level, and a few are particularly well-suited to assess intra-DTU diversity. Analysis of antigen sequences across all strains indicates that antigenic diversity is a likely explanation for limited diagnostic performance in Central and North America.
Collapse
Affiliation(s)
| | | | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| |
Collapse
|
3
|
Matos MN, Sánchez Alberti A, Morales C, Cazorla SI, Malchiodi EL. A prime-boost immunization with Tc52 N-terminal domain DNA and the recombinant protein expressed in Pichia pastoris protects against Trypanosoma cruzi infection. Vaccine 2016; 34:3243-51. [PMID: 27177947 DOI: 10.1016/j.vaccine.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 01/17/2023]
Abstract
We have previously reported that the N-terminal domain of the antigen Tc52 (NTc52) is the section of the protein that confers the strongest protection against Trypanosoma cruzi infection. To improve vaccine efficacy, we conducted here a prime-boost strategy (NTc52PB) by inoculating two doses of pcDNA3.1 encoding the NTc52 DNA carried by attenuated Salmonella (SNTc52), followed by two doses of recombinant NTc52 expressed in Picchia pastoris plus ODN-CpG as adjuvant. This strategy was comparatively analyzed with the following protocols: (1) two doses of NTc52+ODN-CpG by intranasal route followed by two doses of NTc52+ODN-CpG by intradermal route (NTc52CpG); (2) four doses of SNTc52; and (3) a control group with four doses of Salmonella carrying the empty plasmid. All immunized groups developed a predominant Th1 cellular immune response but with important differences in antibody development and protection against infection. Thus, immunization with just SNTc52 induces a strong specific cellular response, a specific systemic antibody response that is weak yet functional (considering lysis of trypomastigotes and inhibition of cell invasion), and IgA mucosal immunity, protecting in both the acute and chronic stages of infection. The group that received only recombinant protein (NTc52CpG) developed a strong antibody immune response but weaker cellular immunity than the other groups, and the protection against infection was clear in the acute phase of infection but not in chronicity. The prime-boost strategy, which combines DNA and protein vaccine and both mucosal and systemic immunizations routes, was the best assayed protocol, inducing strong cellular and humoral responses as well as specific mucosal IgA, thus conferring better protection in the acute and chronic stages of infection.
Collapse
Affiliation(s)
- Marina N Matos
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrés Sánchez Alberti
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Celina Morales
- Instituto de Fisiopatología Cardiovascular, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia I Cazorla
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología and Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Barnabé C, Mobarec HI, Jurado MR, Cortez JA, Brenière SF. Reconsideration of the seven discrete typing units within the species Trypanosoma cruzi , a new proposal of three reliable mitochondrial clades. INFECTION GENETICS AND EVOLUTION 2016; 39:176-186. [DOI: 10.1016/j.meegid.2016.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
5
|
Tc52 amino-terminal-domain DNA carried by attenuated Salmonella enterica serovar Typhimurium induces protection against a Trypanosoma cruzi lethal challenge. Infect Immun 2014; 82:4265-75. [PMID: 25069980 DOI: 10.1128/iai.02190-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this work we immunized mice with DNA encoding full-length Tc52 or its amino- or carboxy-terminal (N- and C-term, respectively) domain carried by attenuated Salmonella as a DNA delivery system. As expected, Salmonella-mediated DNA delivery resulted in low antibody titers and a predominantly Th1 response, as shown by the ratio of IgG2a/IgG1-specific antibodies. Despite modest expression of Tc52 in trypomastigotes, the antibodies elicited by vaccination were able to mediate lysis of the trypomastigotes in the presence of complement and inhibit their invasion of mammal cells in vitro. The strongest functional activity was observed with sera from mice immunized with Salmonella carrying the N-term domain (SN-term), followed by Tc52 (STc52), and the C-term domain (SC-term). All immunized groups developed strong cellular responses, with predominant activation of Th1 cells. However, mice immunized with SN-term showed higher levels of interleukin-10 (IL-10), counterbalancing the inflammatory reaction, and also strong activation of Tc52-specific gamma interferon-positive (IFN-γ(+)) CD8(+) T cells. In agreement with this, although all prototypes conferred protection against infection, immunization with SN-term promoted greater protection than that with SC-term for all parameters tested and slightly better protection than that with STc52, especially in the acute stage of infection. We conclude that the N-terminal domain of Tc52 is the section of the protein that confers maximal protection against infection and propose it as a promising candidate for vaccine development.
Collapse
|
6
|
Roellig DM, Savage MY, Fujita AW, Barnabé C, Tibayrenc M, Steurer FJ, Yabsley MJ. Genetic variation and exchange in Trypanosoma cruzi isolates from the United States. PLoS One 2013; 8:e56198. [PMID: 23457528 PMCID: PMC3572986 DOI: 10.1371/journal.pone.0056198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/10/2013] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a multiclonal parasite with high levels of genetic diversity and broad host and geographic ranges. Molecular characterization of South American isolates of T. cruzi has demonstrated homologous recombination and nuclear hybridization, as well as the presence of 6 main genetic clusters or "discrete typing units" (DTUs). Few studies have extensively investigated such exchange events and genetic diversity in North American isolates. In the current study, we genetically characterized over 50 US isolates from wildlife reservoirs (e.g., raccoons, opossums, armadillos, skunks), domestic dogs, humans, nonhuman primates, and reduviid vectors from nine states (TX, CA, OK, SC, FL, GA, MD, LA, TN) using a multilocus sequencing method. Single nucleotide polymorphisms were identified in sequences of the mismatch-repair class 2 (MSH2) and Tc52 genes. Typing based on the two genes often paralleled genotyping by classic methodologies using mini-exon and 18S and 24Sα rRNA genes. Evidence for genetic exchange was obtained by comparing sequence phylogenies of nuclear and mitochondrial gene targets, dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the cytochrome oxidase subunit II- NADH dehydrogenase subunit I region (COII-ND1), respectively. We observed genetic exchange in several US isolates as demonstrated by incongruent mitochondrial and nuclear genes phylogenies, which confirms a previous finding of a single genetic exchange event in a Florida isolate. The presence of SNPs and evidence of genetic exchange illustrates that strains from the US are genetically diverse, even though only two phylogenetic lineages have been identified in this region.
Collapse
Affiliation(s)
- Dawn M Roellig
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
7
|
Perez E, Monje M, Chang B, Buitrago R, Parrado R, Barnabé C, Noireau F, Brenière SF. Predominance of hybrid discrete typing units of Trypanosoma cruzi in domestic Triatoma infestans from the Bolivian Gran Chaco region. INFECTION GENETICS AND EVOLUTION 2012; 13:116-23. [PMID: 23047136 DOI: 10.1016/j.meegid.2012.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/09/2012] [Accepted: 09/25/2012] [Indexed: 11/28/2022]
Abstract
In the Gran Chaco region the reinfestation by Triatoma infestans remains a major problem for control of Chagas disease. Trypanosoma cruzi the agent of the illness presents a broad genetic intraspecific variability which is poorly documented in the Bolivian Gran Chaco. This work presents the identification of the discrete typing units (DTUs) currently recognized for T. cruzi in T. infestans populations collected before and after residual insecticide spraying in four villages in this region. Before spraying, of 84 samples, the frequencies of the DTUs identified by using the multiplex PCR based on the non transcribed spacer of the mini-exon gene (MMPCR) were 0.21 for TcI, 0.70 for TcII/TcV/TcVI, and 0.17 for TcIII/TcIV and no significant difference was observed after spraying (76 samples). Moreover 13% of the total sample corresponds to T. infestans specimens with mixed infection of DTUs of which three were TcII/TcV/TcVI with TcIII/TcIV. The partial sequences of T. cruzi Gpi gene obtained from 14 PCR products agree the MMPCR DTU identification and allowed to precise the occurrence of TcIII, TcII and hybrid TcV/TcVI stocks which were not discriminated by the MMPCR. Given the high prevalence of hybrid stocks, the authors ask whether the recombination event at the origin of hybrids would have taken place in the Gran Chaco where the putative parents are also present.
Collapse
Affiliation(s)
- Esdenka Perez
- MIVEGEC (Université de Montpellier 1 et 2, CNRS 5290, IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Representation in Bolivia, Av. Hernando Siles No. 5290, Esq Calle 7 Obrajes, CP 9214, La Paz, Bolivia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mathieu-Daudé F, Bosseno MF, Garzon E, Lelièvre J, Sereno D, Ouaissi A, Brenière SF. Sequence diversity and differential expression of Tc52 immuno-regulatory protein in Trypanosoma cruzi: potential implications in the biological variability of strains. Parasitol Res 2007; 101:1355-63. [PMID: 17659387 DOI: 10.1007/s00436-007-0651-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Trypanosoma cruzi is highly heterogeneous in terms of genetics and biological properties. To explore the diversity of T. cruzi, we focused our study on the T. cruzi Tc52 protein playing a critical immunosuppressive role during infection. Sequence variability and expression levels of this virulence factor were analysed in various strains. Among the 40 amino acid substitutions detected in the Tc52 coding sequences, three substitutions may have an impact on protein activity or function, as two are localized in sites involved in the glutathione binding and the third is present in the region bearing immunomodulatory function. This sequence variability was consistent with the genetic subdivisions of T. cruzi. Moreover, we observed that the level of Tc52 transcripts and proteins varied between the different strains, but we did not find a significant correlation between Tc52 expression and the phylogeny of the parasite. Thus, both diversity in the sequences and differences in the expression levels of Tc52 protein may be involved in the biological variability of T. cruzi, especially in virulence and immunosuppression properties of T. cruzi strains.
Collapse
Affiliation(s)
- Françoise Mathieu-Daudé
- Département Sociétés et Santé, UR008 Pathogénie et Epidémiologie des Trypanosomatidés, Institut de Recherche pour le Développement, 911 Av. Agropolis, 34394, Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Westenberger SJ, Sturm NR, Campbell DA. Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids. Int J Parasitol 2006; 36:337-46. [PMID: 16443226 DOI: 10.1016/j.ijpara.2005.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
Isolates of the etiological agent of Chagas disease, Trypanosoma cruzi, have been subdivided into six subgroups referred to as discrete typing units. The subgroups are related through two distinct hybridisation events: representatives of homozygous discrete typing units I and IIb fused to form discrete typing units IIa and IIc, whose homozygous genotypes have features of both ancestral types; a second fusion between strains of homozygous discrete typing units IIb and IIc created the heterozygous hybrid strains discrete typing units IId and IIe. The intergenic region of the tandemly repeated 5S rRNA array displays four variant sequence classes, allowing the discrimination of five discrete typing units. The genome project reference strain, CL Brener, is a hybrid discrete typing unit IIe strain that contains both discrete typing unit IIb and IIc classes of 5S rRNA repeats in distinct arrays present on different chromosomes. The CL Brener discrete typing unit IIb-type array contains approximately 193 repeated units, of which about one-third contain a 129 bp sequence that replaces a majority of the 5S rRNA sequence. The 129 bp 'invader' sequence was detected within the arrays of all hybrid discrete typing unit IId and IIe strains and in a subset of discrete typing unit IIb strains. This array invader replaces the internal promoter elements conserved in 5S rRNA. The discrete typing unit IIb Esmeraldo strain contains approximately 135 repeats and shows a region of homology to the array invader in the 5' flank of the array, but no evidence of the invading sequence element within the array. A survey of additional discrete typing unit IIb strains revealed a split within the subgroup, in which some strains contained invaded arrays and others were homogeneous for the 5S rRNA. The putative discrete typing unit IIb ancestor of the hybrid discrete typing units IId and IIe more closely resembles the extant Bolivian/Chilean IIb isolates than the Brazilian IIb isolates based on the correlation with the array invader.
Collapse
Affiliation(s)
- Scott J Westenberger
- Department of Microbiology, Immunology, & Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|