1
|
Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog 2023; 19:e1011854. [PMID: 38128049 PMCID: PMC10734937 DOI: 10.1371/journal.ppat.1011854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.
Collapse
Affiliation(s)
- Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Lopes DM, Provençano AF, de Mello CB, Feder MD, Cunha JA, Nogueira N, Lechuga GC, Bourguignon SC, de Souza W, Garcia ES, das Chagas EF, Azambuja P, Gonzalez MS. Ecdysone modulates both ultrastructural arrangement of hindgut and attachment of Trypanosoma cruzi DM 28c to the rectum cuticle of Rhodnius prolixus fifth-instar nymph. Exp Parasitol 2022; 236-237:108247. [DOI: 10.1016/j.exppara.2022.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
3
|
Schaub GA. An Update on the Knowledge of Parasite-Vector Interactions of Chagas Disease. Res Rep Trop Med 2021; 12:63-76. [PMID: 34093053 PMCID: PMC8169816 DOI: 10.2147/rrtm.s274681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
This review focusses on the interactions between the etiologic agent of Chagas disease, Trypanosoma cruzi, and its triatomine vector. The flagellate mainly colonizes the intestinal tract of the insect. The effect of triatomines on trypanosomes is indicated by susceptibility and refractoriness phenomena that vary according to the combination of the strains. Other effects are apparent in the different regions of the gut. In the stomach, the majority of ingested blood trypomastigotes are killed while the remaining transform to round stages. In the small intestine, these develop into epimastigotes, the main replicative stage. In the rectum, the population density is the highest and is where the infectious stage develops, the metacyclic trypomastigote. In all regions of the gut, starvation and feeding of the triatomine affect T. cruzi. In the small intestine and rectum, starvation reduces the population density and more spheromastigotes develop. In the rectum, feeding after short-term starvation induces metacyclogenesis and after long-term starvation the development of specific cells, containing several nuclei, kinetoplasts and flagella. When considering the effects of T. cruzi on triatomines, the flagellate seems to be of low pathogenicity. However, during stressful periods, which are normal in natural populations, effects occur often on the behaviour, eg, in readiness to approach the host, the period of time before defecation, dispersal and aggregation. In nymphs, the duration of the different instars and the mortality rates increase, but this seems to be induced by repeated infections or blood quality by the feeding on infected hosts. Starvation resistance is often reduced by infection. Longevity and reproduction of adults is reduced, but only after infection with some strains of T. cruzi. Only components of the surface coat of blood trypomastigotes induce an immune reaction. However, this seems to act against gut bacteria and favours the development of T. cruzi.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Araújo CAC, Pacheco JPF, Waniek PJ, Geraldo RB, Sibajev A, Dos Santos AL, Evangelho VGO, Dyson PJ, Azambuja P, Ratcliffe NA, Castro HC, Mello CB. A rhamnose-binding lectin from Rhodnius prolixus and the impact of its silencing on gut bacterial microbiota and Trypanosoma cruzi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103823. [PMID: 32800901 DOI: 10.1016/j.dci.2020.103823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Lectins are ubiquitous proteins involved in the immune defenses of different organisms and mainly responsible for non-self-recognition and agglutination reactions. This work describes molecular and biological characterization of a rhamnose-binding lectin (RBL) from Rhodnius prolixus, which possesses a 21 amino acid signal peptide and a mature protein of 34.6 kDa. The in-silico analysis of the primary and secondary structures of RpLec revealed a lectin domain fully conserved among previous insects studied. The three-dimensional homology model of RpLec was similar to other RBL-lectins. Docking predictions with the monosaccharides showed rhamnose and galactose-binding sites comparable to Latrophilin-1 and N-Acetylgalactosamine-binding in a different site. The effects of RpLec gene silencing on levels of infecting Trypanosoma cruzi Dm 28c and intestinal bacterial populations in the R. prolixus midgut were studied by injecting RpLec dsRNA into the R. prolixus hemocoel. Whereas T. cruzi numbers remained unchanged compared with the controls, numbers of bacteria increased significantly. The silencing also induced the up regulation of the R. prolixus defC (defensin) expression gene. These results with RpLec reveal the potential importance of this little studied molecule in the insect vector immune response and homeostasis of the gut bacterial microbiota.
Collapse
Affiliation(s)
- C A C Araújo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - J P F Pacheco
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Waniek
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - R B Geraldo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - A Sibajev
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Av. Cap. Enê Garcez 2413, Boa Vista, RR, CEP 69400-000, Brazil
| | - A L Dos Santos
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - V G O Evangelho
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Dyson
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - P Azambuja
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação, Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, CEP 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - N A Ratcliffe
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP, UK
| | - H C Castro
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil.
| | - C B Mello
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Batista KKDS, Vieira CS, Florentino EB, Caruso KFB, Teixeira PTP, Moraes CDS, Genta FA, de Azambuja P, de Castro DP. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104100. [PMID: 32822690 DOI: 10.1016/j.jinsphys.2020.104100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 05/21/2023]
Abstract
The immune system of Rhodnius prolixus comprehends the synthesis of different effectors that modulate the intestinal microbiota population and the life cycle of the parasite Trypanosoma cruzi inside the vector midgut. One of these immune responses is the production of reactive nitrogen species (RNS) derived by the action of nitric oxide synthase (NOS). Therefore, we investigated the effects of L-arginine, the substrate for nitric oxide (NO) production and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, added in the insect blood meal. We analyzed the impact of these treatments on the immune responses and development of intestinal bacteria and parasites on R. prolixus nymphs. The L-arginine treatment in R. prolixus nymphs induced a higher NOS gene expression in the fat body and increased NO production, but reduced catalase and antimicrobial activities in the midgut. As expected, L-NAME treatment reduced NOS gene expression in the fat body. In addition, L-NAME treatment diminished catalase activity in the hemolymph and posterior midgut reduced phenoloxidase activity in the anterior midgut and increased the antimicrobial activity in the hemolymph. Both treatments caused a reduction in the cultivatable intestinal microbiota, especially in insects treated with L-NAME. However, T. cruzi development in the insect's digestive tract was suppressed after L-arginine treatment and the opposite was observed with L-NAME, which resulted in higher parasite counts. Therefore, we conclude that induction and inhibition of NOS and NO production are associated with other R. prolixus humoral immune responses, such as catalase, phenoloxidase, and antibacterial activities in different insect organs. These alterations reflect on intestinal microbiota and T. cruzi development.
Collapse
Affiliation(s)
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Karina Francine Bravo Caruso
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Caroline da Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Patrícia de Azambuja
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Daniele Pereira de Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Gutiérrez-Cabrera AE, Zandberg WF, Zenteno E, Rodríguez MH, Espinoza B, Lowenberger C. Glycosylation on proteins of the intestine and perimicrovillar membrane of Triatoma (Meccus) pallidipennis, under different feeding conditions. INSECT SCIENCE 2019; 26:796-808. [PMID: 29446564 DOI: 10.1111/1744-7917.12579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, interacts with molecules in the midgut of its insect vector to multiply and reach the infective stage. Many studies suggest that the parasite binds to midgut-specific glycans. We identified several glycoproteins expressed in the intestine and perimicrovillar membrane (PMM) of Triatoma (Meccus) pallidipennis under different feeding conditions. In order to assess changes in protein-linked glycans, we performed lectin and immunoblot analyses on glycoprotein extracts from these intestinal tissues using well-characterized lectins, and an antibody, which collectively recognize a wide range of different glycans epitopes. We observed that the amount and composition of proteins and glycoproteins associated with different glycans structures changed over time in the intestines and PMM under different physiological conditions. PMM extracts contained a wide variety of glycoproteins with different sugar residues, including abundant high-mannose and complex sialylated glycans. We propose that these molecules could be involved in the process of parasite-vector interactions.
Collapse
Affiliation(s)
- Ana E Gutiérrez-Cabrera
- CONACyT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Edgar Zenteno
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, DF, Mexico
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, DF, Mexico
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
8
|
Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184:38-52. [PMID: 28941731 DOI: 10.1016/j.actatropica.2017.09.017] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/27/2022]
Abstract
The genetic diversity of Trypanosoma cruzi, the protozoan agent of Chagas disease, is widely recognized. At present, T. cruzi is partitioned into seven discrete typing units (DTUs), TcI-TcVI and Tcbat. This article reviews the present knowledge on the parasite population structure, the evolutionary relationships among DTUs and their distinct, but not exclusive ecological and epidemiological associations. Different models for the origin of hybrid DTUs are examined, which agree that genetic exchange among T. cruzi populations is frequent and has contributed to the present parasite population structure. The geographic distribution of the prevalent DTUs in humans from the southern United States to Argentina is here presented and the circumstantial evidence of a possible association between T. cruzi genotype and Chagas disease manifestations is discussed. The available information suggests that parasite strains detected in patients, regardless of the clinical presentation, reflect the principal DTU circulating in the domestic transmission cycles of a particular region. In contrast, in several orally transmitted outbreaks, sylvatic strains are implicated. As a consequence of the genotypic and phenotypic differences of T. cruzi strains and the differential geographic distribution of DTUs in humans, regional variations in the sensitivity of the serological tests are verified. The natural resistance to benznidazole and nifurtimox, verified in vivo and in vitro for some parasite stocks, is not associated with any particular DTU, and does not explain the marked difference in the anti-parasitic efficacy of both drugs in the acute and chronic phases of Chagas disease. Throughout this review, it is emphasized that the interplay between parasite and host genetics should have an important role in the definition of Chagas disease pathogenesis, anti-T. cruzi immune response and chemotherapy outcome and should be considered in future investigations.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:66-76. [PMID: 27401496 DOI: 10.1016/j.jinsphys.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triatomines are hematophagous insects that feed on the blood of vertebrates from different taxa, but can occasionally also take fluids from invertebrate hosts, including other insects. During the blood ingestion process, these insects can acquire diverse parasites that can later be transmitted to susceptible vertebrates if they complete their development inside bugs. Trypanosoma cruzi, the etiological agent of Chagas disease, and Trypanosoma rangeli are protozoan parasites transmitted by triatomines, the latter only transmitted by Rhodnius spp. The present work makes an extensive revision of studies evaluating triatomine-trypanosome interaction, with special focus on Rhodnius prolixus interacting with the two parasites. The sequences of events encompassing the development of these trypanosomes inside bugs and the consequent responses of insects to this infection, as well as many pathological effects produced by the parasites are discussed.
Collapse
Affiliation(s)
- Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
11
|
Gutiérrez-Cabrera AE, Córdoba-Aguilar A, Zenteno E, Lowenberger C, Espinoza B. Origin, evolution and function of the hemipteran perimicrovillar membrane with emphasis on Reduviidae that transmit Chagas disease. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:279-291. [PMID: 26639621 DOI: 10.1017/s0007485315000929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The peritrophic matrix is a chitin-protein structure that envelops the food bolus in the midgut of the majority of insects, but is absent in some groups which have, instead, an unusual extra-cellular lipoprotein membrane named the perimicrovillar membrane. The presence of the perimicrovillar membrane (PMM) allows these insects to exploit restricted ecological niches during all life stages. It is found only in some members of the superorder Paraneoptera and many of these species are of medical and economic importance. In this review we present an overview of the midgut and the digestive system of insects with an emphasis on the order Paraneoptera and differences found across phylogenetic groups. We discuss the importance of the PMM in Hemiptera and the apparent conservation of this structure among hemipteran groups, suggesting that the basic mechanism of PMM production is the same for different hemipteran species. We propose that the PMM is intimately involved in the interaction with parasites and as such should be a target for biological and chemical control of hemipteran insects of economic and medical importance.
Collapse
Affiliation(s)
- A E Gutiérrez-Cabrera
- Departamento de Inmunología,Instituto de Investigaciones Biomedicas,Universidad Nacional Autónoma de México,Apdo. 70228,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - A Córdoba-Aguilar
- Departamento de Ecología Evolutiva,Instituto de Ecología,Universidad Nacional Autónoma de México,Apdo. P. 70-275,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,Mexico
| | - E Zenteno
- Departamento de Bioquímica,Facultad de Medicina,Universidad Nacional Autónoma de México,Ciudad Universitaria,04510 D.F.,Mexico
| | - C Lowenberger
- Department of Biological Sciences,Simon Fraser University,Burnaby, B.C., V5A 1S6,Canada
| | - B Espinoza
- Departamento de Inmunología,Instituto de Investigaciones Biomedicas,Universidad Nacional Autónoma de México,Apdo. 70228,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| |
Collapse
|
12
|
Vieira CS, Waniek PJ, Mattos DP, Castro DP, Mello CB, Ratcliffe NA, Garcia ES, Azambuja P. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit Vectors 2014; 7:232. [PMID: 24885969 PMCID: PMC4032158 DOI: 10.1186/1756-3305-7-232] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/12/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The triatomine, Rhodnius prolixus, is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. It has a strictly blood-sucking habit in all life stages, ingesting large amounts of blood from vertebrate hosts from which it can acquire pathogenic microorganisms. In this context, the production of antimicrobial peptides (AMPs) in the midgut of the insect is vital to control possible infection, and to maintain the microbiota already present in the digestive tract. METHODS In the present work, we studied the antimicrobial activity of the Rhodnius prolixus midgut in vitro against the Gram-negative and Gram-positive bacteria Escherichia coli and Staphylococcus aureus, respectively. We also analysed the abundance of mRNAs encoding for defensins, prolixicin and lysozymes in the midgut of insects orally infected by these bacteria at 1 and 7 days after feeding. RESULTS Our results showed that the anterior midgut contents contain a higher inducible antibacterial activity than those of the posterior midgut. We observed that the main AMP encoding mRNAs in the anterior midgut, 7 days after a blood meal, were for lysozyme A, B, defensin C and prolixicin while in the posterior midgut lysozyme B and prolixicin transcripts predominated. CONCLUSION Our findings suggest that R. prolixus modulates AMP gene expression upon ingestion of bacteria with patterns that are distinct and dependent upon the species of bacteria responsible for infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
13
|
Gonzalez MS, Souza MS, Garcia ES, Nogueira NFS, Mello CB, Cánepa GE, Bertotti S, Durante IM, Azambuja P, Buscaglia CA. Trypanosoma cruzi TcSMUG L-surface mucins promote development and infectivity in the triatomine vector Rhodnius prolixus. PLoS Negl Trop Dis 2013; 7:e2552. [PMID: 24244781 PMCID: PMC3828161 DOI: 10.1371/journal.pntd.0002552] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND TcSMUG L products were recently identified as novel mucin-type glycoconjugates restricted to the surface of insect-dwelling epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. The remarkable conservation of their predicted mature N-terminal region, which is exposed to the extracellular milieu, suggests that TcSMUG L products may be involved in structural and/or functional aspects of the interaction with the insect vector. METHODOLOGY AND PRINCIPAL FINDINGS Here, we investigated the putative roles of TcSMUG L mucins in both in vivo development and ex vivo attachment of epimastigotes to the luminal surface of the digestive tract of Rhodnius prolixus. Our results indicate that the exogenous addition of TcSMUG L N-terminal peptide, but not control T. cruzi mucin peptides, to the infected bloodmeal inhibited the development of parasites in R. prolixus in a dose-dependent manner. Pre-incubation of insect midguts with the TcSMUG L peptide impaired the ex vivo attachment of epimastigotes to the luminal surface epithelium, likely by competing out TcSMUG L binding sites on the luminal surface of the posterior midgut, as revealed by fluorescence microscopy. CONCLUSION AND SIGNIFICANCE Together, these observations indicate that TcSMUG L mucins are a determinant of both adhesion of T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine, and the infection of the insect vector, R. prolixus.
Collapse
Affiliation(s)
- Marcelo S. Gonzalez
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Morro do Valonguinho S/N, Centro, Niterói, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM, CNPq), Brazil
| | - Marcela S. Souza
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Morro do Valonguinho S/N, Centro, Niterói, Rio de Janeiro, Brazil
| | - Eloi S. Garcia
- Instituto Nacional de Entomologia Molecular (INCT-EM, CNPq), Brazil
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Nadir F. S. Nogueira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Horto, Campos dos Goytacases, Rio de Janeiro, Brazil
| | - Cícero B. Mello
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Morro do Valonguinho S/N, Centro, Niterói, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM, CNPq), Brazil
| | - Gaspar E. Cánepa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB- INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biotecnológicas “Dr Rodolfo Ugalde”, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| | - Santiago Bertotti
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB- INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biotecnológicas “Dr Rodolfo Ugalde”, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| | - Ignacio M. Durante
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB- INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biotecnológicas “Dr Rodolfo Ugalde”, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| | - Patrícia Azambuja
- Instituto Nacional de Entomologia Molecular (INCT-EM, CNPq), Brazil
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB- INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biotecnológicas “Dr Rodolfo Ugalde”, Campus UNSAM, San Martín (1650), Buenos Aires, Argentina
| |
Collapse
|
14
|
de Castro Côrtes LM, de Souza Pereira MC, da Silva FS, Pereira BAS, de Oliveira Junior FO, de Araújo Soares RO, Brazil RP, Toma L, Vicente CM, Nader HB, de Fátima Madeira M, Bello FJ, Alves CR. Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro. Parasit Vectors 2012; 5:142. [PMID: 22805335 PMCID: PMC3419669 DOI: 10.1186/1756-3305-5-142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/02/2012] [Indexed: 12/04/2022] Open
Abstract
Background Leishmania (V.) braziliensis is a causative agent of cutaneous leishmaniasis in Brazil. During the parasite life cycle, the promastigotes adhere to the gut of sandflies, to avoid being eliminated with the dejection. The Lulo cell line, derived from Lutzomyia longipalpis (Diptera: Psychodidae), is a suitable in vitro study model to understand the features of parasite adhesion. Here, we analyze the role of glycosaminoglycans (GAGs) from Lulo cells and proteins from the parasites in this event. Methods Flagellar (Ff) and membrane (Mf) fractions from promastigotes were obtained by differential centrifugation and the purity of fractions confirmed by western blot assays, using specific antibodies for cellular compartments. Heparin-binding proteins (HBP) were isolated from both fractions using a HiTrap-Heparin column. In addition, binding of promastigotes to Lulo cells or to a heparin-coated surface was assessed by inhibition assays or surface plasmon resonance (SPR) analysis. Results The success of promastigotes subcellular fractionation led to the obtainment of Ff and Mf proteins, both of which presented two main protein bands (65.0 and 55.0kDa) with affinity to heparin. The contribution of HBPs in the adherence of promastigotes to Lulo cells was assessed through competition assays, using HS or the purified HBPs fractions. All tested samples presented a measurable inhibition rate when compared to control adhesion rate (17 ± 2.0% of culture cells with adhered parasites): 30% (for HS 20μg/ml) and 16% (for HS 10μg/ml); HBP Mf (35.2% for 10μg/ml and 25.4% for 20μg/ml) and HBP Ff (10.0% for 10μg/ml and 31.4% for 20μg/ml). Additionally, to verify the presence of sulfated GAGs in Lulo cells surface and intracellular compartment, metabolic labeling with radioactive sulfate was performed, indicating the presence of an HS and chondroitin sulfate in both cell sections. The SPR analysis performed further confirmed the presence of GAGs ligands on L. (V.) braziliensis promastigote surfaces. Conclusions The data presented here point to evidences that HBPs present on the surface of L. (V.) braziliensis promastigotes participate in adhesion of these parasites to Lulo cells through HS participation.
Collapse
|
15
|
Trypanosoma cruzi heparin-binding proteins mediate the adherence of epimastigotes to the midgut epithelial cells of Rhodnius prolixus. Parasitology 2012; 139:735-43. [PMID: 22310218 DOI: 10.1017/s0031182011002344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heparin-binding proteins (HBPs) have been demonstrated in both infective forms of Trypanosoma cruzi and are involved in the recognition and invasion of mammalian cells. In this study, we evaluated the potential biological function of these proteins during the parasite-vector interaction. HBPs, with molecular masses of 65·8 kDa and 59 kDa, were isolated from epimastigotes by heparin affinity chromatography and identified by biotin-conjugated sulfated glycosaminoglycans (GAGs). Surface plasmon resonance biosensor analysis demonstrated stable receptor-ligand binding based on the association and dissociation values. Pre-incubation of epimastigotes with GAGs led to an inhibition of parasite binding to immobilized heparin. Competition assays were performed to evaluate the role of the HBP-GAG interaction in the recognition and adhesion of epimastigotes to midgut epithelial cells of Rhodnius prolixus. Epithelial cells pre-incubated with HBPs yielded a 3·8-fold inhibition in the adhesion of epimastigotes. The pre-treatment of epimastigotes with heparin, heparan sulfate and chondroitin sulfate significantly inhibited parasite adhesion to midgut epithelial cells, which was confirmed by scanning electron microscopy. We provide evidence that heparin-binding proteins are found on the surface of T. cruzi epimastigotes and demonstrate their key role in the recognition of sulfated GAGs on the surface of midgut epithelial cells of the insect vector.
Collapse
|
16
|
Majerowicz D, Alves-Bezerra M, Logullo R, Fonseca-de-Souza AL, Meyer-Fernandes JR, Braz GRC, Gondim KC. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). INSECT MOLECULAR BIOLOGY 2011; 20:713-722. [PMID: 21929722 DOI: 10.1111/j.1365-2583.2011.01101.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quantitative real-time PCR (qPCR) has become one of the most used techniques to measure gene expression. However, normalization of gene expression data against reference genes is essential, although these are usually used without any kind of validation. The expression of seven genes was compared in organs of Rhodnius prolixus under diverse conditions, using published software to test gene expression stability. Rp18S and elongation factor 1 (RpEF -1) were the most reliable genes for normalization in qPCR when gene expression in different organs was compared. Moreover, both genes were found to be the best references when transcript levels were compared in the posterior midgut of insects infected with Trypanosoma cruzi. Rp18S was also the best reference gene in the fat bodies of unfed and fed insects. By contrast, RpEF-1 was found to be the best reference gene for comparison between posterior midguts, and RpMIP or RpActin should be used to compare gene expression in the ovaries. Although Rp18S is indicated here as the best reference in most cases, reports from the literature show that it is difficult to find an optimum reference gene. Nevertheless, validation of candidate genes to be taken as references is important when new experimental conditions are tested to avoid incorrect data interpretation.
Collapse
Affiliation(s)
- D Majerowicz
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
17
|
Involvement of sulfated glycosaminoglycans on the development and attachment of Trypanosoma cruzi to the luminal midgut surface in the vector, Rhodnius prolixus. Parasitology 2011; 138:1870-7. [DOI: 10.1017/s0031182011001521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYIn the present study, we investigated the involvement of sulfated glycosaminoglycans in both the in vivo development and adhesion of T. cruzi epimastigotes to the luminal surface of the digestive tract of the insect vector, Rhodnius prolixus. Pre-incubation of T. cruzi, Dm 28c epimastigotes with heparin, chondroitin 4-sulfate, chondroitin 6-sulfate or protamine chloridrate inhibited in vitro attachment of parasites to the insect midgut. Enzymatic removal of heparan sulfate moieties by heparinase I or of chondroitin sulfate moieties by chondroitinase AC from the insect posterior midgut abolished epimastigote attachment in vitro. These treatments also reduced the labelling of anionic sites exposed at the luminal surface of the perimicrovillar membranes in the triatomine midgut epithelial cells. Inclusion of chondroitin 4-sulfate or chondroitin 6-sulfate and to a lesser extent, heparin, in the T. cruzi-infected bloodmeal inhibited the establishment of parasites in R. prolixus. These observations indicate that sulfated glycosaminoglycans are one of the determinants for both adhesion of the T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine and the parasite infection in the insect vector, R. prolixus.
Collapse
|
18
|
In vitro and in vivo documentation of quantum dots labeled Trypanosoma cruzi–Rhodnius prolixus interaction using confocal microscopy. Parasitol Res 2009; 106:85-93. [DOI: 10.1007/s00436-009-1631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
|
19
|
Albuquerque-Cunha JM, Gonzalez MS, Garcia ES, Mello CB, Azambuja P, Almeida JCA, de Souza W, Nogueira NFS. Cytochemical characterization of microvillar and perimicrovillar membranes in the posterior midgut epithelium of Rhodnius prolixus. ARTHROPOD STRUCTURE & DEVELOPMENT 2009; 38:31-44. [PMID: 18602023 DOI: 10.1016/j.asd.2008.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 05/30/2008] [Accepted: 06/01/2008] [Indexed: 05/26/2023]
Abstract
Perimicrovillar membranes (PMM) are structures present on the surface of midgut epithelial cells of the hematophagous insect, Rhodnius prolixus. They cover the microvilli and are especially evident 10 days after blood meal, providing the compartmentalization of the enzymatic processes in the intestinal microenvironment. Using an enzyme cytochemical approach, Mg2+-ATPase and ouabain-sensitive Na+K+-ATPase activities were observed in the plasma (or microvillar) membrane (MM) of midgut cells and in the PMM. In contrast, alkaline phosphatase was only detected in MM. Using cationized ferritin and colloidal iron hydroxide particles, anionic sites were found only on the luminal surface of the PMM. Using fluorescein isothiocyanate (FITC)-labeled lectins, residues of alpha-d-galactose, mannose, N-acetyl-neuraminic acid, N-acetyl-d-galactosamine and N-acetyl-galactosamine-alpha-1,3-galactose were detected on the apical surface of posterior midgut epithelial cells. On the other hand, using FITC-labeled neoglycoproteins (NGP) it was possible to detect the presence of carbohydrate binding molecules (CBM) recognizing N-acetyl-d-galactosamine, alpha-d-mannose, alpha-l-fucose and alpha-d-glucose in the posterior midgut epithelium. The use of digitonin showed the presence of sterols in the MM and PMM. These results have led the authors to suggest that for some components the PMM resembles the MM lining the midgut cells of R. prolixus, composing a system which covers the microvilli and stretches to the luminal space.
Collapse
Affiliation(s)
- José M Albuquerque-Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Horto, Campos dos Goytacazes, Rio de Janeiro, CEP 28.015-620, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Araújo CAC, Waniek PJ, Jansen AM. Development of a Trypanosoma cruzi (TcI) isolate in the digestive tract of an unfamiliar vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop 2008; 107:195-9. [PMID: 18579102 DOI: 10.1016/j.actatropica.2008.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/07/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Triatoma brasiliensis is an important vector of Trypanosoma cruzi, commonly found in semi-arid areas of north-eastern Brazil. T. cruzi (TcI) is a widely distributed genotype in all biomes of Brazil. To evaluate selective pressures exerted by a vector species on the development of TcI derived from a different biome (Atlantic Rainforest), T. brasiliensis larvae were infected with the MDID/BR/1994/C48 isolate. Parasite densities of T. cruzi were determined in three regions of the gut at 3, 5 and 10 days after feeding. Percentages of the different stages of the flagellate were identified in Giemsa stained smears. The TcI isolate possessed always significantly higher densities in the rectum than in the small intestine. Epimastigotes reached their highest percentage at 3 days after feeding in the small intestine and trypomastigotes at 10 days after feeding in the rectal wall. Additionally, high metacyclogenesis rates in the T. brasiliensis gut showed competence of this TcI strain to complete its life cycle in this unfamiliar vector species.
Collapse
Affiliation(s)
- Catarina A C Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
21
|
Nogueira NFS, Gonzalez MS, Gomes JE, de Souza W, Garcia ES, Azambuja P, Nohara LL, Almeida IC, Zingales B, Colli W. Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol 2007; 116:120-8. [PMID: 17306256 DOI: 10.1016/j.exppara.2006.12.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/01/2006] [Accepted: 12/08/2006] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi epimastigotes adhere in vivo to the luminal surface of their triatomid vector digestive tract by molecular mechanisms, as yet, unknown. Here, we show that the administration of 0.5 microM epimastigote major surface glycoinositolphospholipids (GIPLs) to the infected bloodmeal inhibits up to 90% parasite infection in Rhodnius prolixus. The parasite behavior was investigated in vitro using fragments of the insect midgut. The addition of GIPLs in concentration as low as 50-100 nM impaired 95% the attachment of epimastigotes. Previous treatment of GIPLs with trifluoroacetic acid to remove the terminal beta-galactofuranosyl residues reversed 50% the epimastigote in vitro attachment. The binding sites of purified GIPLs on the luminal surface of the posterior midgut were exposed by immunofluorescence microscopy. These observations indicate that GIPLs are one of the components involved in the adhesion of T. cruzi to the luminal insect midgut surface and possibly one of the determinants of parasite infection in the insect vector.
Collapse
Affiliation(s)
- Nadir F S Nogueira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|