1
|
Cruz-Saavedra L, Ospina C, Patiño LH, Villar JC, Sáenz Pérez LD, Cantillo-Barraza O, Jaimes-Dueñez J, Ballesteros N, Cáceres T, Vallejo G, Ramírez JD. Enhancing Trypanosomatid Identification and Genotyping with Oxford Nanopore Sequencing: Development and Validation of an 18S rRNA Amplicon-Based Method. J Mol Diagn 2024; 26:323-336. [PMID: 38360211 DOI: 10.1016/j.jmoldx.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Trypanosomatids, including Trypanosoma and Leishmania species, present significant medical and veterinary challenges, causing substantial economic losses, health complications, and even fatalities. Diagnosing and genotyping these species and their genotypes is often complex, involving multiple steps. This study aimed to develop an amplicon-based sequencing (ABS) method using Oxford Nanopore long-read sequencing to enhance Trypanosomatid detection and genotyping. The 18S rDNA gene was targeted for its inter-species conservation. The Trypanosomatid-ABS method effectively distinguished between 11 Trypanosoma species (including Trypanosoma evansi, Trypanosoma theileri, Trypanosoma vivax, and Trypanosoma rangeli) and 6 Trypanosoma cruzi discrete typing units (TcI to TcVI and TcBat), showing strong concordance with conventional methods (κ index of 0.729, P < 0.001). It detected co-infections between Trypanosomatid genera and T. cruzi, with a limit of detection of one parasite per mL. The method was successfully applied to human, animal, and triatomine samples. Notably, TcI predominated in chronic Chagas samples, whereas TcII and TcIV were found in the acute stage. Triatomine vectors exhibited diverse Trypanosomatid infections, with Triatoma dimidiata mainly infected with TcI and occasional TcBat co-infections, and Rhodnius prolixus showing TcI and TcII infections, along with T. rangeli co-infections and mixed TcII infections. Animals were infected with T. vivax, T. theileri, and T. evansi. The ABS method's high resolution, sensitivity, and accuracy make it a valuable tool for understanding Trypanosomatid dynamics, enhancing disease control strategies, and enabling targeted interventions.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Ospina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan C Villar
- Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | | | | | - Jeiczon Jaimes-Dueñez
- Research Group in Animal Sciences-GRICA, Faculty of Veterinary Medicine and Zootechnics, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Tatiana Cáceres
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Gustavo Vallejo
- Tropical Parasitology Research Laboratory, Faculty of Sciences, Universidad del Tolima, Ibagué, Colombia
| | - Juan D Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
2
|
Hagström L, Marques ALP, Nitz N, Hecht MM. The use of qPCR in human Chagas disease: a systematic review. Expert Rev Mol Diagn 2019; 19:875-894. [DOI: 10.1080/14737159.2019.1659729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Ana Luisa Pereira Marques
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Nadjar Nitz
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Mariana Machado Hecht
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| |
Collapse
|
3
|
Vianna EN, Souza e Guimarães RJDP, Souza CR, Gorla D, Diotaiuti L. Chagas disease ecoepidemiology and environmental changes in northern Minas Gerais state, Brazil. Mem Inst Oswaldo Cruz 2017; 112:760-768. [PMID: 29091136 PMCID: PMC5661899 DOI: 10.1590/0074-02760170061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Triatoma sordida and Triatoma pseudomaculata are frequently captured triatomine species in the Brazilian savannah and caatinga biomes, respectively, and in Brazilian domiciles. OBJECTIVES This study identified eco-epidemiological changes in Chagas disease in northern Minas Gerais state, Brazil, and considered the influence of environmental shifts and both natural and anthropogenic effects. METHODS Domicile infestation and Trypanosoma cruzi infection rates were obtained from triatomines and sylvatic reservoirs during the following two time periods: the 1980s and 2007/2008. Entomological and climatic data with land cover classification derived from satellite imagery were integrated into a geographic information system (GIS), which was applied for atmospheric correction, segmentation, image classification, and mapping and to analyse data obtained in the field. Climatic data were analysed and compared to land cover classifications. RESULTS A comparison of current data with data obtained in the 1980's showed that T. sordida colonised domiciliary areas in both periods, and that T. pseudomaculata did not colonise these areas. There was a tendency toward a reduction in T. cruzi infection rates in sylvatic reservoirs, and of triatomines captured in both households and in the sylvatic environment. T. sordida populations have reduced in the sylvatic environment, while T. pseudomaculata showed an expanding trend in the region compared to counts observed in the 1980's in the sylvatic environment. This may be related to high deforestation rates as well as gradual increases in land surface temperature (LST) and temperatures along the years. MAIN CONCLUSIONS Our results suggest a geographical expansion of species into new biomes as a result of anthropogenic and climatic changes that directly interfere with the reproductive and infection processes of vectors.
Collapse
Affiliation(s)
- Elisa Neves Vianna
- Universidade de Brasília, Faculdade de Medicina, Departamento de Patologia, Brasília, DF, Brasil
| | | | | | - David Gorla
- Universidad Nacional de Córdoba, Instituto de Altos Estudios Espaciales Mario Gulich, CONICET, Córdoba, Argentina
| | - Liléia Diotaiuti
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas René Rachou, Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Belo Horizonte, MG, Brasil
| |
Collapse
|
4
|
Hernández C, Cucunubá Z, Flórez C, Olivera M, Valencia C, Zambrano P, León C, Ramírez JD. Molecular Diagnosis of Chagas Disease in Colombia: Parasitic Loads and Discrete Typing Units in Patients from Acute and Chronic Phases. PLoS Negl Trop Dis 2016; 10:e0004997. [PMID: 27648938 PMCID: PMC5029947 DOI: 10.1371/journal.pntd.0004997] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The diagnosis of Chagas disease is complex due to the dynamics of parasitemia in the clinical phases of the disease. The molecular tests have been considered promissory because they detect the parasite in all clinical phases. Trypanosoma cruzi presents significant genetic variability and is classified into six Discrete Typing Units TcI-TcVI (DTUs) with the emergence of foreseen genotypes within TcI as TcIDom and TcI Sylvatic. The objective of this study was to determine the operating characteristics of molecular tests (conventional and Real Time PCR) for the detection of T. cruzi DNA, parasitic loads and DTUs in a large cohort of Colombian patients from acute and chronic phases. METHODOLOGY/PRINCIPAL FINDINGS Samples were obtained from 708 patients in all clinical phases. Standard diagnosis (direct and serological tests) and molecular tests (conventional PCR and quantitative PCR) targeting the nuclear satellite DNA region. The genotyping was performed by PCR using the intergenic region of the mini-exon gene, the 24Sa, 18S and A10 regions. The operating capabilities showed that performance of qPCR was higher compared to cPCR. Likewise, the performance of qPCR was significantly higher in acute phase compared with chronic phase. The median parasitic loads detected were 4.69 and 1.33 parasite equivalents/mL for acute and chronic phases. The main DTU identified was TcI (74.2%). TcIDom genotype was significantly more frequent in chronic phase compared to acute phase (82.1% vs 16.6%). The median parasitic load for TcIDom was significantly higher compared with TcI Sylvatic in chronic phase (2.58 vs.0.75 parasite equivalents/ml). CONCLUSIONS/SIGNIFICANCE The molecular tests are a precise tool to complement the standard diagnosis of Chagas disease, specifically in acute phase showing high discriminative power. However, it is necessary to improve the sensitivity of molecular tests in chronic phase. The frequency and parasitemia of TcIDom genotype in chronic patients highlight its possible relationship to the chronicity of the disease.
Collapse
Affiliation(s)
- Carolina Hernández
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Zulma Cucunubá
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carolina Flórez
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Mario Olivera
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carlos Valencia
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Pilar Zambrano
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Cielo León
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad el Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Alcantara MV, Fragoso SP, Picchi GFA. Knockout confirmation for Hurries: rapid genotype identification of Trypanosoma cruzi transfectants by polymerase chain reaction directly from liquid culture. Mem Inst Oswaldo Cruz 2014; 109:511-3. [PMID: 24936912 PMCID: PMC4155859 DOI: 10.1590/0074-0276140010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/18/2014] [Indexed: 11/24/2022] Open
Abstract
Gene knockout is a widely used approach to evaluate loss-of-function phenotypes
and it can be facilitated by the incorporation of a DNA cassette having a
drug-selectable marker. Confirmation of the correct knockout cassette insertion
is an important step in gene removal validation and has generally been performed
by polymerase chain reaction (PCR) assays following a time-consuming DNA
extraction step. Here, we show a rapid procedure for the identification of
Trypanosoma cruzi transfectants by PCR directly from liquid
culture - without prior DNA extraction. This simple approach enabled us to
generate PCR amplifications from different cultures varying from
106-108 cells/mL. We also show that it is possible to
combine different primer pairs in a multiplex detection reaction and even to
achieve knockout confirmation with an extremely simple interpretation of a
real-time PCR result. Using the “culture PCR” approach, we show for the first
time that we can assess different DNA sequence combinations by PCR directly from
liquid culture, saving time in several tasks for T. cruzi
genotype interrogation.
Collapse
Affiliation(s)
- Monica Visnieski Alcantara
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas-Fiocruz, Curitiba, PR, Brasil
| | - Stenio Perdigão Fragoso
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas-Fiocruz, Curitiba, PR, Brasil
| | | |
Collapse
|
6
|
Perez-Molina JA, Poveda C, Martinez-Perez A, Guhl F, Monge-Maillo B, Fresno M, López-Velez R, Ramírez JD, Girones N. Distribution of Trypanosoma cruzi discrete typing units in Bolivian migrants in Spain. INFECTION GENETICS AND EVOLUTION 2014; 21:440-2. [DOI: 10.1016/j.meegid.2013.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
7
|
Ramírez JD, Guhl F, Rendón LM, Rosas F, Marin-Neto JA, Morillo CA. Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic Chagasic patients. PLoS Negl Trop Dis 2010; 4:e899. [PMID: 21152056 PMCID: PMC2994916 DOI: 10.1371/journal.pntd.0000899] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/29/2010] [Indexed: 11/18/2022] Open
Abstract
Chagas disease caused by Trypanosoma cruzi is a complex disease that is endemic and an important problem in public health in Latin America. The T. cruzi parasite is classified into six discrete taxonomic units (DTUs) based on the recently proposed nomenclature (TcI, TcII, TcIII, TcIV, TcV and TcVI). The discovery of genetic variability within TcI showed the presence of five genotypes (Ia, Ib, Ic, Id and Ie) related to the transmission cycle of Chagas disease. In Colombia, TcI is more prevalent but TcII has also been reported, as has mixed infection by both TcI and TcII in the same Chagasic patient. The objectives of this study were to determine the T. cruzi DTUs that are circulating in Colombian chronic Chagasic patients and to obtain more information about the molecular epidemiology of Chagas disease in Colombia. We also assessed the presence of electrocardiographic, radiologic and echocardiographic abnormalities with the purpose of correlating T. cruzi genetic variability and cardiac disease. Molecular characterization was performed in Colombian adult chronic Chagasic patients based on the intergenic region of the mini-exon gene, the 24Sα and 18S regions of rDNA and the variable region of satellite DNA, whereby the presence of T.cruzi I, II, III and IV was detected. In our population, mixed infections also occurred, with TcI-TcII, TcI-TcIII and TcI-TcIV, as well as the existence of the TcI genotypes showing the presence of genotypes Ia and Id. Patients infected with TcI demonstrated a higher prevalence of cardiac alterations than those infected with TcII. These results corroborate the predominance of TcI in Colombia and show the first report of TcIII and TcIV in Colombian Chagasic patients. Findings also indicate that Chagas cardiomyopathy manifestations are more correlated with TcI than with TcII in Colombia.
Collapse
Affiliation(s)
- Juan David Ramírez
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Guhl
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Lina María Rendón
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Fernando Rosas
- Electrofisiología, Clínica Abood Shaio, Bogotá, Colombia
| | - Jose A. Marin-Neto
- Cardiology Division, Internal Medicine Department, Medical School of Ribeirao Preto, Universidad de Sao Paulo, Sao Paulo, Brazil
| | - Carlos A. Morillo
- Department of Medicine, Cardiology Division, McMaster University, PHRI-HHSC, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Reporte del primer caso de enfermedad de Chagas transplacentaria analizado por AP-PCR en Moniquirá, Boyacá. BIOMEDICA 2009. [DOI: 10.7705/biomedica.v29i4.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Duffy T, Bisio M, Altcheh J, Burgos JM, Diez M, Levin MJ, Favaloro RR, Freilij H, Schijman AG. Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in chagas disease patients. PLoS Negl Trop Dis 2009; 3:e419. [PMID: 19381287 PMCID: PMC2667272 DOI: 10.1371/journal.pntd.0000419] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/24/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This report describes a real-time PCR (Q-PCR) strategy to quantify Trypanosoma cruzi (T. cruzi) DNA in peripheral blood samples from Chagas disease patients targeted to conserved motifs within the repetitive satellite sequence. METHODOLOGY/PRINCIPAL FINDINGS The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 10(6) and 10(7) for Silvio X10 cl1 (T. cruzi I) and Cl Brener stocks (T. cruzi IIe), respectively, an efficiency of 99%, and a coefficient of determination (R(2)) of 0.998. In order to express accurately the parasitic loads: (1) we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2) results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3) a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR). The Q-PCR strategy was applied (1) to estimate basal parasite loads in 43 pediatric Chagas disease patients, (2) to follow-up 38 of them receiving treatment with benznidazole, and (3) to monitor three chronic Chagas heart disease patients who underwent heart-transplantation and displayed events of clinical reactivation due to immunosupression. CONCLUSION/SIGNIFICANCE All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients.
Collapse
Affiliation(s)
- Tomas Duffy
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Margarita Bisio
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Jaime Altcheh
- Parasitology Unit of the “Ricardo Gutierrez” Children's Hospital, Buenos Aires, Argentina
| | - Juan Miguel Burgos
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Mirta Diez
- Transplant Unit of the Instituto de Cardiología y Cirugía Cardiovascular, Fundación “René Favaloro”, Buenos Aires, Argentina
| | - Mariano Jorge Levin
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Roberto Rene Favaloro
- Transplant Unit of the Instituto de Cardiología y Cirugía Cardiovascular, Fundación “René Favaloro”, Buenos Aires, Argentina
| | - Hector Freilij
- Parasitology Unit of the “Ricardo Gutierrez” Children's Hospital, Buenos Aires, Argentina
| | - Alejandro Gabriel Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|