1
|
Lu Y, Yang S, Chen W, Xie H, Xu C. Advances in Migratory Plant Endoparasitic Nematode Effectors. Int J Mol Sci 2024; 25:6435. [PMID: 38928141 PMCID: PMC11203926 DOI: 10.3390/ijms25126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Unlike sedentary plant-parasitic nematodes, migratory plant endoparasitic nematodes (MPENs) are unable to establish permanent feeding sites, and all developmental stages (except eggs) can invade and feed on plant tissues and can be easily overlooked because of the unspecific symptoms. They cause numerous economic losses in agriculture, forestry, and horticulture. In order to understand the pathogenetic mechanism of MPENs, here we describe research on functions and host targets focused on currently identified effectors from six MPENs, namely Radopholus similis, Pratylenchus spp., Ditylenchus destructor, Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Hirschmanniella oryzae. This information will provide valuable insights into understanding MPEN effectors and for future fostering advancements in plant protection.
Collapse
Affiliation(s)
| | | | | | | | - Chunling Xu
- Research Center of Nematodes of Plant Quarantine, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Cardoso JMS, Manadas B, Abrantes I, Robertson L, Arcos SC, Troya MT, Navas A, Fonseca L. Pine wilt disease: what do we know from proteomics? BMC PLANT BIOLOGY 2024; 24:98. [PMID: 38331735 PMCID: PMC10854151 DOI: 10.1186/s12870-024-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Pine wilt disease (PWD) is a devastating forest disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, a migratory endoparasite that infects several coniferous species. During the last 20 years, advances have been made for understanding the molecular bases of PWN-host trees interactions. Major advances emerged from transcriptomic and genomic studies, which revealed some unique features related to PWN pathogenicity and constituted fundamental data that allowed the development of postgenomic studies. Here we review the proteomic approaches that were applied to study PWD and integrated the current knowledge on the molecular basis of the PWN pathogenicity. Proteomics has been useful for understanding cellular activities and protein functions involved in PWN-host trees interactions, shedding light into the mechanisms associated with PWN pathogenicity and being promising tools to better clarify host trees PWN resistance/susceptibility.
Collapse
Affiliation(s)
- Joana M S Cardoso
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, Coimbra, 3004-504, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga - Faculdade de Medicina, 1ºandar - POLO I, Coimbra, 3004-504, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| | - Lee Robertson
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Susana C Arcos
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Maria Teresa Troya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Luís Fonseca
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| |
Collapse
|
3
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
4
|
The Threat of Pests and Pathogens and the Potential for Biological Control in Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12111579] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forests are an essential component of the natural environment, as they support biodiversity, sequester carbon, and play a crucial role in biogeochemical cycles—in addition to producing organic matter that is necessary for the function of terrestrial organisms. Forests today are subject to threats ranging from natural occurrences, such as lightning-ignited fires, storms, and some forms of pollution, to those caused by human beings, such as land-use conversion (deforestation or intensive agriculture). In recent years, threats from pests and pathogens, particularly non-native species, have intensified in forests. The damage, decline, and mortality caused by insects, fungi, pathogens, and combinations of pests can lead to sizable ecological, economic, and social losses. To combat forest pests and pathogens, biocontrol may be an effective alternative to chemical pesticides and fertilizers. This review of forest pests and potential adversaries in the natural world highlights microbial inoculants, as well as research efforts to further develop biological control agents against forest pests and pathogens. Recent studies have shown promising results for the application of microbial inoculants as preventive measures. Other studies suggest that these species have potential as fertilizers.
Collapse
|
5
|
Ding S, Wang D, Xu C, Yang S, Cheng X, Peng X, Chen C, Xie H. A new fungus-mediated RNAi method established and used to study the fatty acid and retinol binding protein function of the plant-parasitic nematode Aphelenchoides besseyi. RNA Biol 2021; 18:1424-1433. [PMID: 33218290 PMCID: PMC8489930 DOI: 10.1080/15476286.2020.1852779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/03/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool for gene functional analysis of plant-parasitic nematodes (PPNs). RNAi involving soaking in a dsRNA solution and in planta methods is commonly applied in the study of gene function in PPNs. However, certain problems restrict the application of these methods. Therefore, more convenient and effective RNAi methods need to be established for different PPNs according to their biological characteristics. In this study, the fatty acid and retinoid binding protein genes (Ab-far-1, Ab-far-4, and combinatorial Ab-far-1 and Ab-far-4) of the rice white tip nematode (RWTN), Aphelenchoides besseyi, were used as target genes to construct a fungal RNAi vector, and the Ab-far-n dsRNA transgenic Botrytis cinerea (ARTBn) were generated using Agrobacterium-mediated transformation technology. After RWTN feeding on ARTBn, the expression of Ab-far-1 and Ab-far-4 in the nematodes was efficiently silenced, and the reproduction and pathogenicity of the nematodes were clearly inhibited. The Ab-far-1 and Ab-far-4 co-RNAi effects were better than the effects when each gene was individually targeted with RNAi. Additionally, the RNAi induced when RWTNs fed on ARTB1 were persistent and heritable. Thus, a new method of fungus-mediated RNAi was established for fungivorous PPNs and was verified as effective and applicable to the study of nematode gene function. This technique will remove the technological bottlenecks and provide a new method to studying the multiple genes with polygene co-RNAi in fungivorous PPNs. This study also provides a theoretical basis and new thought for further study of the gene function in PPNs.Abbreviations: FAR(Fatty acid and retinol-binding proteins); RWTN (The rice white tip nematode, Aphelenchoides besseyi); Ab-far-n (Fatty acid and retinol binding protein gene of A. besseyi); ARTB1 (Ab-far-1 hpRNA transgenic Botrytis cinerea); ARTB4 (Ab-far-4 hpRNA transgenic Botrytis cinerea); ARTB1/4 (combinatorial Ab-far-1 and Ab-far-4 hpRNA transgenic B. cinerea); EVTB (Empty vector transgenic B. cinerea); GRTB (eGFP hpRNA transgenic B. cinerea); WTB (Wild-type B. cinerea).
Collapse
Affiliation(s)
- Shanwen Ding
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Dongwei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, People’s Republic of China
| | - Chunling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Sihua Yang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xi Cheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Xiaofang Peng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Novel Functions of the Fatty Acid and Retinol Binding Protein (FAR) Gene Family Revealed by Fungus-Mediated RNAi in the Parasitic Nematode, Aphelenchoides besseyi. Int J Mol Sci 2021; 22:ijms221810057. [PMID: 34576221 PMCID: PMC8471444 DOI: 10.3390/ijms221810057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool for the analysis of gene function in nematodes. Fatty acid and retinol binding protein (FAR) is a protein that only exists in nematodes and plays an important role in their life activities. The rice white-tip nematode (RWTN), Aphelenchoides besseyi, is a migratory endoparasitic plant nematode that causes serious damage in agricultural production. In this study, the expression levels of eight RWTN genes were effectively decreased when RWTN was fed Ab-far-n (n: 1–8) hairpin RNA transgenic Botrytis cinerea (ARTBn). These functions of the far gene family were identified to be consistent and diverse through phenotypic changes after any gene was silenced. Such consistency indicates that the body lengths of the females were significantly shortened after silencing any of the eight Ab-far genes. The diversities were mainly manifested as follows: (1) Reproduction of nematodes was clearly inhibited after Ab-far-1 to Ab-far-4 were silenced. In addition, silencing Ab-far-2 could inhibit the pathogenicity of nematodes to Arabidopsis; (2) gonad length of female nematodes was significantly shortened after Ab-far-2 and Ab-far-4 were silenced; (3) proportion of male nematodes significantly increased in the adult population after Ab-far-1, Ab-far-3, and Ab-far-5 were silenced, whereas the proportion of adult nematodes significantly decreased in the nematode population after Ab-far-4 were silenced. (4) Fat storage of nematodes significantly decreased after Ab-far-3, Ab-far-4, and Ab-far-7 were silenced. To our knowledge, this is the first study to demonstrate that Ab-far genes affect sex formation and lipid metabolism in nematodes, which provides valuable data for further study and control of RWTNs.
Collapse
|
7
|
Zhao M, Wickham JD, Zhao L, Sun J. Major ascaroside pheromone component asc-C5 influences reproductive plasticity among isolates of the invasive species pinewood nematode. Integr Zool 2020; 16:893-907. [PMID: 33264496 DOI: 10.1111/1749-4877.12512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pheromones are communication chemicals and regulatory signals used by animals and represent unique tools for organisms to mediate behaviors and make "decisions" to maximize their fitness. Phenotypic plasticity refers to the innate capacity of a species to tolerate a greater breadth of environmental conditions across which it adapts to improve its survival, reproduction, and fitness. The pinewood nematode, Bursaphelenchus xylophilus, an invasive nematode species, was accidentally introduced from North America into Japan, China, and Europe; however, few studies have investigated its pheromones and phenotypic plasticity as a natural model. Here, we demonstrated a novel phenomenon, in which nematodes under the condition of pheromone presence triggered increased reproduction in invasive strains (JP1, JP2, CN1, CN2, EU1, and EU2), while it simultaneously decreased reproduction in native strains (US1 and US2). The bidirectional effect on fecundity, mediated by presence/absence of pheromones, is henceforth termed pheromone-regulative reproductive plasticity (PRRP). We further found that synthetic ascaroside asc-C5 (ascr#9), the major pheromone component, plays a leading role in PRRP and identified 2 candidate receptor genes, Bxydaf-38 and Bxysrd-10, involved in perceiving asc-C5. These results suggest that plasticity of reproductive responses to pheromones in pinewood nematode may increase its fitness in novel environments following introduction. This opens up a new perspective for invasion biology and presents a novel strategy of invasion, suggesting that pheromones, in addition to their traditional roles in chemical signaling, can influence the reproductive phenotype among native and invasive isolates. In addition, this novel mechanism could broadly explain, through comparative studies of native and invasive populations of animals, a potential underlying factor behind of the success of other biological invasions.
Collapse
Affiliation(s)
- Meiping Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Liu J, Peng H, Su W, Liu M, Huang W, Dai L, Peng D. HaCRT1 of Heterodera avenae Is Required for the Pathogenicity of the Cereal Cyst Nematode. FRONTIERS IN PLANT SCIENCE 2020; 11:583584. [PMID: 33329646 PMCID: PMC7717957 DOI: 10.3389/fpls.2020.583584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Cereal cyst nematodes are sedentary biotrophic endoparasites that secrete effector proteins into plant tissues to transit normal cells into specialized feeding sites and suppress plant defenses. To understand the function of nematode effectors in Heterodera avenae, here, we identified a calreticulin protein HaCRT1, which could suppress the cell death induced by Bax when expressed in Nicotiana benthamiana. HaCRT1 is synthetized in the subventral gland cells of pre-parasitic second-stage nematodes. Real-time PCR assays indicated that the expression of HaCRT1 was highest in parasitic second-stage juveniles. The expression of an HaCRT1-RFP fusion in N. benthamiana revealed that it was localized in the endoplasmic reticulum of the plant cell. The ability of H. avenae infecting plants was significantly reduced when HaCRT1 was knocked down by RNA interference in vitro. Arabidopsis thaliana plants expressing HaCRT1 were more susceptible than wild-type plants to Pseudomonas syringae. The induction of defense-related genes, PAD4, WRKY33, FRK1, and WRKY29, after treatment with flg22 was suppressed in HaCRT1-transgenic plants. Also, the ROS accumulation induced by flg22 was reduced in the HaCRT1-transgenic plants compared to wild-type plants. HaCRT1 overexpression increased the cytosolic Ca2+ concentration in A. thaliana. These data suggested that HaCRT1 may contribute to the pathogenicity of H. avenae by suppressing host basal defense.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Su
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Maoyan Liu
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangying Dai
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Identification and Characterization of a Fatty Acid- and Retinoid-Binding Protein Gene ( Ar-far-1) from the Chrysanthemum Foliar Nematode, Aphelenchoides ritzemabosi. Int J Mol Sci 2019; 20:ijms20225566. [PMID: 31703422 PMCID: PMC6888133 DOI: 10.3390/ijms20225566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/04/2022] Open
Abstract
The chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi, is a migratory, plant-parasitic nematode that is widely distributed and infects the aboveground parts of many plants. The fatty acid- and retinoid-binding proteins (FAR) are nematode-specific proteins that are involved in the development, reproduction, and infection of nematodes and are secreted into the tissues to disrupt the plant defense reaction. In this study, we obtained the full-length sequence of the FAR gene (Ar-far-1) from CFN, which is 727 bp and includes a 546 bp ORF that encodes 181 amino acids. Ar-FAR-1 from CFN has the highest sequence similarity to Ab-FAR-1 from A. besseyi, and they are located within the same branch of the phylogenetic tree. Fluorescence-based ligand-binding analysis confirmed that recombinant Ar-FAR-1 was bound to fatty acids and retinol. Ar-far-1 mRNA was expressed in the muscle layer, intestine, female genital system, and egg of CFN, and more highly expressed in females than in males among the four developmental stages of CFN. We demonstrated that the reproduction number and infection capacity of CFN decreased significantly when Ar-far-1 was effectively silenced by in vitro RNAi. Ar-far-1 plays an important role in the development, reproduction, infectivity, and pathogenesis of CFN and may be used as an effective target gene for the control of CFN. The results provide meaningful data about the parasitic and pathogenic genes of CFN to study the interaction mechanism between plant-parasitic nematodes and hosts.
Collapse
|
10
|
Mathew R, Opperman CH. The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes. PLoS One 2019; 14:e0224391. [PMID: 31652297 PMCID: PMC6814228 DOI: 10.1371/journal.pone.0224391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022] Open
Abstract
Radopholus similis, commonly known as the burrowing nematode, is an important pest of myriad crops and ornamentals including banana (Musa spp.) and Citrus spp. In order to characterize the potential role of putative effectors encoded by R. similis genes we compared predicted proteins from a draft R. similis genome with other plant-parasitic nematodes in order to define the suite of excreted/secreted proteins that enable it to function as a parasite and to ascertain the phylogenetic position of R. similis in the Tylenchida order. Identification and analysis of candidate genes encoding for key plant cell-wall degrading enzymes including GH5 cellulases, PL3 pectate lyases and GH28 polygalactouranase revealed a pattern of occurrence similar to other PPNs, although with closest phylogenetic associations to the sedentary cyst nematodes. We also observed the absence of a suite of effectors essential for feeding site formation in the cyst nematodes. Clustering of various orthologous genes shared by R. similis with other nematodes showed higher overlap with the cyst nematodes than with the root-knot or other migratory endoparasitic nematodes. The data presented here support the hypothesis that R. similis is evolutionarily closer to the cyst nematodes, however, differences in the effector repertoire delineate ancient divergence of parasitism, probably as a consequence of niche specialization. These similarities and differences further underscore distinct evolutionary relationships during the evolution of parasitism in this group of nematodes.
Collapse
Affiliation(s)
- Reny Mathew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| |
Collapse
|
11
|
Xue Q, Wu XQ, Zhang WJ, Deng LN, Wu MM. Cathepsin L-like Cysteine Proteinase Genes Are Associated with the Development and Pathogenicity of Pine Wood Nematode, Bursaphelenchus xylophilus. Int J Mol Sci 2019; 20:E215. [PMID: 30626082 PMCID: PMC6337200 DOI: 10.3390/ijms20010215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/01/2019] [Indexed: 01/01/2023] Open
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is the pathogen of pine wilt disease (PWD), resulting in huge losses in pine forests. However, its pathogenic mechanism remains unclear. The cathepsin L-like cysteine proteinase (CPL) genes are multifunctional genes related to the parasitic abilities of plant-parasitic nematodes, but their functions in PWN remain unclear. We cloned three cpl genes of PWN (Bx-cpls) by rapid amplification of cDNA ends (RACE) and analyzed their characteristics using bioinformatic methods. The tissue specificity of cpl gene of PWN (Bx-cpl) was studied using in situ mRNA hybridization (ISH). The functions of Bx-cpls in development and pathogenicity were investigated using real-time quantitative PCR (qPCR) and RNA interference (RNAi). The results showed that the full-length cDNAs of Bx-cpl-1, Bx-cpl-2, and Bx-cpl-3 were 1163 bp, 1305 bp, and 1302 bp, respectively. Bx-cpls could accumulate specifically in the egg, intestine, and genital system of PWN. During different developmental stages of PWN, the expression of Bx-cpls in the egg stage was highest. After infection, the expression levels of Bx-cpls increased and reached their highest at the initial stage of PWD, then declined gradually. The silencing of Bx-cpl could reduce the feeding, reproduction, and pathogenicity of PWN. These results revealed that Bx-cpls play multiple roles in the development and pathogenic processes of PWN.
Collapse
Affiliation(s)
- Qi Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Wan-Jun Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| | - Li-Na Deng
- Yancheng Institute of Technology, School of Ocean and Biological Engineering, Yancheng 224051, China.
| | - Miao-Miao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Ali MA, Anjam MS, Nawaz MA, Lam HM, Chung G. Signal Transduction in Plant⁻Nematode Interactions. Int J Mol Sci 2018; 19:ijms19061648. [PMID: 29865232 PMCID: PMC6032140 DOI: 10.3390/ijms19061648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
To successfully invade and infect their host plants, plant parasitic nematodes (PPNs) need to evolve molecular mechanisms to overcome the defense responses from the plants. Nematode-associated molecular patterns (NAMPs), including ascarosides and certain proteins, while instrumental in enabling the infection, can be perceived by the host plants, which then initiate a signaling cascade leading to the induction of basal defense responses. To combat host resistance, some nematodes can inject effectors into the cells of susceptible hosts to reprogram the basal resistance signaling and also modulate the hosts’ gene expression patterns to facilitate the establishment of nematode feeding sites (NFSs). In this review, we summarized all the known signaling pathways involved in plant–nematode interactions. Specifically, we placed particular focus on the effector proteins from PPNs that mimic the signaling of the defense responses in host plants. Furthermore, we gave an updated overview of the regulation by PPNs of different host defense pathways such as salicylic acid (SA)/jasmonic acid (JA), auxin, and cytokinin and reactive oxygen species (ROS) signaling to facilitate their parasitic successes in plants. This review will enhance the understanding of the molecular signaling pathways involved in both compatible and incompatible plant–nematode interactions.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan.
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Shahzad Anjam
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | | | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| |
Collapse
|
13
|
Wang DW, Xu CL, Ding SW, Huang X, Cheng X, Zhang C, Chen C, Xie H. Identification and function of FAR protein family genes from a transcriptome analysis of Aphelenchoides besseyi. Bioinformatics 2018; 34:2936-2943. [DOI: 10.1093/bioinformatics/bty209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/29/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shan-Wen Ding
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xi Cheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Chao Zhang
- Institute of Genetic Engineering, Department of biochemistry, College of Basic Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Ali MA, Azeem F, Li H, Bohlmann H. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1699. [PMID: 29046680 PMCID: PMC5632807 DOI: 10.3389/fpls.2017.01699] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 05/03/2023]
Abstract
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad A. Ali ;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
15
|
Wang K, Li Y, Huang X, Wang DW, Xu CL, Xie H. The cathepsin S cysteine proteinase of the burrowing nematode Radopholus similis is essential for the reproduction and invasion. Cell Biosci 2016; 6:39. [PMID: 27293544 PMCID: PMC4901441 DOI: 10.1186/s13578-016-0107-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode Radopholus similis is an important migratory endoparasite of plants. Cysteine proteinases such as cathepsin S (CPS) play key roles during embryonic development, invasion, and pathogenesis in nematodes and many other animal parasites. This study was designed to investigate the molecular characterization and functions of a cathepsin S protease in R. similis and to find new targets for its control. RESULTS Rs-CPS of R. similis, Hg-CPS of Heterodera glycines and Ha-CPS of H. avenae are closely genetically related and share the same branch of the phylogenetic tree. Rs-cps is a multi-copy gene that is expressed in the esophageal glands, ovaries, testes, vas deferens, and eggs of R. similis. Rs-cps mRNA transcripts are expressed at varying levels during all developmental stages of R. similis. Rs-cps expression was highest in females. The neurostimulant octopamine did not significantly enhance the ingestion of the dsRNA soaking solution by R. similis but instead had a detrimental effect on nematode activity. The dsRNA soaking solution diffused into the body of R. similis not only through the esophageal lumen but also through the amphids, excretory duct, vagina, anus and cloacal orifice. We confirmed that RNAi significantly suppressed the expression level of Rs-cps and reproductive capability and pathogenicity of R. similis. CONCLUSIONS Our results demonstrate that Rs-cps plays important roles in the reproduction, parasitism and pathogenesis of R. similis and could be used as a new potential target for controlling plant parasitic nematodes.
Collapse
Affiliation(s)
- Ke Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Yu Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China.,Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
16
|
Kim TK, Ibelli AMG, Mulenga A. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade. Ticks Tick Borne Dis 2016; 6:91-101. [PMID: 25454607 DOI: 10.1016/j.ttbdis.2014.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 10/13/2014] [Indexed: 01/02/2023]
Abstract
In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it's plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it's current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation. We discuss our findings in the context of tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, United States
| | | | | |
Collapse
|
17
|
Wang M, Wang D, Zhang X, Wang X, Liu W, Hou X, Huang X, Xie B, Cheng X. Double-stranded RNA-mediated interference of dumpy genes in Bursaphelenchus xylophilus by feeding on filamentous fungal transformants. Int J Parasitol 2016; 46:351-60. [PMID: 26953254 DOI: 10.1016/j.ijpara.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is a valuable tool for studying gene function in vivo and provides a functional genomics platform in a wide variety of organisms. The pinewood nematode, Bursaphelenchus xylophilus, is a prominent invasive plant-parasitic nematode and has become a serious worldwide threat to forest ecosystems. Presently, the complete genome sequence of B. xylophilus has been published, and research involving genome-wide functional analyses is likely to increase. In this study, we describe the construction of an effective silencing vector, pDH-RH, which contains a transcriptional unit for a hairpin loop structure. Utilising this vector, double-stranded (ds)RNAs with sequences homologous to the target genes can be expressed in a transformed filamentous fungus via Agrobacterium tumefaciens-mediated transformation technology, and can subsequently induce the knockdown of target gene mRNA expression in B. xylophilus by allowing the nematode to feed on the fungal transformants. Four dumpy genes (Bx-dpy-2, 4, 10 and 11) were used as targets to detect RNAi efficiency. By allowing the nematode to feed on target gene-transformed Fusarium oxysporum strains, target transcripts were knocked down 34-87% compared with those feeding on the wild-type strain as determined by real-time quantitative PCR (RT-qPCR). Morphological RNAi phenotypes were observed, displaying obviously reduced body length; weak dumpy or small (short and thin) body size; or general abnormalities. Moreover, compensatory regulation and non-specific silencing of dpy genes were found in B. xylophilus. Our results indicate that RNAi delivery by feeding in B. xylophilus is a successful technique. This platform may provide a new opportunity for undertaking RNAi-based, genome-wide gene functional studies in vitro in B. xylophilus. Moreover, as B. xylophilus feeds on endophytic fungi when a host has died, RNAi feeding technology will offer the prospect for developing a novel control strategy for the nematode. Furthermore, this platform may also be applicable to other parasitic nematodes that have a facultative, fungivorous habit.
Collapse
Affiliation(s)
- Meng Wang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Diandong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Yangtze Normal University, Chongqing 408100, China
| | - Xi Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xu Wang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wencui Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaomeng Hou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoyin Huang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing 100875, China.
| |
Collapse
|
18
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
19
|
Li Y, Wang K, Xie H, Wang DW, Xu CL, Huang X, Wu WJ, Li DL. Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis. Int J Biol Sci 2015; 11:1073-87. [PMID: 26221074 PMCID: PMC4515818 DOI: 10.7150/ijbs.12065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/21/2015] [Indexed: 11/11/2022] Open
Abstract
Radopholus similis is an important plant parasitic nematode which severely harms many crops. Cathepsin B is present in a wide variety of organisms, and plays an important role in many parasites. Understanding cathepsin B of R. similis would allow us to find new targets and approaches for its control. In this study, we found that Rs-cb-1 mRNA was expressed in esophageal glands, intestines and gonads of females, testes of males, juveniles and eggs in R. similis. Rs-cb-1 expression was the highest in females, followed by juveniles and eggs, and was the lowest in males. The maximal enzyme activity of Rs-CB-1 was detected at pH 6.0 and 40 °C. Silencing of Rs-cb-1 using in vitro RNAi (Soaking with dsRNA in vitro) not only significantly inhibited the development and hatching of R. similis, but also greatly reduced its pathogenicity. Using in planta RNAi, we confirmed that Rs-cb-1 expression in nematodes were significantly suppressed and the resistance to R. similis was significantly improved in T2 generation transgenic tobacco plants expressing Rs-cb-1 dsRNA. The genetic effects of in planta RNAi-induced gene silencing could be maintained in the absence of dsRNA for at least two generations before being lost, which was not the case for the effects induced by in vitro RNAi. Overall, our results first indicate that Rs-cb-1 plays key roles in the development, hatching and pathogenesis of R. similis, and that in planta RNAi is an effective tool in studying gene function and genetic engineering of plant resistance to migratory plant parasitic nematodes.
Collapse
Affiliation(s)
- Yu Li
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Ke Wang
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Hui Xie
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Wei Wang
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Ling Xu
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Xin Huang
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Jia Wu
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Dan-Lei Li
- 2. College of Forestry, Northeast Forestry University, Haerbin 150040, China
| |
Collapse
|
20
|
Li Y, Wang K, Xie H, Wang YT, Wang DW, Xu CL, Huang X, Wang DS. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis. PLoS One 2015; 10:e0129351. [PMID: 26061142 PMCID: PMC4465493 DOI: 10.1371/journal.pone.0129351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis.
Collapse
Affiliation(s)
- Yu Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ke Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yan-Tao Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Paulownia Research and Development Center of State Forestry Administration, Zhengzhou, Henan, 450003, China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Chun-Lin Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - De-Sen Wang
- Department of Entomology, Rutgers University, New Brunswick, New Jersey, 08901, United States of America
| |
Collapse
|
21
|
Feng H, Wei L, Chen H, Zhou Y. Calreticulin is required for responding to stress, foraging, and fertility in the white-tip nematode, Aphelenchoides besseyi. Exp Parasitol 2015; 155:58-67. [PMID: 25999293 DOI: 10.1016/j.exppara.2015.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/10/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
Abstract
Calreticulin (CRT) regulates a wide array of cellular responses in physiological and pathological processes. A full-length cDNA-encoding CRT protein, namely AbCRT-1, was isolated from Aphelenchoides besseyi, an ectoparasitic plant nematode and the agent of white tip disease of rice. The deduced amino acid sequence of AbCRT-1 was highly homologous with other nematode CRTs, and showed the closest evolutionary relationship with BxCRT-1. In-situ hybridization showed that AbCRT-1 is specifically located in the oesophageal gland and gonads of A. besseyi, suggesting its potential role in parasitism and reproduction. Quantity real-time PCR analysis showed that AbCRT-1 is highly expressed in female nematodes but poorly expressed in eggs, juveniles, and male nematodes. Exposing the nematode to relatively low osmotic stress promotes the transcription of AbCRT-1 whereas extreme desiccation suppresses the transcription significantly. Nematodes in which AbCRT-1 mRNA level had been knocked down by soaking them in AbCRT-1 dsRNA solution distributed randomly and did not aggregate temporally, with a decreased capacity of food discernment. Thus the affected nematodes were markedly less fecund. These results demonstrate that AbCRT-1 is required in A. besseyi for responding to stress, foraging, and fertility.
Collapse
Affiliation(s)
- Hui Feng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
22
|
Molecular characterization of putative parasitism genes in the plant-parasitic nematode Meloidogyne hispanica. J Helminthol 2014; 90:28-38. [PMID: 25319213 DOI: 10.1017/s0022149x1400073x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Meloidogyne hispanica (Mhi) is a difficult-to-control polyphagous root-knot nematode (RKN) species of emerging importance for economically valuable crops. Nematode secretions are likely to be the first signals perceived by the plant and are thought to be involved in various aspects of the plant-nematode interaction. The aims of this work were to identify and characterize M. hispanica parasitism genes: cathepsin L cysteine protease (cpl-1), calreticulin (crt-1), β-1,4-endoglucanase-1 (eng-1) and manganese superoxide dismutase (mnsod). As there are no genomic data available for M. hispanica, primers were designed from the conserved regions of the putative parasitism genes in M. incognita and M. hapla and used to amplify the genes in M. hispanica, which led to the successful amplification of these genes in M. hispanica. Partial gene sequences were also obtained for M. arenaria, M. hapla, M. hispanica, M. incognita and M. javanica cpl-1, crt-1, eng-1 and mnsod genes, and their phylogenetic relationship analysed. In order to determine whether these genes are differentially expressed during M. hispanica development, cDNA was amplified from mRNA isolated from eggs, second-stage juveniles (J2) and females. Amplification products were observed from cDNA of all developmental stages for the Mhi-cpl-1 and Mhi-crt-1 genes. However, the gene Mhi-crt-1 exhibited intense amplification bands in females, while the Mhi-eng-1 gene was equally amplified in eggs and J2 and the Mhi-mnsod gene was only expressed in eggs. In comparison to the other RKN species, the genes Mhi-eng-1 and Mhi-mnsod showed transcription in different nematode developmental stages.
Collapse
|
23
|
Goverse A, Smant G. The activation and suppression of plant innate immunity by parasitic nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:243-65. [PMID: 24906126 DOI: 10.1146/annurev-phyto-102313-050118] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.
Collapse
Affiliation(s)
- Aska Goverse
- Laboratory of Nematology, Wageningen University, 6708 PD Wageningen, The Netherlands;
| | | |
Collapse
|
24
|
Joseph S, Gheysen G, Subramaniam K. RNA interference in Pratylenchus coffeae: knock down of Pc-pat-10 and Pc-unc-87 impedes migration. Mol Biochem Parasitol 2012; 186:51-9. [PMID: 23043990 DOI: 10.1016/j.molbiopara.2012.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 11/26/2022]
Abstract
Many of the currently available nematicides used in nematode control are hazardous to the user, environment and beneficial non-target organisms. Therefore the need to develop alternative methods for nematode control such as the development of nematode-resistant crops through RNA-mediated interference (RNAi) holds great promise. The Caenorhabditis elegans genes unc-87 and pat-10 are essential components of the body wall muscle and are thus required for nematode movement. The Pratylenchus coffeae orthologs of these two genes, namely Pc-pat-10 and Pc-unc-87 were cloned and used to test RNAi in this migratory nematode. RNAi was performed by soaking P. coffeae in a solution containing dsRNA of either Pc-unc-87 or Pc-pat-10. The levels of both Pc-unc-87 and Pc-pat-10 mRNAs were significantly reduced in a sequence-specific manner in nematodes soaked for 24h. Nematodes incubated in Pc-pat-10 dsRNA appeared straight and rigid while Pc-unc-87 resulted in nematodes that were coiled, in contrast to the regular sinusoidal movement of the control nematodes. While 88.4 ± 3.9% of the control nematodes successfully migrated to the bottom of the sand column in 12h, only 6 ± 1.3% and 7 ± 2.3%, respectively, of the Pc-pat-10 (RNAi) and Pc-unc-87 (RNAi) nematodes successfully migrated to the bottom. However a recovery in movement as well as transcript level was observed in both treatments when the nematodes were incubated in distilled water for 24h following the dsRNA soaking. The recovery rate was slower in Pc-unc-87 when compared to Pc-pat-10. In summary, this study demonstrates the existence of the RNAi phenomenon in P. coffeae and shows that the function of unc-87 and pat-10 genes has been evolutionarily conserved among free-living and plant parasitic nematodes.
Collapse
Affiliation(s)
- Soumi Joseph
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, UP, India
| | | | | |
Collapse
|
25
|
Lilley CJ, Davies LJ, Urwin PE. RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 2012; 139:630-40. [PMID: 22217302 DOI: 10.1017/s0031182011002071] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYRNA interference (RNAi) has emerged as an invaluable gene-silencing tool for functional analysis in a wide variety of organisms, particularly the free-living model nematode Caenorhabditis elegans. An increasing number of studies have now described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when nematodes take up double stranded RNA (dsRNA) or short interfering RNAs (siRNAs) that elicit a systemic RNAi response. Despite many successful reports, there is still poor understanding of the range of factors that influence optimal gene silencing. Recent in vitro studies have highlighted significant variations in the RNAi phenotype that can occur with different dsRNA concentrations, construct size and duration of soaking. Discrepancies in methodology thwart efforts to reliably compare the efficacy of RNAi between different nematodes or target tissues. Nevertheless, RNAi has become an established experimental tool for plant parasitic nematodes and also offers the prospect of being developed into a novel control strategy when delivered from transgenic plants.
Collapse
Affiliation(s)
- C J Lilley
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
26
|
Maule AG, McVeigh P, Dalzell JJ, Atkinson L, Mousley A, Marks NJ. An eye on RNAi in nematode parasites. Trends Parasitol 2011; 27:505-13. [PMID: 21885343 DOI: 10.1016/j.pt.2011.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
RNA interference (RNAi) has revolutionised approaches to gene function determination. From a parasitology perspective, gene function studies have the added dimension of providing validation data, increasingly deemed essential to the initial phases of drug target selection, pre-screen development. Notionally advantageous to those working on nematode parasites is the fact that Caenorhabditis elegans research spawned RNAi discovery and continues to seed our understanding of its fundamentals. Unfortunately, RNAi data for nematode parasites illustrate variable and inconsistent susceptibilities which undermine confidence and exploitation. Now well-ensconced in an era of nematode parasite genomics, we can begin to unscramble this variation.
Collapse
Affiliation(s)
- Aaron G Maule
- Molecular Bioscience-Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, UK.
| | | | | | | | | | | |
Collapse
|