1
|
Verma N, Puri A, Essuman E, Skelton R, Anantharaman V, Zheng H, White S, Gunalan K, Takeda K, Bajpai S, Lepore TJ, Krause PJ, Aravind L, Kumar S. Antigen Discovery, Bioinformatics and Biological Characterization of Novel Immunodominant Babesia microti Antigens. Sci Rep 2020; 10:9598. [PMID: 32533024 PMCID: PMC7293334 DOI: 10.1038/s41598-020-66273-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Babesia microti is an intraerythrocytic parasite and the primary causative agent of human babesiosis. It is transmitted by Ixodes ticks, transfusion of blood and blood products, organ donation, and perinatally. Despite its global public health impact, limited progress has been made to identify and characterize immunodominant B. microti antigens for diagnostic and vaccine use. Using genome-wide immunoscreening, we identified 56 B. microti antigens, including some previously uncharacterized antigens. Thirty of the most immunodominant B. microti antigens were expressed as recombinant proteins in E. coli. Among these, the combined use of two novel antigens and one previously described antigen provided 96% sensitivity and 100% specificity in identifying B. microti antibody containing sera in an ELISA. Using extensive computational sequence and bioinformatics analyses and cellular localization studies, we have clarified the domain architectures, potential biological functions, and evolutionary relationships of the most immunodominant B. microti antigens. Notably, we found that the BMN-family antigens are not monophyletic as currently annotated, but rather can be categorized into two evolutionary unrelated groups of BMN proteins respectively defined by two structurally distinct classes of extracellular domains. Our studies have enhanced the repertoire of immunodominant B. microti antigens, and assigned potential biological function to these antigens, which can be evaluated to develop novel assays and candidate vaccines.
Collapse
Affiliation(s)
- Nitin Verma
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ankit Puri
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Edward Essuman
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Richard Skelton
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Hong Zheng
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Siera White
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Kazuyo Takeda
- Lab Of Method Development, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Surabhi Bajpai
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, 304022, India
| | | | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, 06520, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
2
|
Elton CM, Rodriguez M, Ben Mamoun C, Lobo CA, Wright GJ. A library of recombinant Babesia microti cell surface and secreted proteins for diagnostics discovery and reverse vaccinology. Int J Parasitol 2019; 49:115-125. [PMID: 30367868 PMCID: PMC6406021 DOI: 10.1016/j.ijpara.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023]
Abstract
Human babesiosis is an emerging tick-borne parasitic disease and blood transfusion-transmitted infection primarily caused by the apicomplexan parasite, Babesia microti. There is no licensed vaccine for B. microti and the development of a reliable serological screening test would contribute to ensuring the safety of the donated blood supply. The recent sequencing of the B. microti genome has revealed many novel genes encoding proteins that can now be tested for their suitability as subunit vaccine candidates and diagnostic serological markers. Extracellular proteins are considered excellent vaccine candidates and serological markers because they are directly exposed to the host humoral immune system, but can be challenging to express as soluble recombinant proteins. We have recently developed an approach based on a mammalian expression system that can produce large panels of functional recombinant cell surface and secreted parasite proteins. Here, we use the B. microti genome sequence to identify 54 genes that are predicted to encode surface-displayed and secreted proteins expressed during the blood stages, and show that 41 (76%) are expressed using our method at detectable levels. We demonstrate that the proteins contain conformational, heat-labile, epitopes and use them to serologically profile the kinetics of the humoral immune responses to two strains of B. microti in a murine infection model. Using sera from validated human infections, we show a concordance in the host antibody responses to B. microti infections in mouse and human hosts. Finally, we show that BmSA1 expressed in mammalian cells can elicit high antibody titres in vaccinated mice using a human-compatible adjuvant but these antibodies did not affect the pathology of infection in vivo. Our library of recombinant B. microti cell surface and secreted antigens constitutes a valuable resource that could contribute to the development of a serological diagnostic test, vaccines, and elucidate the molecular basis of host-parasite interactions.
Collapse
Affiliation(s)
- Catherine M Elton
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Marilis Rodriguez
- New York Blood Center, Blood Borne Parasites, 310 E. 67th Street, New York, NY 10065, USA
| | - Choukri Ben Mamoun
- Infectious Diseases, PO Box 208056, 333 Cedar Street, New Haven, CT 06520-8056, USA
| | - Cheryl A Lobo
- New York Blood Center, Blood Borne Parasites, 310 E. 67th Street, New York, NY 10065, USA
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
3
|
Silva JC, Cornillot E, McCracken C, Usmani-Brown S, Dwivedi A, Ifeonu OO, Crabtree J, Gotia HT, Virji AZ, Reynes C, Colinge J, Kumar V, Lawres L, Pazzi JE, Pablo JV, Hung C, Brancato J, Kumari P, Orvis J, Tretina K, Chibucos M, Ott S, Sadzewicz L, Sengamalay N, Shetty AC, Su Q, Tallon L, Fraser CM, Frutos R, Molina DM, Krause PJ, Ben Mamoun C. Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions. Sci Rep 2016; 6:35284. [PMID: 27752055 PMCID: PMC5082761 DOI: 10.1038/srep35284] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution.
Collapse
Affiliation(s)
- Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle, IBC, Université de Montpellier, 860 rue St Priest, Bat 5 - CC05019, 34095 Montpellier, Cedex 5, France
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U896 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d’Aurelle, 34298 Montpellier, Cedex 5 France
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Sahar Usmani-Brown
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, Connecticut, CT 06520 USA
| | - Ankit Dwivedi
- Institut de Biologie Computationnelle, IBC, Université de Montpellier, 860 rue St Priest, Bat 5 - CC05019, 34095 Montpellier, Cedex 5, France
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U896 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d’Aurelle, 34298 Montpellier, Cedex 5 France
| | - Olukemi O. Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Hanzel T. Gotia
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Azan Z. Virji
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| | - Christelle Reynes
- Institut de Genomique Fonctionnelle, IGF - CNRS UMR 5203, 141 rue de la cardonille, 34094 Montpellier, Cedex 05, France
| | - Jacques Colinge
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U896 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d’Aurelle, 34298 Montpellier, Cedex 5 France
| | - Vidya Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| | - Lauren Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| | | | | | - Chris Hung
- Antigen Discovery Inc., Irvine, CA, 92618 USA
| | - Jana Brancato
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, Connecticut, CT 06520 USA
| | - Priti Kumari
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Kyle Tretina
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Marcus Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Sandy Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Qi Su
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Luke Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201 USA
| | - Roger Frutos
- Université de Montpellier, IES, UMR 5214, 860 rue de St Priest, Bt5, 34095 Montpellier, France
- CIRAD, UMR 17, Cirad-Ird, TA-A17/G, Campus International de Baillarguet, 34398 Montpellier, France
| | | | - Peter J. Krause
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, Connecticut, CT 06520 USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 15 York St., New Haven, Connecticut, CT 06520 USA
| |
Collapse
|
4
|
Cornillot E, Dassouli A, Pachikara N, Lawres L, Renard I, Francois C, Randazzo S, Brès V, Garg A, Brancato J, Pazzi JE, Pablo J, Hung C, Teng A, Shandling AD, Huynh VT, Krause PJ, Lepore T, Delbecq S, Hermanson G, Liang X, Williams S, Molina DM, Ben Mamoun C. A targeted immunomic approach identifies diagnostic antigens in the human pathogen Babesia microti. Transfusion 2016; 56:2085-99. [PMID: 27184823 PMCID: PMC5644385 DOI: 10.1111/trf.13640] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Babesia microti is a protozoan parasite responsible for the majority of reported cases of human babesiosis and a major risk to the blood supply. Laboratory screening of blood donors may help prevent transfusion-transmitted babesiosis but there is no Food and Drug Administration-approved screening method yet available. Development of a sensitive, specific, and highly automated B. microti antibody assay for diagnosis of acute babesiosis and blood screening could have an important impact on decreasing the health burden of B. microti infection. STUDY DESIGN AND METHODS Herein, we take advantage of recent advances in B. microti genomic analyses, field surveys of the reservoir host, and human studies in endemic areas to apply a targeted immunomic approach to the discovery of B. microti antigens that serve as signatures of active or past babesiosis infections. Of 19 glycosylphosphatidylinositol (GPI)-anchored protein candidates (BmGPI1-19) identified in the B. microti proteome, 17 were successfully expressed, printed on a microarray chip, and used to screen sera from uninfected and B. microti-infected mice and humans to determine immune responses that are associated with active and past infection. RESULTS Antibody responses to various B. microti BmGPI antigens were detected and BmGPI12 was identified as the best biomarker of infection that provided high sensitivity and specificity when used in a microarray antibody assay. CONCLUSION BmGPI12 alone or in combination with other BmGPI proteins is a promising candidate biomarker for detection of B. microti antibodies that might be useful in blood screening to prevent transfusion-transmitted babesiosis.
Collapse
Affiliation(s)
- Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), Institut de Recherche en Cancérologie de Montpellier (IRCM-INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
| | - Amina Dassouli
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Niseema Pachikara
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Lauren Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Isaline Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Celia Francois
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Sylvie Randazzo
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Virginie Brès
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Aprajita Garg
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Janna Brancato
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | | | | | - Chris Hung
- Antigen Discovery, Inc., Irvine, California
| | - Andy Teng
- Antigen Discovery, Inc., Irvine, California
| | | | | | - Peter J. Krause
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Timothy Lepore
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | | | | | - Scott Williams
- Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | | | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Zhou M, Cao S, Luo Y, Liu M, Wang G, Moumouni PFA, Jirapattharasate C, Iguchi A, Vudriko P, Terkawi MA, Löwenstein M, Kern A, Nishikawa Y, Suzuki H, Igarashi I, Xuan X. Molecular identification and antigenic characterization of a merozoite surface antigen and a secreted antigen of Babesia canis (BcMSA1 and BcSA1). Parasit Vectors 2016; 9:257. [PMID: 27141812 PMCID: PMC4855366 DOI: 10.1186/s13071-016-1518-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/18/2016] [Indexed: 11/29/2022] Open
Abstract
Background Babesia canis is an apicomplexan tick-transmitted hemoprotozoan responsible for causing canine babesiosis in Europe and west Asia. Despite its importance, there is no known rapid diagnostic kit detection of B. canis infection in dogs. The present study identified two novel antigens of B. canis and used the recombinant antigens to establish a rapid, specific and sensitive serodiagnostic technique for detection of B. canis infection. Methods A complementary DNA (cDNA) expression library was constructed from the mRNA of B. canis and immunoscreened using B. canis-infected dog sera. The cDNAs encoding a merozoite surface antigen and a secreted antigen protein were identified and designated as BcMSA1 and BcSA1, respectively. The recombinant BcMSA1 and BcSA1 (rBcMSA1 and rBcSA1) expressed in Escherichia coli were purified and injected into mice for production of anti-sera. The native proteins were characterized by Western blot analysis and immunofluorescence. Furthermore, indirect enzyme-linked immunosorbent assays (iELISA) and rapid immunochromatographic tests (ICT) based on rBcMSA1 or rBcSA1 were established and evaluated to test specific antibodies in consecutive plasma samples from two B. canis-infected dogs. Results Antiserum raised against rBcMSA1 and rBcSA1 recognized the 39 kDa and 44 kDa native proteins by Western blot analysis, respectively. In addition, immunofluorescence and confocal microscopic observations revealed that BcMSA1 was found on the surface of parasites. However, BcSA1 localized in the matrix of the merozoites. The ELISA and ICT based on rBcMSA1 or rBcSA1 could detect specific antibodies in consecutive plasma samples from two B. canis-infected dogs. They showed no cross-reactions against the serum samples collected from dogs experimentally infected with closely related parasites. Conclusion Taken together, the current results indicated that the rBcMSA1 and rBcSA1 are promising serodiagnostic antigens for developing iELISA and ICT to detect B. canis infection. To our knowledge, this study is the first to report BcMSA1 and BcSA1 as potential antigenic proteins for serodiagnosis of B. canis infection in dogs.
Collapse
Affiliation(s)
- Mo Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinuo Cao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.,Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Maduan Street 427, Nangang District, Harbin, 150001, PR China
| | - Yuzi Luo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Charoonluk Jirapattharasate
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Aiko Iguchi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Patrick Vudriko
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | | | - Angela Kern
- Megacor Diagnostik GmbH, Hoerbranz, Vorarlberg, A-6912, Austria
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
6
|
Vudriko P, Masatani T, Cao S, Terkawi MA, Kamyingkird K, Mousa AA, Adjou Moumouni PF, Nishikawa Y, Xuan X. Molecular and Kinetic Characterization of Babesia microti Gray Strain Lactate Dehydrogenase as a Potential Drug Target. Drug Target Insights 2014; 8:31-8. [PMID: 25125971 PMCID: PMC4125376 DOI: 10.4137/dti.s16504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 01/09/2023] Open
Abstract
Babesia microti is an emerging zoonotic protozoan organism that causes “malaria-like” symptoms that can be fatal in immunocompromised people. Owing to lack of specific therapeutic regiment against the disease, we cloned and characterized B. microti lactate dehydrogenase (BmLDH) as a potential molecular drug receptor. The in vitro kinetic properties of BmLDH enzyme was evaluated using nicotinamide adenine dinucleotide (NAD+) as a co-factor and lactate as a substrate. Inhibitory assay was also done using gossypol as BmLDH inhibitor to determine the inhibitory concentration 50 (IC50). The result showed that the 0.99 kbp BmLDH gene codes for a barely soluble 36 kDa protein (332 amino acids) localized in both the cytoplasm and nucleus of the parasite. In vitro enzyme kinetic studies further revealed that BmLDH is an active enzyme with a high catalytic efficiency at optimal pH of 10.2. The Km values of NAD+ and lactate were 8.7 ± 0.57 mM and 99.9 ± 22.33 mM, respectively. The IC50 value for gossypol was 0.345 μM, while at 2.5 μM, gossypol caused 100% inhibition of BmLDH catalytic activity. These findings, therefore, provide initial evidence that BmLDH could be a potential drug target, although further in vivo studies are needed to validate the practical application of lactate dehydrogenase inhibitors against B. microti infection.
Collapse
Affiliation(s)
- Patrick Vudriko
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan. ; Department of Veterinary Pharmacy, Clinics and Comparative Medicine, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Tatsunori Masatani
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Shinuo Cao
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Mohamad Alla Terkawi
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Ketsarin Kamyingkird
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Ahmed A Mousa
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Paul F Adjou Moumouni
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases (NRCPD), Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| |
Collapse
|