1
|
Radhakrishnan N, Karthi S, Raghuraman P, Ganesan R, Srinivasan K, Edwin ES, Ganesh-Kumar S, Mohd Esa N, Senthil-Nathan S, Vasantha-Srinivasan P, Krutmuangh P, Alwahibi MS, Elshikh MS. Chemical screening and mosquitocidal activity of essential oil derived from Mikania scandens (L.) Willd. against Anopheles gambiae Giles and their non-toxicity on mosquito predators. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2169959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Narayanaswamy Radhakrishnan
- Department of Biochemistry, School of Life Sciences, St. Peter’s Institute of Higher Education and Research, Chennai, India
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Sengodan Karthi
- Division of Bio pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Pandiyan Raghuraman
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Raja Ganesan
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Kumaraswamy Srinivasan
- Department of Biochemistry, School of Life Sciences, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | - Edward-Sam Edwin
- Department of Microbiology, Division of Virology & Molecular Biology, St. Peter’s Medical College Hospital and Research Institute, Hosur, India
| | - Selvaraj Ganesh-Kumar
- Department of Microbiology, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Sengottayan Senthil-Nathan
- Division of Bio pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Patcharin Krutmuangh
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Sundar NS, Karthi S, Sivanesh H, Stanley-Raja V, Chanthini KMP, Ramasubramanian R, Ramkumar G, Ponsankar A, Narayanan KR, Vasantha-Srinivasan P, Alkahtani J, Alwahibi MS, Hunter WB, Senthil-Nathan S, Patcharin K, Abdel-Megeed A, Shawer R, Ghaith A. Efficacy of Precocene I from Desmosstachya bipinnata as an Effective Bioactive Molecules against the Spodoptera litura Fab. and Its Impact on Eisenia fetida Savigny. Molecules 2021; 26:6384. [PMID: 34770794 PMCID: PMC8588158 DOI: 10.3390/molecules26216384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
The sustainability of agroecosystems are maintained with agro-chemicals. However, after more than 80 years of intensive use, many pests and pathogens have developed resistance to the currently used chemistries. Thus, we explored the isolation and bioactivity of a chemical compound, Precocene I, isolated from the perennial grass, Desmosstachya bipinnata (L.) Stapf. Fractions produced from chloroform extractions showed suppressive activity on larvae of Spodoptera litura (Lepidoptera: Noctuidae), the Oriental armyworm. Column chromatography analyses identified Precocene I confirmed using FTIR, HPLC and NMR techniques. The bioactivity of the plant-extracted Dp-Precocene I was compared to a commercially produced Precocene I standard. The percentage of mortality observed in insects fed on plant tissue treated with 60 ppm Db-Precocene I was 97, 87 and 81, respectively, for the second, third and fourth instar larvae. The LC50 value of third instars was 23.2 ppm. The percentages of survival, pupation, fecundity and egg hatch were altered at sub-lethal concentrations of Db-Precocene I (2, 4, 6 and 8 ppm, sprays on castor leaves). The observed effects were negatively correlated with concentration, with a decrease in effects as concentrations increased. Distinct changes in feeding activity and damage to gut tissues were observed upon histological examination of S. litura larvae after the ingestion of Db-Precocene I treatments. Comparative analyses of mortality on a non-target organism, the earthworm, Eisenia fetida, at equal concentrations of Precocene I and two chemical pesticides (cypermethrin and monocrotophos) produced mortality only with the chemical pesticide treatments. These results of Db-Precocene I as a highly active bioactive compound support further research to develop production from the grass D. bipinnata as an affordable resource for Precocene-I-based insecticides.
Collapse
Affiliation(s)
- Narayanan Shyam Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Ramakrishnan Ramasubramanian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Athirstam Ponsankar
- Department of Biotechnology, Sri Paramakalyani College, Alwarkurichi 627 412, India;
| | | | | | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (M.S.A.)
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (M.S.A.)
| | - Wayne Brian Hunter
- USDA-ARS, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA;
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, India; (N.S.S.); (S.K.); (H.S.); (V.S.-R.); (K.M.-P.C.); (R.R.); (G.R.)
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Rady Shawer
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Aml Ghaith
- Department of Zoology, Faculty of Science, Derna University, Derna 417230, Libya;
| |
Collapse
|
3
|
Shu H, Chen G, Wang L, Cui X, Luo Z, Jing W, Chang C, Zeng A, Zhang J, Fu Q. Metal-organic framework grafted with melamine for the selective recognition and miniaturized solid phase extraction of aristolochic acid Ⅰ from traditional Chinese medicine. J Chromatogr A 2021; 1647:462155. [PMID: 33957350 DOI: 10.1016/j.chroma.2021.462155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Aristolochic acid Ⅰ is a nephrotoxic compound and exist in some traditional Chinese medicines at trace level. Up to now, specific enrichment of aristolochic acid Ⅰ remains important procedure and key problem in its analysis. In this study, melamine was proposed as the recognition unit and grafted on the surface of metal-organic framework to fabricate a specific material for aristolochic acid Ⅰ. This material was prepared by using a two-step strategy and the preparation process was optimized. The physical and chemical properties were investigated using scanning electron microscopy, Fourier-transfer infrared spectroscopy, X-ray diffraction and nitrogen adsorption-desorption techniques. Adsorption properties were evaluated by binding experiments. The melamine modified material exhibited a uniform morphology, high specific surface area (460.20 m2 g-1), high adsorption capacity (25.57 mg g-1), fast mass transfer rate and excellent selectivity. Further, a specific and sensitive method was established by using this material as adsorbent of mini-solid phase extraction. The limit of detection was as low as 0.02 μg mL-1. Therefore, melamine modified metal-organic framework is an ideal adsorbent for the recognition and enrichment of aristolochic acid Ⅰ.
Collapse
Affiliation(s)
- Hua Shu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Guoning Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xia Cui
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Zhimin Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wanghui Jing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Chun Chang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Aiguo Zeng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd. Hanzhong, Shaanxi 723000, PR China
| | - Qiang Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
4
|
Chellappandian M, Senthil-Nathan S, Vasantha-Srinivasan P, Karthi S, Kalaivani K, Hunter WB, Ali HM, Salem MZM, Abdel-Megeed A. Volatile toxin of Limonia acidissima (L.) produced larvicidal, developmental, repellent, and adulticidal toxicity effects on Aedes aegypti (L.). TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1851723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Biotechnology, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Kandaswamy Kalaivani
- Department of Zoology, Post Graduate and Research Centre, Sri Parasakthi College for Women, Tirunelveli, India
| | - Wayne Brian Hunter
- United States Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Timber Trees Research Department, Agriculture Research Center, Horticulture Research Institute, Sabahia Horticulture Research Station, Alexandria, Egypt
| | - Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Shu H, Chen G, Wang L, Cui X, Wang Q, Li W, Chang C, Guo Q, Luo Z, Fu Q. Adenine-coated magnetic multiwalled carbon nanotubes for the selective extraction of aristolochic acids based on multiple interactions. J Chromatogr A 2020; 1627:461382. [DOI: 10.1016/j.chroma.2020.461382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023]
|
6
|
Senthil-Nathan S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Front Physiol 2020; 10:1591. [PMID: 32158396 PMCID: PMC7052130 DOI: 10.3389/fphys.2019.01591] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mosquitoes are a serious threat to the society, acting as vector to several dreadful diseases. Mosquito management programes profoundly depend on the routine of chemical insecticides that subsequently lead to the expansion of resistance midst the vectors, along with other problems such as environmental pollution, bio magnification, and adversely affecting the quality of public and animal health, worldwide. The worldwide risk of insect vector transmitted diseases, with their associated illness and mortality, emphasizes the need for effective mosquitocides. Hence there is an immediate necessity to develop new eco-friendly pesticides. As a result, numerous investigators have worked on the development of eco-friendly effective mosquitocidal compounds of plant origin. These products have a cumulative advantage of being cost-effective, environmentally benign, biodegradable, and safe to non-target organisms. This review aims at describing the current state of research on behavioral, physiological, and biochemical effects of plant derived compounds with larvicidal effects on mosquitoes. The mode of physiological and biochemical action of known compounds derived from various plant families as well as the potential of plant secondary metabolites, plant extracts, and also the essential oils (EO), as mosquitocidal agents are discussed. This review clearly indicates that the application of vegetal-based compounds as mosquito control proxies can serve as alternative biocontrol methods in mosquito management programes.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
7
|
Ji F, Jin R, Luo C, Deng C, Hu Y, Wang L, Wang R, Zhang J, Song G. Fast determination of aristolochic acid I (AAI) in traditional Chinese medicine soup with magnetic solid-phase extraction by high performance liquid chromatography. J Chromatogr A 2020; 1609:460455. [DOI: 10.1016/j.chroma.2019.460455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
|
8
|
Asatone and Isoasatone A Against Spodoptera litura Fab. by Acting on Cytochrome P450 Monoxygenases and Glutathione Transferases. Molecules 2019; 24:molecules24213940. [PMID: 31683670 PMCID: PMC6864857 DOI: 10.3390/molecules24213940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Asatone and isoasatone A from Asarum ichangense Cheng were determined to be defensive compounds to some insects in a previous investigation. However, the anti-insect activity mechanisms to caterpillar are still unclear. The compounds asatone and isoasatone A from A. ichangense were induced by Spodoptera litura. The anti-insect activity of asatone and isoasatone A to S. litura was further tested by weight growth rate of the insect through a diet experiment. Isoasatone A showed a more significant inhibitory effect on S. litura than asatone on the second day. The concentration of asatone was higher than isoasatone A in the second instar larvae of S. litura after 12 h on the feeding test diet. Both compounds caused mid-gut structural deformation and tissue decay as determined by mid-gut histopathology of S. litura. Furthermore, some detoxification enzyme activity were measured by relative expression levels of genes using a qPCR detecting system. Asatone inhibited the gene expression of the cytochrome P450 monooxygenases (P450s) CYP6AB14. Isoasatone A inhibited the relative expression levels of CYP321B1, CYP321A7, CYP6B47, CYP6AB14, and CYP9A39. Asatone increased the relative gene expression of the glutathione transferases (GSTs) SIGSTe1 and SIGSTo1, in contrast, isoasatone A decreased the relative gene expression of SIGSTe1 by about 33 fold. Neither compound showed an effect on acetylcholinesterase SIAce1 and SIAce2. The mechanism of anti-insect activity by both compounds could be explained by the inhibition of enzymes P450s and GSTs. The results provide new insights into the function of unique secondary metabolites asatone and isoasatone A in genus Asarum, and a new understanding of why A. ichangense is largely free of insect pests.
Collapse
|
9
|
Li F, Gao J, Li X, Li Y, He X, Chen L, Zhang Y. Preparation of magnetic molecularly imprinted polymers functionalized carbon nanotubes for highly selective removal of aristolochic acid. J Chromatogr A 2019; 1602:168-177. [DOI: 10.1016/j.chroma.2019.06.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 01/08/2023]
|
10
|
Shu H, Ge Y, Xu XY, Guo PQ, Luo ZM, Du W, Chang C, Liu RL, Fu Q. Hybrid-type carbon microcoil-chitosan composite for selective extraction of aristolochic acid I from Aristolochiaceae medicinal plants. J Chromatogr A 2018; 1561:13-19. [DOI: 10.1016/j.chroma.2018.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/15/2022]
|
11
|
Araya M, García S, González-Teuber M. Rapid Identification and Simultaneous Quantification of Aristolochic Acids by HPLC-DAD and Confirmations by MS in Aristolochia chilensis Using a Limited Biomass. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5036542. [PMID: 29977642 PMCID: PMC6011054 DOI: 10.1155/2018/5036542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Six aristolochic acids were identified in the Chilean species Aristolochia chilensis using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) and subsequent confirmation with mass spectrometry (MS). The fractions of each signal were collected and injected directly into an Orbitrap mass detector model Q Exactive Focus (Thermo Scientific). The acids extraction was done with 0.10-0.50 g of lyophilized and pulverized sample and concentrated in Soxhlet extraction equipment. The liquid-liquid separations and a subsequent solid phase extraction (SPE) C18 were performed using 100 µL of the extract that contains the aristolochic acids present in the Aristolochia chilensis plant. The HPLC conditions used a single mobile phase acetonitrile : water (1 : 1) acidified with 0.1% acetic acid and an isocratic elution to 1 mL·min-1. The column InertSustain C18 250 × 4.6 mm and 3 µm was used, the injection volume was 20 µL, and the time of run was reduced to 15 min. Calibration curves were constructed with r2 being 0.9997. The quantification limit for AAI was 0.138 ± 0.010 µg/mL, and for AAII, it was 0.558 ± 0.042 µg/mL.
Collapse
Affiliation(s)
- Michael Araya
- Centro de Investigación y Desarrollo Tecnológico de Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Departamento de Química, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Samantha García
- Departamento de Química, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Marcia González-Teuber
- Laboratorio de Química Ecológica, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
12
|
Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S, Benelli G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10294-10306. [PMID: 28455566 DOI: 10.1007/s11356-017-8952-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Use of environmentally friendly, decomposable natural products for effective vector control has gained considerable momentum in modern society. In this study, essential oil of Sphaeranthus indicus (Si-EO) was extracted and further phytochemical screening revealed fourteen compounds with prominent peak area percentage of 24.9 and 22.54% in 3,5-di-tert-butyl-4-hydroxybenzaldehyde and benzene,2-(1,1-dimethylethyl)-1,4-dimethoxy, respectively. The Si-EO was further evaluated for their larvicidal response against Culex quinquefasciatus and Aedes aegypti at different dosages (62.5, 125, 250 and 500 ppm). The Si-EO displayed prominent larvicidal activity at higher concentration (500 ppm) against both species of mosquitoes. The LC50 and LC90 values of oils were observed at 130 and 350 ppm against C. quinquefasciatus larvae and at 140 and 350 ppm against A. aegypti larvae, respectively. Repellent bioassay established higher protection rate at 200 ppm up to 120 min against both the mosquitoes. However, adulticidal response displayed higher mortality rate only at 700 and 800 ppm against C. quinquefasciatus and A. aegypti, respectively. Toxicological screening against mosquito predator Toxorhynchites splendens revealed that the Si-EO was harmless even at the concentration of 1500 ppm. Overall, these results suggest that the Si-EO plays a significant role as a new bio-rational product against ecological burden mosquito vectors which provides an eco-friendly alternative to synthetic pesticides.
Collapse
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627802, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del 23 Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
13
|
Vasantha-Srinivasan P, Thanigaivel A, Edwin ES, Ponsankar A, Senthil-Nathan S, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10434-10446. [PMID: 28852982 DOI: 10.1007/s11356-017-9714-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/04/2017] [Indexed: 05/06/2023]
Abstract
Dengue is the most rapidly spreading mosquito-borne viral disease in the world. The mosquito, Aedes aegypti, also spreads Yellow fever, Chikungunya, and Zika virus. As the primary vector for dengue, Ae. aegypti now occurs in over 20 countries and is a serious concern with reports of increasing insecticide resistance. Developing new treatments to manage mosquitoes are needed. Formulation of crude volatile oil from Piper betle leaves (Pb-CVO) was evaluated as a potential treatment which showed larvicidal, ovipositional, and repellency effects. Gut-histology and enzyme profiles were analyzed post treatment under in-vitro conditions. The Pb-CVO from leaves of field collected plants was obtained by steam distillation and separated through rotary evaporation. The Pb-CVO were evaluated for chemical constituents through GC-MS analyses revealed 20 vital compounds. The peak area was establish to be superior in Eudesm-7(11)-en-4-ol (14.95%). Pb-CVO were determined and tested as four different concentrations (0.25, 0.5, 1.0, and 1.5 mg/L) of Pb-CVO towards Ae. aegypti. The larvicidal effects exhibited dose dependent mortality being greatest at 1.5 mg Pb-CVO/10 g leaves. The LC50 occurred at 0.63 mg Pb-CVO/L. Larva of Ae. aegypti exposed to Pb-CVO showed significantly reduced digestive enzyme actions of α- and β-carboxylesterases. In contrast, GST and CYP450 enzyme levels increased significantly as concentration increased. Correspondingly, oviposition deterrence index and egg hatch of Ae. aegypti exposed to sub-lethal doses of Pb-CVO demonstrated a strong effect suitable for population suppression. Repellency at 0.6 mg Pb-CVO applied as oil had a protection time of 15-210 min. Mid-gut histological of Ae. aegypti larvae showed severe damage when treated with 0.6 mg of Pb-CVO treatment compared to the control. Non-toxic effects against aquatic beneficial insects, such as Anisops bouvieri and Toxorhynchites splendens, were observed at the highest concentrations, exposed for 3 h. These results suggest that the Pb-CVO may contain effective constituents suitable for development of new vector control agents against Ae. aegypti.
Collapse
Affiliation(s)
- Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627 802, India
| | - Wayne B Hunter
- United States Department of Agriculture, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Veeramuthu Duraipandiyan
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
14
|
Thanigaivel A, Senthil-Nathan S, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Pradeepa V, Chellappandian M, Kalaivani K, Abdel-Megeed A, Narayanan R, Murugan K. Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito, Aedes aegypti L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21384. [PMID: 28266058 DOI: 10.1002/arch.21384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extracts from Justicia adhatoda L. (Acanthaceae) strongly reduced the fitness of the mosquito, Aedes aegypti Linn. The methanolic extracts inhibited several enzymes responsible for protecting insects from oxidative and other damage, including glutathione-S-transferase, superoxide dismutase, cytochrome P450, and α- and β-esterases. They increased repellency (maximum repellency at 100 ppm) in host-seeking adult females using the "arm-in cage assay." Histopathological examination showed the extracts led to serious midgut cell damage. Justicia adhatoda extracts led to reduced fecundity and oviposition of gravid females compared to controls. The extracts led to substantially reduced A. aegypti survival. We infer that the extracts have potential to reduce pathogen transmission by suppressing population growth of A. aegypti, and possibly other mosquito species.
Collapse
Affiliation(s)
- Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Venkatraman Pradeepa
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Tirunelveli, Tamil Nadu, India
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Raman Narayanan
- Department of Zoology, Sri Paramakalyani College, Tirunelveli, Tamil Nadu, India
| | | |
Collapse
|
15
|
Selin-Rani S, Senthil-Nathan S, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Lija-Escaline J, Kalaivani K, Abdel-Megeed A, Hunter WB, Alessandro RT. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. CHEMOSPHERE 2016; 165:257-267. [PMID: 27657818 DOI: 10.1016/j.chemosphere.2016.08.136] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A novel flavonoid, quercetin, was isolated from the medicinal plant Euphorbia hirta L. through chromatography techniques including: TLC, Column chromatography, NMR and then screened for toxicity to larvae of Spodoptera litura Fab. Bioassays were used to analyze pupal weight, survival rate, fecundity, egg hatchability, population growth index, Nutritional index and histopathology of treated larvae at a range of E. hirta extract concentrations. Results of toxicity assays demonstrated that, 6 ppm of quercetin caused 94.6% mortality of second, 91.8% of third, 88% of fourth, and 85.2% of fifth instars respectively. The lethal concentrations (LC50 and LC90) was calculated as 10.88 and 69.91 ppm for fourth instar larvae. The changes in consumption ratio and approximate digestibility produced a reduction in growth rates. Histopathology examinations revealed that the cell organelles were severely infected. Analyses of earthworm toxicity effects resulted in significantly lower rates compared to synthetic insecticides (chloropyrifos and cypermethrin). These results suggests that the botanical compound (quercetin), could have a part as a new biorational product which provides an ecofriendly alternative. Validation of the potential of quercetin, still needs to be demonstrated under field conditions, where formulation will be important in maintaining the activity.
Collapse
Affiliation(s)
- Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Jalasteen Lija-Escaline
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802, Tirunelveli, Tamil Nadu, India
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, P.O.Box.21531, Alexandria, 21526, Egypt
| | - Wayne B Hunter
- United States Department of Agriculture, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Rocco T Alessandro
- Treasure Coast Chemistry Consultants, LLC 107 Lakes End Drive, Apt. B Ft. Pierce, FL, 34982, USA
| |
Collapse
|
16
|
Pradeepa V, Senthil-Nathan S, Sathish-Narayanan S, Selin-Rani S, Vasantha-Srinivasan P, Thanigaivel A, Ponsankar A, Edwin ES, Sakthi-Bagavathy M, Kalaivani K, Murugan K, Duraipandiyan V, Al-Dhabi NA. Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi, (Culicidae: Diptera). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 134:84-93. [PMID: 27914545 DOI: 10.1016/j.pestbp.2016.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 06/06/2023]
Abstract
Plumbagin was isolated and characterized from the roots of Plumbago zeylanica using chromatography: TLC, Column chromatogram, HPLC, FTIR and 1H NMR. The isolated pure compounds were assayed for potency as inhibitors of: acetylcholine esterase (AchE), glutathione S-transferases (GST), superoxide dismutase (SOD), cytochrome P450 and α, β-esterase, and for repellency with Anopheles stephensi at four different concentrations (25, 50, 75 and 100ppm). The enzyme assay against the pure compound reveals that the level of esterase and SOD was decreased significantly in contrast the level of GST and cytochrome P450 was increased significantly. Our results suggests that novel Plumbagin has significantly alters the level of enzyme comparable to the control. Evaluations resulted in Plumbagin producing maximum repellency scores against An. stephensi mosquitoes in dose dependent manner with highest repellence was observed in the 100ppm. Histological examination showed that the midgut, hindgut and muscles are the most affected tissues. These tissues affected with major changes including separation and collapse of epithelial layer and cellular vacuolization. The results support the utility of plant compound Plumbagin for vector control as an alternative to synthetic insecticides, however, more vigorous field trials are needed to determine viability under natural conditions.
Collapse
Affiliation(s)
- Venkatraman Pradeepa
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India.
| | - Subbiah Sathish-Narayanan
- Kalakad Mundanthurai Tiger Conservation Foundation (KMTCF), Kalakad Mundanthurai Tiger Reserve, Tamil Nadu, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India
| | - Muthiah Sakthi-Bagavathy
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil-Nadu, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802, Tirunelveli, Tamil Nadu, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Veeramuthu Duraipandiyan
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Nicoletti M, Benelli G. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci 2015; 102:127-35. [DOI: 10.1016/j.rvsc.2015.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/03/2015] [Accepted: 08/02/2015] [Indexed: 01/14/2023]
|
18
|
Lija-Escaline J, Senthil-Nathan S, Thanigaivel A, Pradeepa V, Vasantha-Srinivasan P, Ponsankar A, Edwin ES, Selin-Rani S, Abdel-Megeed A. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae). Parasitol Res 2015; 114:4239-49. [PMID: 26277727 DOI: 10.1007/s00436-015-4662-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti.
Collapse
Affiliation(s)
- Jalasteen Lija-Escaline
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India.
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Venkatraman Pradeepa
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Edward Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt.,Department of Botany and Microbiology, College of Science, King Saud University, PO Box: 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|