1
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Nava-Castro KE, Cortes C, Eguibar JR, Del Rio-Araiza VH, Hernández-Bello R, Morales-Montor J. The deficiency of myelin in the mutant taiep rat induces a differential immune response related to protection from the human parasite Trichinella spiralis. PLoS One 2020; 15:e0231803. [PMID: 32817660 PMCID: PMC7444528 DOI: 10.1371/journal.pone.0231803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Taiep rat is a myelin mutant with a progressive motor syndrome characterized by tremor, ataxia, immobility episodes, epilepsy and paralysis of the hindlimbs. Taiep had an initial hypomyelination followed by a progressive demyelination associated with an increased expression of some interleukins and their receptors. The pathology correlated with an increase in nitric oxide activity and lipoperoxidation. In base of the above evidences taiep rat is an appropriate model to study neuroimmune interactions. The aim of this study was to analyze the immune responses in male taiep rats after acute infection with Trichinella spiralis. Our results show that there is an important decrease in the number of intestinal larvae in the taiep rat with respect to Sprague-Dawley control rats. We also found differences in the percentage of innate and adaptive immune cell profile in the mesenteric lymphatic nodes and the spleen that correlated with the demyelination process that took place on taiep subjects. Finally, a clear pro-inflammatory cytokine pattern was seen on infected taiep rats, that could be responsible of the decrement in the number of larvae number. These results sustain the theory that neuroimmune interaction is a fundamental process capable of modulating the immune response, particularly against the parasite Trichinella spiralis in an animal model of progressive demyelination due to tubulinopathy, that could be an important mechanism for the clinical course of autoimmune diseases associated with parasite infection.
Collapse
Affiliation(s)
- Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Departamento de Genotoxicología y Medicina Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
- * E-mail: , (JM-M); (CC)
| | - José Ramón Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Research Office of the Vice-Rectory of Research and Postgraduate Studies, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Víctor Hugo Del Rio-Araiza
- Departamento de Parasitología, Facultad de Veterinaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail: , (JM-M); (CC)
| |
Collapse
|
3
|
Del Río-Araiza VH, Nava-Castro KE, Alba-Hurtado F, Quintanar-Stephano A, Muñoz-Guzmán MA, CUenca-Micò O, Morales-Montor J. Endocrine immune interactions during chronic Toxocariasis caused by Toxocara canis in a murine model: New insights into the pathophysiology of an old infection. Vet Parasitol 2018; 252:173-179. [PMID: 29559144 DOI: 10.1016/j.vetpar.2018.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 02/05/2023]
Abstract
Toxocara canis is the helminth causing Toxocariasis, a parasitic disease with medical and veterinary implications. Their final host are members of the family Canidae and as paratenic hosts, most of the mammals are sensitive (man, rat, mouse, among others). It has been reported that a pituitary hormone, prolactin, it is responsible for reactivation and migration of larvae to the uterus and mammary gland during the last third of gestation in bitches. In addition, this hormone has been shown to play an important role in the regulation of the immune response. Thus, the aim of this study, was to evaluate the effect of hypophysectomy in the rat model of Toxocariasis, on the immune response against this parasite during a chronic infection, for which parasite loads were analyzed in different organs (lung and brain). Furthermore, serum specific antibody titers, and percentages of different cells of the immune system were also determined. The results showed a decrease in the number of larvae recovered from lung and brain in the hypophysectomized animals. In this same group of animals, there was no production of specific antibodies against the parasite. As for the percentages of the cells of the immune system, there are differences in some subpopulations due to surgery and others due to infection. Our results demonstrated that the lack of pituitary hormones alters parasite loads and the immune response to the helminth parasite Toxocara canis.
Collapse
Affiliation(s)
- Víctor Hugo Del Río-Araiza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F., 04510, Mexico
| | - Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, CP 04510, Ciudad de México, Mexico
| | - Fernando Alba-Hurtado
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | | | - Marco Antonio Muñoz-Guzmán
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - Olga CUenca-Micò
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F., 04510, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F., 04510, Mexico.
| |
Collapse
|
4
|
Li T, Wang P, Wang SC, Wang YF. Approaches Mediating Oxytocin Regulation of the Immune System. Front Immunol 2017; 7:693. [PMID: 28119696 PMCID: PMC5223438 DOI: 10.3389/fimmu.2016.00693] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/28/2016] [Indexed: 12/02/2022] Open
Abstract
The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine–immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic–pituitary–immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic–pituitary–immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine–immune network.
Collapse
Affiliation(s)
- Tong Li
- School of Basic Medical Sciences, Harbin Medical University , Harbin , China
| | - Ping Wang
- School of Basic Medical Sciences, Harbin Medical University , Harbin , China
| | - Stephani C Wang
- Department of Internal Medicine, Albany Medical Center , Albany, NY , USA
| | - Yu-Feng Wang
- School of Basic Medical Sciences, Harbin Medical University , Harbin , China
| |
Collapse
|