1
|
Lafi O, Essid R, Lachaud L, Jimenez C, Rodríguez J, Ageitos L, Mhamdi R, Abaza L. Synergistic antileishmanial activity of erythrodiol, uvaol, and oleanolic acid isolated from olive leaves of cv. Chemlali. 3 Biotech 2023; 13:395. [PMID: 37970450 PMCID: PMC10643720 DOI: 10.1007/s13205-023-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to assess the antileishmanial activity of biomolecules obtained from Olea europaea L. leaves and twigs recovered from eight Tunisian cultivars. The extraction was first carried out with 80% methanol, and then the obtained extract was fractionated using three solvents of increasing polarity: cyclohexane (CHX), dichloromethane (DCM) and ethyl acetate (EtOAc). The antileishmanial activity was determined against leishmanial strains responsible for cutaneous, visceral, and mucocutaneous leishmaniasis. The cyclohexane fraction of the leaves of cv. Chemlali from the region of Sidi-Bouzid exhibited the strongest leishmanicidal activity against all the tested leishmanial strains. The inhibition concentrations (IC50) were 16.5, 14.5, and 7.4 μg mL-1 for Leishmania mexicana (cutaneous), Leishmania braziliensis (mucocutaneous), and Leishmania donovani (visceral), respectively. Interestingly, low cytotoxicity was observed on THP-1 cells with selective indexes (SI) ranging from 22.8 to 50.5. HPLC-HRMS and full-house NMR analysis allowed the identification of three triterpenic compounds, oleanolic acid (IC50 = 64.1 μg mL-1), erythrodiol (IC50 = 52.0 µg mL-1), and uvaol (IC50 = 53.8 μg mL-1). Antileishmanial activity of uvaol and oleanolic acid has been previously reported. However, this work constitutes the first report of the antileishmanial activity of erythrodiol which showed combinatorial interaction with uvaol (IC50 = 26.1 μg mL-1) against Leishmania tropica. The mixture of the three compounds, as major ones, exhibited an enhanced activity against Leishmania tropica (IC50 = 16.3 µg mL-1) compared to erythrodiol alone or the combination of uvaol and erythrodiol. This finding is of great importance and needs further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03825-3.
Collapse
Affiliation(s)
- Oumayma Lafi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, The University of Tunis El Manar, 20 Street of Tolede, 2092 Tunis, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Laurence Lachaud
- UMR, Univ Montpellier (IRD-CNRS), MIVEGEC, Montpellier, France
- Department of Parasitology-Mycology, CHU Montpellier, 39 Av. Charles Flahault, 34295 Montpellier cedex 5, France
| | - Carlos Jimenez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ridha Mhamdi
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Leila Abaza
- Laboratory of Biotechnology of Olive, Centre of Biotechnology of Borj Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Antileishmanial Activity of the Essential Oils from Three Trees Obtained in Different Phenological Stages. Acta Parasitol 2023:10.1007/s11686-023-00664-3. [PMID: 36810938 DOI: 10.1007/s11686-023-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Leishmaniasis is a parasitic disease found in tropical areas, and it affects up to 12 million individuals globally. Chemotherapies now available include drawbacks such as toxicity, high cost, and parasite resistance. This work aimed to evaluate the antileishmanial properties of essential oils (EOs) extracted from aerial parts of Cupressus sempervirens (C. sempervirens), Tetraclinis articulata (T. articulata), and Pistacia lentiscus (P. lentiscus) trees. METHODS The EOs were obtained by hydro-distillation, and chemical composition was determined by gas chromatography coupled to mass spectrometry at three phenological stages. The EOs were evaluated in vitro for antileishmanial activities against Leishmania major (L. major) and Leishmania infantum (L. infantum). The cytotoxicity effect was also tested against murine macrophagic cells (Raw264.7 lines). RESULTS Results showed that P. lentiscus and T. articulata EOs presented low and moderate antileishmanial activity against L. infantum and L. major. However, C. sempervirens EO from the fructification stage gave an important selectivity index (23.89 and 18.96 against L. infantum and L. major, respectively). This activity was more interesting than those of amphotericin chemical drugs. Antileishmanial activity for this EO was highly correlated with germacrene D content (r = 1.00). This compound presented a SI equal to 13.34 and 10.38 for the two strains. According to the Principal Component Analysis (PCA), the distribution of the three phenological stages proved that the chemical composition of the EOs affected the antileishmanial activity. PCA revealed that SI was positively correlated with α-pinene, germacrene D and the sesquiterpene hydrocarbon class. Cupressus sempervirens EO can provide a source of germacrene D that can be used as a new alternative to chemical drugs for the treatment of antileishmanial diseases. CONCLUSION C. sempervirens EO seemed to be a highly active antileishmanial agent and a natural alternative for chemical drugs to treat several leishmanial strains.
Collapse
|
3
|
Brioschi MBC, Coser EM, Coelho AC, Gadelha FR, Miguel DC. Models for cytotoxicity screening of antileishmanial drugs: what has been done so far? Int J Antimicrob Agents 2022; 60:106612. [PMID: 35691601 DOI: 10.1016/j.ijantimicag.2022.106612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
A growing number of studies have demonstrated the in vitro potential of an impressive number of antileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishmanial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system cells. In the present review, we have assembled studies published in the scientific literature from 2015 to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cytotoxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are discussed in order to draw attention to the need to establish standardised protocols for preclinical testing when assessing new antileishmanial candidates.
Collapse
Affiliation(s)
- Mariana B C Brioschi
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Elizabeth M Coser
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Adriano C Coelho
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Figueiredo KA, Magalhães Costa RK, Rocha JA, Chavez Gutierrez SJ, Ramos RM, Muálem de Moraes Alves M, Aécio de Amorim Carvalho F, Menezes Carvalho AL, Lima FDCA. Antileishmanial activity of Riparin structural analogs of Aniba riparia: Biological evaluation, in silico Adme-Tox, and molecular docking. Exp Parasitol 2022; 236-237:108257. [DOI: 10.1016/j.exppara.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|
5
|
Keyhani A, Sharifi I, Salarkia E, Khosravi A, Tavakoli Oliaee R, Babaei Z, Ghasemi Nejad Almani P, Hassanzadeh S, Kheirandish R, Mostafavi M, Hakimi Parizi M, Alahdin S, Sharifi F, Dabiri S, Shamsi Meymandi S, Khamesipour A, Jafarzadeh A, Bamorovat M. In vitro and in vivo therapeutic potentials of 6-gingerol in combination with amphotericin B for treatment of Leishmania major infection: Powerful synergistic and multifunctional effects. Int Immunopharmacol 2021; 101:108274. [PMID: 34688150 DOI: 10.1016/j.intimp.2021.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
The ongoing conventional drugs for leishmaniasis treatment are insufficient. The present study aimed to assess 6-gingerol alone and in combination with amphotericin B on Leishmania major stages using experimental and in vivo murine models. Here, arrays of experimental approaches were designed to monitor and evaluate the 6-gingerol potential therapeutic outcomes. The binding affinity of 6-gingerol and IFN-γ was the basis for docking conformations. 6-Gingerol combined with amphotericin B represented a safe mixture, extremely leishmanicidal, a potent antioxidant, induced a remarkable apoptotic index, significantly increased the expression of the Th1-related cytokines (IL-12p40, IFN-γ, and TNF- α), iNOS, and transcription factors (STAT1, c-Fos, and Elk-1). In contrast, the expression of the Th2-related cytokines was significantly downregulated (p < 0.001). This combination was also potent when the lesion appearance was evaluated following three weeks of treatment. The histopathological and immunohistochemical patterns of the murine model represented clusters of CD4+ and CD8+ T lymphocytes which compressed and deteriorated the macrophages harboring Leishman bodies. The primary mode of action of 6-gingerol and amphotericin B involved broad mechanistic insights providing a coherent basis for further clinical study as a potential drug candidate for CL. In conclusion, 6-gingerol with amphotericin B synergistically exerted anti-leishmanial activity in vitro and in vivo and potentiated macrophages' leishmanicidal activity, modulated Th1- and Th2-related phenotypes improved the histopathological changes in the BALB/c mice infected with L. major. They elevated the leukocyte infiltration into the lesions. Therefore, this combination should be considered for treating volunteer patients with CL in clinical studies.
Collapse
Affiliation(s)
- Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Saeid Hassanzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mashid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sodabeh Alahdin
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Simin Shamsi Meymandi
- Department of Dermatology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Rizk MA, El-Sayed SAES, Igarashi I. Evaluation of the inhibitory effect of Zingiber officinale rhizome on Babesia and Theileria parasites. Parasitol Int 2021; 85:102431. [PMID: 34352378 DOI: 10.1016/j.parint.2021.102431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022]
Abstract
The effect of Zingiber officinale rhizome methanolic extract (ZOR) on the in vitro growth of bovine Babesia (B. bovis, B. bigemina, and B. divergens) and equine piroplasm (B. caballi, and Theileria equi) parasites and on the growth of B. microti in mice was evaluated in this study. The possible in vitro synergistic interaction between ZOR and either diminazene aceturate (DA) or potent Medicines for Malaria Venture (MMV) hits from the malaria box was also investigated. In vitro, ZOR reduced the growth of B. bovis, B. bigemina, T. equi, and B. caballi in a dose-dependent manner. B. divergens was the most susceptible parasite to the in vitro inhibitory effect of ZOR. DA and MMV compounds enhanced the in vitro inhibitory antibabesial activity of ZOR. 12.5 mg/kg DA when administrated in combination with ZOR in mice exhibited a significant inhibition (P < 0.05) in B. microti growth better than those observed after treatment with 25 mg/kg DA monotherapy. These findings suggest that ZOR could be a viable medicinal plant for babesiosis treatment, particularly when combined with a modest dose of either DA or powerful anti-B. bigemina MMV hits.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
7
|
Tajbakhsh E, Khamesipour A, Hosseini SR, Kosari N, Shantiae S, Khamesipour F. The effects of medicinal herbs and marine natural products on wound healing of cutaneous leishmaniasis: A systematic review. Microb Pathog 2021; 161:105235. [PMID: 34648927 DOI: 10.1016/j.micpath.2021.105235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the effects of medicinal herbs and marine natural products on wound healing of cutaneous leishmaniasis. To carry out this literature review, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) instructions were used. Articles on the potential of medicinal plants and natural substances of marine origin against wound healing of cutaneous leishmaniasis were explored. The scientific databases considered were PubMed, Science Direct, Google Scholar, Web of Science, Scopus, and SpringerLink. The scientific documents collected were mainly scientific articles, books, book chapters, and doctoral thesis. The research considered 73 manuscripts published in the period from 1990 to 2020. From all the data collected, it appears that the scientific literature is rich in medicinal herbs and marine products to be valorized in the wound healing of cutaneous leishmaniasis. We have identified 15 medicinal plants traditionally used in the management of healing or ulcer of cutaneous leishmaniasis, 32 medicinal plants whose efficacy has been demonstrated in vitro or in vivo against cutaneous leishmaniasis, 5 marine products active against cutaneous leishmaniasis. It is also clear that the option of medicinal herbs/marine products in the management of cutaneous leishmaniasis is less expensive and allows to avoid the side effects of conventional products. It is necessary to encourage the development of dermatological topicals for the management of cutaneous leishmaniasis based on the data collected. In vivo research should be intensified on medicinal herbs traditionally used in wound healing of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Elahe Tajbakhsh
- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Neda Kosari
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shima Shantiae
- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran; Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
8
|
Malekifard F, Tavassoli M, Alimoradi M. In vitro assessment of anti- Trichomonas effects of Zingiber officinale and Lavandula angustifolia alcoholic extracts on Trichomonas gallinae. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:95-100. [PMID: 33953879 PMCID: PMC8094141 DOI: 10.30466/vrf.2019.102620.2444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/07/2019] [Indexed: 11/01/2022]
Abstract
Trichomonas gallinae is a parasite that acts as a canker-causing agent and leads to significant loss and mortality, especially in young birds. Metronidazole is the approved drug used for the treatment of trichomoniasis. A non-chemical alternativess such as medical plant extracts are also used to treat this disease due to drug resistance. This study aimed to assess in vitro antitrichomonal effects of Lavandula angustifolia and Zingiber officinale extracts on T. gallinae compared with metronidazole. The T. gallinae samples were obtained from infected pigeons. Multi-well plates filled with different concentrations (5.00, 10.00, 25.00, 50.00, and 100 μg mL-1) were used to perform in vitro analysis. The Z. officinale extract's minimum inhibitory concentration (MIC) in the 24-hr period was 25.00 μg mL-1, while it was 50.00 μg mL-1 for metronidazole. The MIC value obtained for L. angustifolia extract in 24-hr was 50.00 μg mL-1. The results indicated that the extracts of Z. officinale and L. angustifolia could act as potential natural agents against trichomoniasis. Furthermore, this study delineated the equal efficiency of L. angustifolia and Z. officinale with that of metronidazole in inhibiting the growth of Trichomonas gallinae trophozoites in culture media.
Collapse
Affiliation(s)
- Farnaz Malekifard
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mousa Tavassoli
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohammad Alimoradi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Related Pentacyclic Triterpenes Have Immunomodulatory Activity in Chronic Experimental Visceral Leishmaniasis. J Immunol Res 2021; 2021:6671287. [PMID: 33681389 PMCID: PMC7906800 DOI: 10.1155/2021/6671287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by the flagellated protozoa of the genus Leishmania that affects millions of people around the world. Drugs employed in the treatment of leishmaniasis have limited efficacy and induce local and systemic side effects to the patients. Natural products are an interesting alternative to treat leishmaniasis, because some purified molecules are selective toward parasites and not to the host cells. Thus, the aim of the present study was to compare the in vitro antileishmanial activity of the triterpenes betulin (Be), lupeol (Lu), and ursolic acid (UA); analyze the physiology and morphology of affected organelles; analyze the toxicity of selected triterpenes in golden hamsters; and study the therapeutic activity of triterpenes in hamsters infected with L. (L.) infantum as well as the cellular immunity induced by studied molecules. The triterpenes Lu and UA were active on promastigote (IC50 = 4.0 ± 0.3 and 8.0 ± 0.2 μM, respectively) and amastigote forms (IC50 = 17.5 ± 0.4 and 3.0 ± 0.2 μM, respectively) of L. (L.) infantum, and their selectivity indexes (SI) toward amastigote forms were higher (≥13.4 and 14, respectively) than SI of miltefosine (2.7). L. (L.) infantum promastigotes treated with Lu and UA showed cytoplasmic degradation, and in some of these areas, cell debris were identified, resembling autophagic vacuoles, and parasite mitochondria were swelled, fragmented, and displayed membrane potential altered over time. Parasite cell membrane was not affected by studied triterpenes. Studies of toxicity in golden hamster showed that Lu did not alter blood biochemical parameters associated with liver and kidney functions; however, a slight increase of aspartate aminotransferase level in animals treated with 2.5 mg/kg of UA was detected. Lu and UA triterpenes eliminated amastigote forms in the spleen (87.5 and 95.9% of reduction, respectively) and liver of infected hamster (95.9 and 99.7% of reduction, respectively); and UA showed similar activity at eliminating amastigote forms in the spleen and liver than amphotericin B (99.2 and 99.8% of reduction). The therapeutic activity of both triterpenes was associated with the elevation of IFN-γ and/or iNOS expression in infected treated animals. This is the first comparative work showing the in vitro activity, toxicity, and therapeutic activity of Lu and UA in the chronic model of visceral leishmaniasis caused by L. (L.) infantum; additionally, both triterpenes activated cellular immune response in the hamster model of visceral leishmaniasis.
Collapse
|
10
|
Valerino-Díaz AB, Zanatta AC, Gamiotea-Turro D, Candido ACBB, Magalhães LG, Vilegas W, Santos LCD. An enquiry into antileishmanial activity and quantitative analysis of polyhydroxylated steroidal saponins from Solanum paniculatum L. leaves. J Pharm Biomed Anal 2020; 191:113635. [PMID: 32998105 DOI: 10.1016/j.jpba.2020.113635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Solanum paniculatum L. is species whose fruits are widely consumed in Brazil as a tonic beverage with higher content of steroidal saponins. In this work, we developed an analytical method for the quantification of the eight saponins present in the 70 % ethanol extract from the leaves using ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS). Besides, the eight spirostanic saponins were screened for in vitro antileishmanial activity against promastigote and amastigote forms of Leishmania (L.) amazonensis. Substances 1, 2 and 3 were found to be the most active compounds, with inhibitory concentration (IC50) values of 8.51 ± 4.38, 10.75 ± 6.85 and 10.45 ± 4.21 μM, respectively, against promastigote forms and effective concentration (EC50) values of >25, 17.73 ± 0.99 and 19.57 ± 0.84 μM, respectively, against amastigote forms. The cytotoxic test with compounds 1-3 evidenced low toxicity in murine macrophage cells, with values above 50 μM at concentration lower than 25 μM. These findings show that saponins 1-3 should be evaluated in further studies for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Alexander B Valerino-Díaz
- UNESP, São Paulo State University, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-060, Araraquara, São Paulo, Brazil.
| | - Ana C Zanatta
- UNESP, São Paulo State University, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-060, Araraquara, São Paulo, Brazil.
| | - Daylin Gamiotea-Turro
- UNESP, São Paulo State University, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-060, Araraquara, São Paulo, Brazil.
| | - Ana Carolina Bolela Bovo Candido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14404-600 Franca, São Paulo, Brazil.
| | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14404-600 Franca, São Paulo, Brazil.
| | - Wagner Vilegas
- UNESP, São Paulo State University, Institute of Biosciences. Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, São Paulo, Brazil.
| | - Lourdes Campaner Dos Santos
- UNESP, São Paulo State University, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-060, Araraquara, São Paulo, Brazil.
| |
Collapse
|
11
|
Anderson O, Beckett J, Briggs CC, Natrass LA, Cranston CF, Wilkinson EJ, Owen JH, Mir Williams R, Loukaidis A, Bouillon ME, Pritchard D, Lahmann M, Baird MS, Denny PW. An investigation of the antileishmanial properties of semi-synthetic saponins. RSC Med Chem 2020; 11:833-842. [PMID: 33479679 PMCID: PMC7651632 DOI: 10.1039/d0md00123f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by insect-vector borne protozoan parasites of the, Leishmania species. Whilst infection threatens and affects millions of the global poor, vaccines are absent and drug therapy limited. Extensive efforts have recently been made to discover new leads from small molecule synthetic compound libraries held by industry; however, the number of new chemical entities identified and entering development as anti-leishmanials has been very low. This has led to increased interest in the possibility of discovering naturally derived compounds with potent antileishmanial activity which may be developed towards clinical applications. Plant-derived triterpenoid and steroidal saponins have long been considered as anti-microbials and here we describe an investigation of a library of 137 natural (9) and semi-synthetic saponins (128) for activity against Leishmania mexicana, a causative agent of cutaneous leishmaniasis. The triterpenoid sapogenin, hederagenin, readily obtained in large quantities from Hedera helix (common ivy), was converted into a range of 128 derivatives. These semi-synthetic compounds, as well as saponins isolated from ivy, were examined with a phenotypic screening approach to identify potent and selective anti-leishmanial hits. This led to the identification of 12 compounds, including the natural saponin gypsogenin, demonstrating high potency (ED50 < 10.5 μM) against axenic L. mexicana amastigotes, the mammalian pathogenic form. One of these, hederagenin disuccinate, was sufficiently non-toxic to the macrophage host cell to facilitate further analyses, selectivity index (SI) > 10. Whilst this was not active in an infected cell model, the anti-leishmanial properties of hederagenin-derivatives have been demonstrated, and the possibility of improving the selectivity of natural hederagenin through chemical modification has been established.
Collapse
Affiliation(s)
- Orlagh Anderson
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Joseph Beckett
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Carla C Briggs
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Liam A Natrass
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
- Department of Chemistry and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK
| | - Charles F Cranston
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Elizabeth J Wilkinson
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Jack H Owen
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Rhodri Mir Williams
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Angelos Loukaidis
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Marc E Bouillon
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Deiniol Pritchard
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Martina Lahmann
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Mark S Baird
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Paul W Denny
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| |
Collapse
|
12
|
Lupeol induces immunity and protective efficacy in a murine model against visceral leishmaniasis. Parasitology 2019; 146:1440-1450. [DOI: 10.1017/s0031182019000659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractThe available chemotherapeutics for the cure of visceral leishmaniasis (VL) are linked with many detrimental effects. Moreover, VL is associated with the suppression of protective Th1 immune response of the host and induction of disease exaggerating Th2 immune response. Therefore, there is an urgent requirement of therapeutics which can augment the immune status of the host to cure this disease. In the current investigation, the antileishmanial potential of lupeol was monitored in vitro and in vivo in inbred BALB/c mice against Leishmania donovani. Lupeol showed potent antipromastigote activity via arresting parasites at sub G0/G1 phase in vitro. Lupeol significantly decreased the splenic parasite burden by inducing strong delayed-type hypersensitivity responses in contrary to untreated infected animals. The therapeutic efficacy of lupeol was observed to be similar to the reference drug, AmB. Treatment of infected animals with lupeol depicted enhanced levels of T cells and Th1 cytokines in contrast to only infected controls. Further lupeol treatment upregulated the levels of nuclear factor κ B and nitric oxide synthase genes and elevated the production of reactive oxygen species and nitric oxide. Unlike AmB, lupeol-treated infected animals did not show any toxicity. These findings are promising and indicate that lupeol can serve as a prototype drug for the cure of VL.
Collapse
|
13
|
Mostafavi M, Sharifi I, Farajzadeh S, Khazaeli P, Sharifi H, Pourseyedi E, Kakooei S, Bamorovat M, Keyhani A, Parizi MH, Khosravi A, Khamesipour A. Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects. Biomed Pharmacother 2019; 116:108942. [PMID: 31152929 DOI: 10.1016/j.biopha.2019.108942] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to evaluate the efficacy of glucantime and amphotericin B (AmB) encapsulated in niosome against cutaneous leishmaniasis (CL) using in vitro and in vivo models. The niosomal formulations of the drugs alone and in combination were prepared and characterized. Subsequent to the examination of their cytotoxicity, their efficacy was evaluated using an in vitro MTT assay, macrophage model, flow cytometry, and gene expression profiling. For evaluation of therapeutic effect of niosomal combination on the lesion induced by Leishmania major in inbred BALB/c mice, the size of lesions and number of parasites in spleen was assessed. The niosomal formulations demonstrated significantly greater inhibitory effects compared with the non-niosomal forms when the IC50 was considered. The niosomal combination showed an increase in the apoptotic values and gene expression levels of IL-12 and metacaspase and a decrease in the levels of IL-10 with a dose-response effect. The niosomal combination was also effective in reducing the lesion size and splenic parasite burden in mice. Our findings indicated that there is a synergistic effect between AmB and glucantime in niosomal form in the inhibition of intracellular and extracellular forms of L. tropica. Additionally, the in vivo results on L. major suggest that topical niosomal formulation could be useful in the treatment of CL.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeedeh Farajzadeh
- Department of Pediatric dermatology, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Elnaz Pourseyedi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Oral and Dental Diseases Research Center, Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Beristain-Bauza SDC, Hernández-Carranza P, Cid-Pérez TS, Ávila-Sosa R, Ruiz-López II, Ochoa-Velasco CE. Antimicrobial Activity of Ginger (Zingiber Officinale) and Its Application in Food Products. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573829] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Paola Hernández-Carranza
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Teresa Soledad Cid-Pérez
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Raúl Ávila-Sosa
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Carlos Enrique Ochoa-Velasco
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
15
|
Mostafavi M, Farajzadeh S, Sharifi I, Khazaeli P, Sharifi H. Leishmanicidal effects of amphotericin B in combination with selenium loaded on niosome against Leishmania tropica. J Parasit Dis 2019; 43:176-185. [PMID: 31263321 DOI: 10.1007/s12639-018-1071-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 01/26/2023] Open
Abstract
The strategy for improving the treatment of leishmaniasis by the World Health Organization, is the development of new drugs and combination therapy. The aim of this survey was to investigate the effect of amphotericin B (AmB) in combination with selenium, in a simple or niosomal form, on Leishmania tropica (L. tropica) by in vitro advanced assays. In this study, a niosomal formulation of AmB with selenium was prepared and characterized based on size and morphology. Using MTT assay, macrophage model, flow cytometry, and qPCR, the cytotoxicity and efficiency of the niosomal formulation and simple form of combination were evaluated. No toxicity was reported for both the niosomal and simple form of the combination. The niosomal formulation significantly showed higher inhibitory effect on the promastigote and amastigote forms of L. tropica than simple combination form. Interleukin (IL)-10 significantly decreased while the level of IL-12 and metacasoase as Th-1 activator significantly increased (P < 0.001). The findings of this study indicated that niosomes are the stable carriers for this combination, easy to produce and provide promising results as an effective formulation in the inhibition of extracellular and intracellular forms of L. tropica in compared with simple combination form.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Farajzadeh
- 2Department of Pediatric Dermatology, Kerman University of Medical Sciences, Kerman, 76169-14115 Iran
| | - Iraj Sharifi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- 3Pharmaceutical Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- 4HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Mendonça DVC, Martins VT, Lage DP, Dias DS, Ribeiro PAF, Carvalho AMRS, Dias ALT, Miyazaki CK, Menezes-Souza D, Roatt BM, Tavares CAP, Barichello JM, Duarte MC, Coelho EAF. Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Exp Parasitol 2018; 186:24-35. [PMID: 29448040 DOI: 10.1016/j.exppara.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/20/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
Amphotericin B (Amp) has been well-successfully used to treat against Leishmania infection, although high toxicity has been found in patients. In the present study, Amp was administered in Leishmania infantum-infected BALB/c mice by three distinct delivery systems aiming to compare their efficacy against challenge infection, as well as their side effects in a murine visceral leishmaniasis (VL) model. This product was administered in a Poloxamer P407 (Pluronic® F127)-based polymeric micelle system (Amp/M), in the Ambisome® formulation (Lip-Amp) or in a free format (free Amp). Glucantime® (Gluc) was used as a comparative drug. Aiming to evaluate different endpoints of the treatments, the efficacy of the compounds was investigated one and 15-days after the therapeutic regimens, determining the parasite load by a limiting dilution assay and a quantitative PCR (qPCR) technique, as well as evaluating the immune response generated in the infected and treated animals. In the results, Amp/M or Lip-Amp-treated mice presented the best outcomes, since significant parasite load reductions were found in the evaluated organs, as well as a parasite-specific Th1 immune response was observed in the animals. In addition, no hepatic or renal damage was found in these mice. On the other hand, free Amp or Gluc induced toxicity in the animals, which was associated with a low Th1 immune response. Comparatively, Amp/M was the most effective drug in our experimental model, and results showed that the Amp-carrying system could be considered as a future alternative in studies against VL.
Collapse
Affiliation(s)
- Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Ana Maria R S Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Anna Letícia T Dias
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Carolina K Miyazaki
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Bruno M Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - José Mário Barichello
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, 96900-010, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Ramdane F, Essid R, Fares N, El Ouassis D, Aziz S, Mahammed MH, Ould Hadj MD, Limam F. Antioxidant antileishmanial cytotoxic and antimicrobial activities of a local plant Myrtus nivellei from Algeria Sahara. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Salih MAM, Fakiola M, Lyons PA, Younis BM, Musa AM, Elhassan AM, Anderson D, Syn G, Ibrahim ME, Blackwell JM, Mohamed HS. Expression profiling of Sudanese visceral leishmaniasis patients pre- and post-treatment with sodium stibogluconate. Parasite Immunol 2017; 39. [PMID: 28370072 DOI: 10.1111/pim.12431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Abstract
Visceral leishmaniasis (VL) in Sudan caused by Leishmania donovani is fatal in susceptible individuals if untreated. Treatment with sodium stibogluconate (SSG) leads to post-kala-azar dermal leishmaniasis (PKDL) in 58% of patients. Here, Affymetrix microarrays were used to identify genes differentially expressed in lymph nodes (N=9 paired samples) pre- and post-treatment with SSG. Using the Bioconductor package limma, 438 genes from 28 869 post-quality-control probe sets were differentially expressed (Pnominal ≤.02) post- vs pretreatment. Canonical pathway analysis using Ingenuity Pathway Analysis™ identified "role of nuclear factor of activated T-cell in regulation of immune response" (Pnominal =1.35×10-5 ; PBH-adjusted =4.79×10-3 ), "B-cell development" (Pnominal =2.04×10-4 ; PBH-adjusted =.024), "Fcγ receptor-mediated phagocytosis in macrophages and monocytes" (Pnominal =2.04×10-4 ; PBH-adjusted =.024) and "OX40 signalling" (Pnominal =2.82×10-4 ; PBH-adjusted =.025) as pathways differentially regulated post- vs pretreatment. Major network hub genes included TP53, FN1, MYC, BCL2, JUN, SYK, RUNX2, MMP1 and ACTA2. Top endogenous upstream regulators included IL-7 (P=2.28×10-6 ), TNF (P=4.26×10-6 ), Amyloid Precursor Protein (P=4.23×10-5 ) and SPI1/PI.1 (P=1.17×10-7 ). Top predicted chemical drug regulators included the flavonoid genistein (P=4.56×10-7 ) and the quinoline alkaloid camptothecin (P=5.14×10-5 ). These results contribute to our understanding of immunopathology associated with VL and response to SSG treatment. Further replication could identify novel therapeutic strategies that improve on SSG treatment and reduce the likelihood of progression to PKDL.
Collapse
Affiliation(s)
- M A M Salih
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan.,Central Laboratory, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - M Fakiola
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - P A Lyons
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - B M Younis
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - A M Musa
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - A M Elhassan
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - D Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - G Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - M E Ibrahim
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - J M Blackwell
- Department of Pathology, University of Cambridge, Cambridge, UK.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - H S Mohamed
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan.,Department of Biology, Taibah University, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Jesus JA, Fragoso TN, Yamamoto ES, Laurenti MD, Silva MS, Ferreira AF, Lago JHG, Santos-Gomes G, Passero LFD. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis. Int J Parasitol Drugs Drug Resist 2017; 7:1-11. [PMID: 27984757 PMCID: PMC5156607 DOI: 10.1016/j.ijpddr.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated daily during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was stimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.
Collapse
Affiliation(s)
- Jéssica A Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil; Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Thais N Fragoso
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Marcelo S Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Aurea F Ferreira
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Gabriela Santos-Gomes
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Luiz Felipe D Passero
- São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| |
Collapse
|
20
|
Poloxamer 407 (Pluronic(®) F127)-based polymeric micelles for amphotericin B: In vitro biological activity, toxicity and in vivo therapeutic efficacy against murine tegumentary leishmaniasis. Exp Parasitol 2016; 169:34-42. [PMID: 27427166 DOI: 10.1016/j.exppara.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
In the present study, a Poloxamer 407-based amphotericin B (AmpB)-containing polymeric micelles system (AmpB/M) was employed in the treatment of Leishmania amazonensis-infected BALB/c mice. Initially, the in vitro antileishmanial activity (IC50 value) of AmpB/M and B-AmpB/M (empty micelles) against stationary promastigotes and amastigotes-like forms of the parasites was determined, and results were of 1.83 ± 0.4 and 22.1 ± 0.7 μM, respectively, for the promastigotes, and of 2.27 ± 0.5 and 33.98 ± 2.6 μM, respectively, for the amastigotes-like. The cytotoxic concentration (CC50) values of these products were also evaluated, and we found the results of 119.5 ± 9.6 and 134.7 ± 10.3 μM, respectively. With these values, the selectivity index (SI) was calculated and results were of 65.3 and 5.4, respectively, for the promastigotes, and of 59.3 and 3.96, respectively, for the amastigotes-like of the parasites. Free AmpB showed IC50 values of 1.2 ± 0.3 and 2.5 ± 0.5 μM for the promastigotes and amastigotes-like, respectively, whereas the CC50 value was of 9.5 ± 0.4 μM. The SI values of this drug were of 7.9 and 3.8, respectively, for the promastigote and amastigote-like stages of the parasites. After, animals were infected and received saline or were treated subcutaneously with free AmpB, AmpB/M or B-AmpB/M. In the results, free AmpB-treated and infected mice showed reductions in their body weight, which were associated with hepatic and renal damage; however, no organic alteration was observed in the AmpB/M-treated animals. In addition, these animals showed significant reductions in their lesion average size and in the parasite burden in all evaluated infected tissue and organs, when compared to the other groups; as well as significantly higher levels of antileishmanial IFN-γ, IL-12, GM-CSF and nitrite, which were associated with low production of IL-4, IL-10 and IgG1 isotype antibodies. In conclusion, this AmpB/M system could be considered as an alternative for future studies in the treatment of tegumentary leishmaniasis.
Collapse
|