1
|
Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022; 18:93-113. [PMID: 34997903 PMCID: PMC8742569 DOI: 10.1007/s11302-021-09838-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Present Address: Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina L. Mazzocco Mariotta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Haya de La Torre and Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
2
|
Ecto-enzymes activities in splenic lymphocytes of mice experimentally infected by Trypanosoma cruzi and treated with specific avian immunoglobulins: an attempt to improve the immune response. Mol Cell Biochem 2018; 448:9-15. [PMID: 29435869 DOI: 10.1007/s11010-018-3308-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the therapeutic efficacy of specific avian polyclonal antibodies (IgY) against Trypanosoma cruzi and their interaction with ecto-enzymes of the purinergic system (NTPDase and adenosine deaminase (ADA) activities) in splenic lymphocytes. For this, mice were divided into six groups: three non-infected (A, B, and C) and three infected (D, E, and F). The groups A and D were composed by negative and positive controls, respectively; while the groups B and E were treated prophylactically with IgY (50 mg/kg), and the groups C and F were treated therapeutically with IgY (50 mg/kg). Treatment with IgY reduced parasitemia on day 6 post-infection (PI) compared to the infected control group, but it was similar on day 8 PI. Moreover, infected and treated animals (the groups E and F) did not show neither amastigotes in the cardiac tissue nor cardiac lesions when compared to the positive control group (the group D). The E-NTPDase (ATP and ADP as substrate) and ADA activities in splenic lymphocytes increased significantly in the positive control group (the group D) compared to the negative control group (the group A). The therapeutic treatment of IgY (the group F) was able to prevent the increase of E-NTPDase and E-ADA activities compared to the positive control group (the group D), but this finding was not observed in animals that received the prophylactic treatment (the group E). The therapeutic treatment of IgY may be considered an interesting approach to improve the immune response of mice experimentally infected by T. cruzi.
Collapse
|
3
|
do Carmo GM, de Sá MF, Baldissera MD, Grando TH, Mendes RE, Cardoso VV, Casali EA, Moritz CEJ, Monteiro SG, Da Silva AS. Nucleotide and nucleoside involvement in immunomodulation in experimental Chagas disease. Mol Cell Biochem 2018; 447:203-208. [PMID: 29404886 DOI: 10.1007/s11010-018-3304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
The aim of this study was to evaluate whether Trypanosma cruzi infections cause alterations in the levels of seric purines, which could contribute to host immunomodulation. Twelve mice were divided into two groups identified as control (uninfected) and infected (T. cruzi) groups. The influence of the disease on seric purine levels was verified on day 20 post-infection (PI) by HPLC. Infected mice had circulating trypomastigotes during the experiment, as well as amastigote forms in the heart associated with inflammatory infiltrates. Increases on adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), inosine (INO), and uric acid (URIC) levels were observed in the infected animals, while the adenosine monophosphate (AMP) and xanthine (XAN) levels were reduced compared with mice of the control group, indicating a possible impairment on the purinergic system, and consequently, on the immune system during the clinical course of the disease. In summary, the T. cruzi infection alters the seric purine levels, and consequently, modulates the immune system.
Collapse
Affiliation(s)
- Guilherme M do Carmo
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Mariângela F de Sá
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thirssa H Grando
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ricardo E Mendes
- Veterinary Pathology Laboratory, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
| | - Valesca V Cardoso
- Department of Morphological Science, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Mutagenesis and Toxicology Laboratory, Methodist University Center (IPA), Porto Alegre, RS, Brazil
| | - Emerson A Casali
- Department of Morphological Science, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cesar Eduardo J Moritz
- Graduate Program in Human Movement Sciences, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil. .,Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|
4
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
5
|
Baldissera MD, Souza CF, Carmo GM, Monteiro SG, Mendes RE, Stefani LM, da Silva AS. Relation between acetylcholinesterase and Na +, K +-ATPase activities with impaired memory of mice experimentally infected by Trypanosoma cruzi. Microb Pathog 2017; 111:75-80. [PMID: 28823791 DOI: 10.1016/j.micpath.2017.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and causes severe cardiac and brain damage, leading to behavioral alterations in humans and animals. However, the mechanisms involved in memory impairment during T. cruzi infection remain unknown. It has long been recognized that the enzymatic activities of acetylcholinesterase (AChE) and Na+, K+-ATPase are linked with memory dysfunction during other trypanosomiasis. Thus, the aim of this study was to evaluate the involvement of cerebral AChE and Na+, K+-ATPase activities in the memory impairment during T. cruzi (Colombian strain) infection. A significant decrease on latency time during the inhibitory avoidance task was observed in animals infected by T. cruzi compared to uninfected animals, findings compatible to memory dysfunction. Moreover, the cerebral AChE activity increased, while the Na+, K+-ATPase decreased in T. cruzi infected compared to uninfected animals. Histopathology revealed mild to moderate multifocal gliosis in the cerebral cortex and light focal meningeal lymphoplasmacytic infiltrate, which may have contributed to memory loss. Based on these evidences, we can conclude that T. cruzi (Colombian strain) causes memory impairment in mice experimentally infected. Moreover, the changes in AChE and Na+, K+-ATPase activities may be considered a mechanism involved in disease pathogenesis.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Guilherme M Carmo
- Graduate Program in Toxicological Biochemistry (UFSM), Santa Maria, RS, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ricardo E Mendes
- Laboratory of Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Aleksandro S da Silva
- Graduate Program in Toxicological Biochemistry (UFSM), Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|