1
|
Zurita-Artaloitia JM, Rivera J, Vinuesa P. Extensive Cryptic Diversity and Ecological Associations Uncovered among Mexican and Global Collections of Naegleria and Vermamoeba Species by 18S Ribosomal DNA, Internal Transcribed Spacer, and Cytochrome Oxidase Subunit I Sequence Analysis. Microbiol Spectr 2023; 11:e0379522. [PMID: 36943092 PMCID: PMC10100766 DOI: 10.1128/spectrum.03795-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/26/2023] [Indexed: 03/23/2023] Open
Abstract
Free-living amoebae (FLA) are phagocytic protists that play crucial roles in microbial communities as significant microbial grazers. However, our current knowledge of their diversity, ecology, and population genetic structures is marginal due to the shallow and biased sampling of ecosystems and the use of few, poorly resolving molecular markers. Thirty-two FLA were isolated from soil and water samples collected across representative ecosystems of the State of Morelos in Central Mexico, including the drinking water distribution system (DWDS) from the state capital. We classified our isolates as members of Acanthamoeba, Vermamoeba, Naegleria, and Tetramitus by 18S ribosomal DNA (rDNA) sequencing. Vermamoeba isolates were recovered exclusively from the DWDS samples. In contrast, Naegleria strains displayed a broad distribution in soil and water samples across the natural ecosystems. We used a combination of phylogenetic and population genetic analyses of internal transcribed spacer (ITS) and cytochrome oxidase subunit I (COI) sequences from our isolates and a comprehensive set of reference sequences to analyze the currently known diversity of Naegleria spp. Significant associations were uncovered between the most prevalent lineages of Naegleria and Vermamoeba and broad ecological and geographical variables at regional and global levels. The population structure and cryptic diversity within the Naegleria galeacystis-Naegleria americana and Vermamoeba vermiformis species complexes were thoroughly analyzed. Our results prove that the genus Vermamoeba, which was previously thought to consist of only one species, actually encompasses at least seven widely distributed species, as indicated by consistent evidence from Bayesian phylogenetics, two species-delimitation programs, and population genetics analyses. IMPORTANCE Our study sheds new light on the population genetic structure of V. vermiformis and diverse Naegleria species. Using improved molecular markers and advanced analytical approaches, we discovered that N. americana, previously considered a single species, actually contains multiple distinct lineages, as revealed by COI sequencing. These lineages are highly differentiated, with little gene flow between them. Our findings demonstrate that the genus Vermamoeba holds multiple cryptic species, requiring a significant taxonomic revision in light of multilocus sequence analyses. These results advance our understanding of the ecology, molecular systematics, and biogeography of these genera and species complexes at both regional and global scales. This study has significant implications for diagnosing amoebal infections and evaluating health risks associated with FLA in domestic and recreational waters.
Collapse
Affiliation(s)
| | - Javier Rivera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Distribution and Current State of Molecular Genetic Characterization in Pathogenic Free-Living Amoebae. Pathogens 2022; 11:pathogens11101199. [PMID: 36297255 PMCID: PMC9612019 DOI: 10.3390/pathogens11101199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Free-living amoebae (FLA) are protozoa widely distributed in the environment, found in a great diversity of terrestrial biomes. Some genera of FLA are linked to human infections. The genus Acanthamoeba is currently classified into 23 genotypes (T1-T23), and of these some (T1, T2, T4, T5, T10, T12, and T18) are known to be capable of causing granulomatous amoebic encephalitis (GAE) mainly in immunocompromised patients while other genotypes (T2, T3, T4, T5, T6, T10, T11, T12, and T15) cause Acanthamoeba keratitis mainly in otherwise healthy patients. Meanwhile, Naegleria fowleri is the causative agent of an acute infection called primary amoebic meningoencephalitis (PAM), while Balamuthia mandrillaris, like some Acanthamoeba genotypes, causes GAE, differing from the latter in the description of numerous cases in patients immunocompetent. Finally, other FLA related to the pathologies mentioned above have been reported; Sappinia sp. is responsible for one case of amoebic encephalitis; Vermamoeba vermiformis has been found in cases of ocular damage, and its extraordinary capacity as endocytobiont for microorganisms of public health importance such as Legionella pneumophila, Bacillus anthracis, and Pseudomonas aeruginosa, among others. This review addressed issues related to epidemiology, updating their geographic distribution and cases reported in recent years for pathogenic FLA.
Collapse
|
3
|
Prevalence of free-living amoebae in swimming pools and recreational waters, a systematic review and meta-analysis. Parasitol Res 2022; 121:3033-3050. [PMID: 36040629 PMCID: PMC9424809 DOI: 10.1007/s00436-022-07631-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Free-living amoebae (FLA) are cosmopolitan microorganisms known to be pathogenic to humans who often have a history of contact with contaminated water. Swimming pools and recreational waters are among the environments where the greatest human exposure to FLA occurs. This study aimed to determine the prevalence of FLA in swimming pools and recreational waters, through a systematic review and meta-analysis that included studies published between 1977 and 2022. A total of 106 studies were included and an overall prevalence of FLA in swimming pools and recreational waters of 44.34% (95% CI = 38.57–50.18) was found. Considering the studies published up to 2010 (1977–2010), between 2010 and 2015, and those published after 2010 (> 2010–2022), the prevalence was 53.09% (95% CI = 43.33–62.73) and 37.07% (95% CI = 28.87–45.66) and 45.40% (95% CI = 35.48–55.51), respectively. The highest prevalence was found in the American continent (63.99%), in Mexico (98.35%), and in indoor hot swimming pools (52.27%). The prevalence varied with the variation of FLA detection methods, morphology (57.21%), PCR (25.78%), and simultaneously morphology and PCR (43.16%). The global prevalence by genera was Vahlkampfia spp. (54.20%), Acanthamoeba spp. (33.47%), Naegleria spp. (30.95%), Hartmannella spp./Vermamoeba spp. (20.73%), Stenamoeba spp. (12.05%), and Vannella spp. (10.75%). There is considerable risk of FLA infection in swimming pools and recreational waters. Recreational water safety needs to be routinely monitored and, in case of risk, locations need to be identified with warning signs and users need to be educated. Swimming pools and artificial recreational water should be properly disinfected. Photolysis of NaOCl or NaCl in water by UV-C radiation is a promising alternative to disinfect swimming pools and artificial recreational waters.
Collapse
|
4
|
Sousa-Ramos D, Reyes-Batlle M, Bellini NK, Rodríguez-Expósito RL, Martín-Real C, Piñero JE, Lorenzo-Morales J. Pathogenic free-living amoebae from water sources in Cape Verde. Parasitol Res 2022; 121:2399-2404. [PMID: 35660958 PMCID: PMC9279231 DOI: 10.1007/s00436-022-07563-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/28/2022] [Indexed: 12/01/2022]
Abstract
Free-living amoebae (FLA) are protozoa which have been reported in different countries worldwide from diverse sources (water, soil, dust, air), contributing to the environmental microbiological contamination. Most of the FLA species present a life cycle with two different phases: an active vegetative and physiologically form named trophozoite, and an extremely resistant phase called cyst. Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, Sapinia pedata, Vahlkampfia spp., Paravahlkampfia spp. and Vermamoeba vermiformis have been reported not only as causal agents of several opportunistic diseases including fatal encephalitis or epithelial disorders, but also as capable to favour the intracellular survival of common pathogenic bacteria, which could avoid the typical water disinfection systems, non-effective against FLAs cysts. Even though Santiago Island possesses high levels of humidity compared to the rest of the archipelago of Cape Verde, the water resources are scarce. Therefore, it is important to carry out proper microbiological quality controls, which currently do not contemplate the FLA presence in most of the countries. In the present work, we have reported the presence of Acanthamoeba spp. (69.2%); Vannella spp. (15.4%); Vermamoeba vermiformis (7.7%) and the recently discovered Stenamoeba dejonckheerei (7.7%) in different water sources of Santiago Island.
Collapse
Affiliation(s)
- Djeniffer Sousa-Ramos
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez S/N, 38203, La Laguna, Tenerife, Spain
- Departamento de Obstetricia Y Ginecología, Pediatría, Medicina Preventiva Y Salud Pública, Toxicología, Medicina Legal Y Forense Y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez S/N, 38203, La Laguna, Tenerife, Spain
- Departamento de Obstetricia Y Ginecología, Pediatría, Medicina Preventiva Y Salud Pública, Toxicología, Medicina Legal Y Forense Y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Natalia Karla Bellini
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, 13560-590, Brazil
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez S/N, 38203, La Laguna, Tenerife, Spain
- Departamento de Obstetricia Y Ginecología, Pediatría, Medicina Preventiva Y Salud Pública, Toxicología, Medicina Legal Y Forense Y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Christian Martín-Real
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez S/N, 38203, La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez S/N, 38203, La Laguna, Tenerife, Spain.
- Departamento de Obstetricia Y Ginecología, Pediatría, Medicina Preventiva Y Salud Pública, Toxicología, Medicina Legal Y Forense Y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain.
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Madrid, Spain.
- Consorcio Centro de Investigación Biomédica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, 28006, Madrid, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales Y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez S/N, 38203, La Laguna, Tenerife, Spain.
- Departamento de Obstetricia Y Ginecología, Pediatría, Medicina Preventiva Y Salud Pública, Toxicología, Medicina Legal Y Forense Y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain.
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Madrid, Spain.
- Consorcio Centro de Investigación Biomédica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Inst. de Salud Carlos III, 28006, Madrid, Spain.
| |
Collapse
|
5
|
Logan-Jackson A, Rose JB. Cooccurrence of Five Pathogenic Legionella spp. and Two Free-Living Amoebae Species in a Complete Drinking Water System and Cooling Towers. Pathogens 2021; 10:pathogens10111407. [PMID: 34832563 PMCID: PMC8619718 DOI: 10.3390/pathogens10111407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Pathogenic Legionella species grow optimally inside free-living amoebae to concentrations that increase risks to those who are exposed. The aim of this study was to screen a complete drinking water system and cooling towers for the occurrence of Acanthamoeba spp. and Naegleria fowleri and their cooccurrence with Legionella pneumophila, Legionella anisa, Legionella micdadei, Legionella bozemanii, and Legionella longbeachae. A total of 42 large-volume water samples, including 12 from the reservoir (water source), 24 from two buildings (influents to the buildings and exposure sites (taps)), and six cooling towers were collected and analyzed using droplet digital PCR (ddPCR). N. fowleri cooccurred with L. micdadei in 76 (32/42) of the water samples. In the building water system, the concentrations of N. fowleri and L. micdadei ranged from 1.5 to 1.6 Log10 gene copies (GC)/100 mL, but the concentrations of species increased in the cooling towers. The data obtained in this study illustrate the ecology of pathogenic Legionella species in taps and cooling towers. Investigating Legionella’s ecology in drinking and industrial waters will hopefully lead to better control of these pathogenic species in drinking water supply systems and cooling towers.
Collapse
Affiliation(s)
- Alshae Logan-Jackson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
6
|
Fabros MRL, Diesta XRS, Oronan JA, Verdejo KS, Garcia JASM, Sophia Romey M, Milanez GDJ. Current report on the prevalence of free-living amoebae (FLA) in natural hot springs: a systematic review. JOURNAL OF WATER AND HEALTH 2021; 19:563-574. [PMID: 34371494 DOI: 10.2166/wh.2021.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The occurrence of potentially pathogenic free-living amoebae (FLA) in natural hot springs is considered a public health concern. FLAs are known to cause serious health outcomes to a wide spectrum of mammalian hosts. The present study aimed to provide the distribution of isolated cases of FLAs in hot springs through a systematic review process of available published articles online. Relevant studies are published between January 2010 and January 2020 involving the isolation of Naegleria spp., Acanthamoeba spp., Balamuthia spp., Sappinia spp., and Vermamoeba spp. in natural hot springs in the United States, South America, North America, Europe, Asia, and Africa. Articles were identified through a search of PubMed and Google Scholar databases. Out of 94 articles screened, a total of 20 articles are included in the study with consideration of established inclusion and exclusion criteria. The most common FLAs isolated in hot springs are Acanthamoeba spp. (134; 48.5%) and Naegleria spp. (127; 46.0%). Other FLAs isolated in hot springs include Balamuthia spp. (2; 0.7%) and Vermamoeba spp. (13; 4.7%). FLA in hot springs used for recreational and medical purposes is a potential source of infection. It is recommended that strict surveillance and maintenance of hot springs be implemented to prevent potential future infection.
Collapse
Affiliation(s)
| | | | - John Anthony Oronan
- Department of Medical Technology, Far Eastern University, Manila 1015, Philippines E-mail:
| | - Kim Sofia Verdejo
- Department of Medical Technology, Far Eastern University, Manila 1015, Philippines E-mail:
| | | | - Ma Sophia Romey
- Department of Medical Technology, Far Eastern University, Manila 1015, Philippines E-mail:
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Far Eastern University, Manila 1015, Philippines E-mail: ; Division III (Medical Sciences), National Research Council of the Philippines, Manila, Philippines
| |
Collapse
|
7
|
Sousa-Ramos D, Reyes-Batlle M, Bellini NK, Rodríguez-Expósito RL, Piñero JE, Lorenzo-Morales J. Free-Living Amoebae in Soil Samples from Santiago Island, Cape Verde. Microorganisms 2021; 9:microorganisms9071460. [PMID: 34361894 PMCID: PMC8306126 DOI: 10.3390/microorganisms9071460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Free-Living Amoebae (FLA) are widely distributed protozoa, which contain some groups considered as pathogenic microorganisms. These members are able to produce several opportunistic diseases including epithelial disorders, such as keratitis and fatal encephalitis. Even though they have been reported in numerous sources, such as soils, dust and water, there is no legislation related to the presence of these protozoa in soil-related environments worldwide. Therefore, there are no established prevention or disinfection protocols to advise the population regarding FLA infections or eliminate these microorganisms from human-related environments to date. Acanthamoeba spp. are the most common FLA isolated in soil samples, which is also the most common genera found in clinical cases. Thus, the aim of the present study was to evaluate the presence of potentially pathogenic FLA in human-related soil samples of Santiago Island, Cabo Verde. A total of 26 soil samples were seeded in non-nutrient agar plates (2%), incubated at 26 °C, and monitored daily to evaluate the presence of FLA. DNA was extracted from those plates on which there was suspected FLA growth, and PCR amplification of the 18S rRNA gene was carried out. A total of 17 from the 26 analysed samples were positive for FLA, where Acanthamoeba is the most abundant isolated genus (14/17; 82.4%), with the T4 genotype being the most common (13/14; 92.9%), followed by the T5 genotype, A. lenticulata (1/14; 7.1%). Moreover, Vermamoeba vermiformis, Stenamoeba dejonckheerei and Vannella pentlandi were isolated in three other samples. To the best of our knowledge, this is the first report of FLA presence in Cape Verde and the first report of V. vermiformis in beach sand worldwide.
Collapse
Affiliation(s)
- Djeniffer Sousa-Ramos
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Correspondence: (M.R.-B.); (J.E.P.); (J.L.-M.)
| | - Natália K. Bellini
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos 13560-590, SP, Brazil
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Correspondence: (M.R.-B.); (J.E.P.); (J.L.-M.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Correspondence: (M.R.-B.); (J.E.P.); (J.L.-M.)
| |
Collapse
|
8
|
Berrilli F, Di Cave D, Novelletto A, Montalbano Di Filippo M. PCR-based identification of thermotolerant free-living amoebae in Italian hot springs. Eur J Protistol 2021; 80:125812. [PMID: 34139569 DOI: 10.1016/j.ejop.2021.125812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Several thermal areas, also used for leisure purposes, may represent suitable habitats for free-living amoebae (FLAs), but few studies have been carried out in search for these organisms. The aim of this study was to assess the presence and distribution of FLAs by culture detection and molecular identification, over a one year-round sampling of two sites in Central Italy. Two geothermal springs (Site A and Site B) were investigated for a total of 36 water samples. Four sets of primers were used to amplify FLA DNA from all cultures positive for amoebic growth at both 37 °C and 45 °C. Overall, 33 (91.6%) water samples produced PCR amplification. Eleven taxa were identified. The array of identified species varied over the sampling period, and differed between the two hot springs, Site A harbouring 11 taxa compared to 5 of site B. However, both sites were characterized by the most common species Vermamoeba vermiformis and Naegleria australiensis. Acanthamoeba genotypes T4 and T15 were found at low frequency. Differences in the composition between the two sites could reflect environmental changes in biotic and chemical/physical parameters. From a public health perspective, the detection of potentially pathogenic amoebae could unveil a potential risk for humans.
Collapse
Affiliation(s)
- Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - David Di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Margherita Montalbano Di Filippo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Siddiqui R, Makhlouf Z, Khan NA. The Increasing Importance of Vermamoeba vermiformis. J Eukaryot Microbiol 2021; 68:e12857. [PMID: 33987951 DOI: 10.1111/jeu.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vermamoeba vermiformis are one of the most prevalent free-living amoebae. These amoebae are ubiquitous and also thermotolerant. Of concern, V. vermiformis have been found in hospital water networks. Furthermore, associations between V. vermiformis and pathogenic bacteria have been reported, such as Legionella pneumophila. Moreover, V. vermiformis are well known to host viruses, bacteria, and other microorganisms and cases of keratitis due to V. vermiformis in conjunction with other amoebae have been reported. Despite the preceding, the medical importance of V. vermiformis is still an ongoing discussion and its genome has been only recently sequenced. Herein, we present a review of the current understanding of the biology and pathogenesis pertaining to V. vermiformis, as well as its' role as an etiological agent and trojan horse. An approach known as theranostics which combines both diagnosis and therapy could be utilized to eradicate and diagnose keratitis cases caused by such amoebae. Given the rise in global warming, it is imperative to investigate these rarely studied amoebae and to understand their importance in human health.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
10
|
Stenamoeba dejonckheerei sp. nov., a Free-Living Amoeba Isolated from a Thermal Spring. Pathogens 2020; 9:pathogens9070586. [PMID: 32709092 PMCID: PMC7400236 DOI: 10.3390/pathogens9070586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Two amoeboid organisms were obtained from water samples taken from a thermal spring, "Agua Caliente", in Northwestern Mexico. The isolates were obtained when samples were cultivated at 37 °C on non-nutrient agar coated with Escherichia coli. The initial identification of the isolates was performed morphologically using light microscopy. The samples were found to have trophozoite morphology consistent with members of the genus Stenamoeba, a genus derived in 2007 from within the abolished polyphyletic genus Platyamoeba. Further analysis was performed by sequencing PCR products obtained using universal eukaryotic primers for the small subunit ribosomal ribonucleic acid (SSU rRNA) gene. Sequencing primers were designed to allow the comparison of the 18S rRNA gene sequences of the new isolates with previous sequences reported for Stenamoeba. Phylogenetic relationships among sequences from Stenamoeba were determined using Maximum Likelihood analysis. The results showed the two "Agua Caliente" sequences to be closely related, while clearly separating them from those of other Stenamoeba taxa. The degrees of sequence differentiation from other taxa were considered sufficient to allow us to propose that the Mexican isolates represent a new species.
Collapse
|
11
|
Saberi R, Seifi Z, Dodangeh S, Najafi A, Abdollah Hosseini S, Anvari D, Taghipour A, Norouzi M, Niyyati M. A systematic literature review and meta‐analysis on the global prevalence of
Naegleria
spp. in water sources. Transbound Emerg Dis 2020; 67:2389-2402. [DOI: 10.1111/tbed.13635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Reza Saberi
- Department of Medical Parasitology School of Medicine Toxoplasmosis Research CenterMazandaran University of Medical Sciences Sari Iran
- Student Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Zahra Seifi
- Student Research Committee Mazandaran University of Medical Sciences Sari Iran
| | - Samira Dodangeh
- Department of Medical Parasitology School of Medicine Toxoplasmosis Research CenterMazandaran University of Medical Sciences Sari Iran
| | - Azar Najafi
- Department of Medical Parasitology Paramedical Faculty Ilam University of Medical Sciences Ilam Iran
- Razi Herbal Medicines Research Center Lorestan University of Medical Sciences Lorestan Iran
| | - Seyed Abdollah Hosseini
- Department of Medical Parasitology School of Medicine Toxoplasmosis Research CenterMazandaran University of Medical Sciences Sari Iran
| | - Davood Anvari
- Department of Medical Parasitology School of Medicine Toxoplasmosis Research CenterMazandaran University of Medical Sciences Sari Iran
| | - Ali Taghipour
- Department of Parasitology Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Maryam Norouzi
- Department of Medical Parasitology and Mycology Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|