1
|
Santos Silva J, França Ferreira ÉL, Maciel Lima A, de Farias RRS, Quirino Araújo B, Quilles Junior JC, Lima Santos RR, de Amorim Carvalho FA, Rai M, Vieira Júnior GM, Chaves MH. Four new cycloartane-type triterpenoids from the leaves of Combretum mellifluum Eichler: assessment of their antioxidant and antileishmanial activities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:364-375. [PMID: 34933666 DOI: 10.1080/15287394.2021.2015030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The beneficial pharmacological actions including antioxidant effects as an antileishmanial, antibacterial, antifungal, antidiabetic, anti-inflammatory, antitumor, antiviral, and analgesic of compounds isolated from Combretum mellifluum Eichler (Combretaceae) are well established. The aim of the present study was to determine the phytochemistry as well as assess the antioxidant and antileishmanial activities of the leaves from Combretum mellifluum Eichler (Combretaceae). Analysis of ethanolic extract resulted in isolation and identification of two epimeric mixtures of four previously unknown cycloartane-type triterpenoids, methyl quadrangularate M and methyl 24-epiquadrangularate M, and 2α,3β,24β-trihydroxy-cycloart-25-ene and 2α, 3β, 24α-trihydroxy-cycloart-25-ene, and eight known compounds. Their structures were using one-dimensional nuclear magnetic resonance (1D NMR), 2D NMR and high-resolution electrospray ionization mass spectroscopy (HRESIMS) analysis. Further, the extract and fractions were tested for antioxidant potential. The ethyl acetate and aqueous fractions demonstrated the highest antioxidant activity against 2,2-dipheny-1-picrylhydrazl (DPPH) free radicals, which correlated directly with total flavonoid content. All extracts and fractions from C. mellifluum Eichler were assessed for antileishmanial activity. The supernatant fraction exhibited highest potential, inhibiting the growth of Leishmania amazonensis with IC50 value 31.29 μg/ml. Our findings provide information on the chemical composition of C. mellifluum and the potential beneficial therapeutic usefulness as an antioxidant agent in various diseases.
Collapse
Affiliation(s)
- Jaelson Santos Silva
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | - Éverton Leandro França Ferreira
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
- Universidade Federal do Vale do São Francisco, Campus Serra da Capivara, São Raimundo Nonato, Brazil
| | - Amanda Maciel Lima
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | | | - Bruno Quirino Araújo
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | - José Carlos Quilles Junior
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School (FMRP), Universidade de São Paulo (USP), Brazil
| | - Rodolfo Ritchelle Lima Santos
- Department of Biochemistry and Pharmacology, Medicinal Plants Research Center, NPPM, Universidade Federal do Piauí, Teresina, Brasil
| | - Fernando Aécio de Amorim Carvalho
- Department of Biochemistry and Pharmacology, Medicinal Plants Research Center, NPPM, Universidade Federal do Piauí, Teresina, Brasil
| | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | | | - Mariana Helena Chaves
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| |
Collapse
|
2
|
Matos TKB, Batista PHJ, Dos Reis Rocho F, de Vita D, Pearce N, Kellam B, Montanari CA, Leitão A. Synthesis and matched molecular pair analysis of covalent reversible inhibitors of the cysteine protease CPB. Bioorg Med Chem Lett 2020; 30:127439. [PMID: 32717373 DOI: 10.1016/j.bmcl.2020.127439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/30/2023]
Abstract
Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.
Collapse
Affiliation(s)
- Thiago Kelvin Brito Matos
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry-University of São Paulo (IQSC-USP), São Carlos, SP, Brazil
| | - Pedro Henrique Jatai Batista
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry-University of São Paulo (IQSC-USP), São Carlos, SP, Brazil
| | - Fernanda Dos Reis Rocho
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry-University of São Paulo (IQSC-USP), São Carlos, SP, Brazil
| | - Daniela de Vita
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry-University of São Paulo (IQSC-USP), São Carlos, SP, Brazil
| | - Nicholas Pearce
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Barrie Kellam
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Carlos Alberto Montanari
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry-University of São Paulo (IQSC-USP), São Carlos, SP, Brazil
| | - Andrei Leitão
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry-University of São Paulo (IQSC-USP), São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Quilles Junior JC, Carlos FDRR, Montanari A, Leitão A, Mignone VW, Arruda MA, Turyanska L, Bradshaw TD. Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells. RSC Adv 2019; 9:36699-36706. [PMID: 35539052 PMCID: PMC9075514 DOI: 10.1039/c9ra07161j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
Cysteine proteases play a key role in tumorigenesis causing protein degradation and promoting invasive tumour growth. Cathepsin L is overexpressed in cancer cells and could provide a specific target for delivery of anticancer agents. We encapsulated novel dipeptidyl nitrile based cysteine protease inhibitors (Neq0551, Neq0554 and Neq0568) into biocompatible apoferritin (AFt) protein nanocages to achieve specific delivery to tumours and pH-induced drug release. AFt-encapsulated Neq0554 demonstrated ∼3-fold enhanced in vitro activity (GI50 = 79 μM) compared to naked agent against MiaPaCa-2 pancreatic carcinoma cells. Selectivity for cancer cells was confirmed by comparing their activity to non-tumourigenic human fibroblasts (GI50 > 200 μM). Transferrin receptor (TfR-1) expression, detected only in lysates prepared from carcinoma cells, may contribute to the cancer-selectivity. The G1 cell cycle arrest caused by AFt-Neq0554 resulting in cytostasis was corroborated by clonogenic assays. Superior and more persistent inhibition of cathepsin L up to 80% was achieved with AFt-encapsulated agent in HCT-116 cells following 6 h exposure to 50 μM agent. The selective anticancer activity of AFt-encapsulated cysteine protease inhibitor Neq0554 reported here warrants further preclinical in vivo evaluation. Novel apoferritin encapsulated cysteine protease inhibitors are developed with enhanced and selective uptake by cancer cells, and sustained pH-induced release of the agent. The persistent inhibition of cathepsin L is demonstrated in vitro.![]()
Collapse
Affiliation(s)
- José C. Quilles Junior
- Centre for Biomolecular Sciences
- School of Pharmacy
- University of Nottingham
- UK
- Medicinal Chemistry Group (NEQUIMED)
| | | | - A. Montanari
- Medicinal Chemistry Group (NEQUIMED)
- São Carlos Institute of Chemistry (IQSC)
- University of São Paulo
- Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group (NEQUIMED)
- São Carlos Institute of Chemistry (IQSC)
- University of São Paulo
- Brazil
| | | | | | | | - Tracey D. Bradshaw
- Centre for Biomolecular Sciences
- School of Pharmacy
- University of Nottingham
- UK
| |
Collapse
|