1
|
Stensvold CR. Metabarcoding in gut protozoology. Trends Parasitol 2024; 40:1173-1182. [PMID: 39521674 DOI: 10.1016/j.pt.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Next-generation sequencing (NGS) methods include whole-genome sequencing, metagenomic analysis, and amplicon-based NGS, all of which are gaining territory in parasitology. A modality of particular interest within the field of gut protozoology is exhaustive metabarcoding of ribosomal genes in a complex matrix such as faeces, by which method, amplicon-based NGS enables the detection and differentiation of both eukaryotic and prokaryotic organisms, circumventing Sanger sequencing-based limitations and representing a one-fits-most approach. Apart from being a tool to break the code of intracellular genetic variation and tell mixed species infections apart, metabarcoding can produce data that can serve to augment our understanding of the interplay between the organisms within the gut.
Collapse
Affiliation(s)
- Christen Rune Stensvold
- Laboratory of Parasitology, Statens Serum Institut, Copenhagen, Denmark; Department of Protozoology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Sundararaman B, Shapiro K, Packham A, Camp LE, Meyer RS, Shapiro B, Green RE. Whole genome enrichment approach for genomic surveillance of Toxoplasma gondii. Food Microbiol 2024; 118:104403. [PMID: 38049278 DOI: 10.1016/j.fm.2023.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 12/06/2023]
Abstract
Pathogenic bacteria, viruses, fungi, and protozoa can cause food and waterborne diseases. Surveillance methods must therefore screen for these pathogens at various stages of water distribution and of food from production to consumption. Detection using nucleic acid amplification methods offer rapid identification, but such methods have limited utility for characterizing populations, variant types or virulence traits of pathogens. Whole genome sequencing (WGS) can be used to determine this information. However, pathogens must be isolated and cultured to yield sufficient DNA for WGS, which is laborious or not feasible for certain stages of parasites like oocysts of Toxoplasma gondii. We previously developed the Circular Nucleic acid Enrichment Reagent (CNER) method to make whole genome enrichment (WGE) baits for difficult-to-grow bacterial pathogens. WGE using CNERs facilitates direct sequencing of pathogens from samples without the need to isolate and grow them. Here, we made WGE-CNERs for T. gondii to demonstrate the use of the CNER method to make baits to enrich the large genomes of water and foodborne protozoan pathogens. By sequencing, we detected as few as 50 parasites spiked in an oyster hemolymph matrix. We discuss the use of WGE-CNERs for genomic surveillance of food and waterborne pathogens.
Collapse
Affiliation(s)
| | - Karen Shapiro
- One Health Institute, UC Davis, USA; Department of Pathology, Microbiology, and Immunology, UC Davis, USA.
| | | | - Lauren E Camp
- Department of Pathology, Microbiology, and Immunology, UC Davis, USA
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, USA; Howard Hughes Medical Institute, UC Santa Cruz, USA
| | | |
Collapse
|
3
|
Owens LA, Friant S, Martorelli Di Genova B, Knoll LJ, Contreras M, Noya-Alarcon O, Dominguez-Bello MG, Goldberg TL. VESPA: an optimized protocol for accurate metabarcoding-based characterization of vertebrate eukaryotic endosymbiont and parasite assemblages. Nat Commun 2024; 15:402. [PMID: 38195557 PMCID: PMC10776621 DOI: 10.1038/s41467-023-44521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Protocols for characterizing taxonomic assemblages by deep sequencing of short DNA barcode regions (metabarcoding) have revolutionized our understanding of microbial communities and are standardized for bacteria, archaea, and fungi. Unfortunately, comparable methods for host-associated eukaryotes have lagged due to technical challenges. Despite 54 published studies, issues remain with primer complementarity, off-target amplification, and lack of external validation. Here, we present VESPA (Vertebrate Eukaryotic endoSymbiont and Parasite Analysis) primers and optimized metabarcoding protocol for host-associated eukaryotic community analysis. Using in silico prediction, panel PCR, engineered mock community standards, and clinical samples, we demonstrate VESPA to be more effective at resolving host-associated eukaryotic assemblages than previously published methods and to minimize off-target amplification. When applied to human and non-human primate samples, VESPA enables reconstruction of host-associated eukaryotic endosymbiont communities more accurately and at finer taxonomic resolution than microscopy. VESPA has the potential to advance basic and translational science on vertebrate eukaryotic endosymbiont communities, similar to achievements made for bacterial, archaeal, and fungal microbiomes.
Collapse
Affiliation(s)
- Leah A Owens
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sagan Friant
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Contreras
- Center for Biophysics and Biochemistry, Venezuelan Institute of Scientific Research (IVIC), Caracas, Venezuela
| | - Oscar Noya-Alarcon
- Centro Amazónico de Investigación y Control de Enfermedades Tropicales-CAICET, Puerto Ayacucho, Amazonas, Venezuela
| | - Maria G Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
- Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Rozo-Montoya N, Bedoya-Urrego K, Alzate JF. Monitoring potentially pathogenic protists in sewage sludge using Metataxonomics. Food Waterborne Parasitol 2023; 33:e00210. [PMID: 37808003 PMCID: PMC10558727 DOI: 10.1016/j.fawpar.2023.e00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Intestinal parasites continue to pose a significant threat to human health worldwide, particularly among children. Contaminated water and soil serve as major transmission vehicles for these parasites and intestinal protists are among the most prevalent parasites in both developed and developing nations. Traditionally, parasites have been studied using human or animal fecal samples, while studying them in environmental samples has been challenging due to technical limitations. However, advancements in Next-Generation Sequencing (NGS) and bioinformatic approaches now enable the detection of parasite DNA in environmental samples. In this study, we applied a metataxonomic and phylogenetic strategy to detect and classify DNA of protists present in sewage sludge from two major cities in Colombia: Medellin and Cali. We successfully detected several human pathogenic parasites including Giardia intestinalis, Entamoeba histolytica, and Blastocystis sp., among other protists, in all sludge samples examined. We also investigated the entry and exit of parasite DNA from the San Fernando wastewater treatment plant (WWTP). We observed a higher number of parasite DNA sequences in the plant's influent wastewater, but we also detected the discharge of DNA from pathogenic parasites in both effluent waters and biosolids.
Collapse
Affiliation(s)
- Nicolas Rozo-Montoya
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Katherine Bedoya-Urrego
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Marinchel N, Marchesini A, Nardi D, Girardi M, Casabianca S, Vernesi C, Penna A. Mock community experiments can inform on the reliability of eDNA metabarcoding data: a case study on marine phytoplankton. Sci Rep 2023; 13:20164. [PMID: 37978238 PMCID: PMC10656442 DOI: 10.1038/s41598-023-47462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Environmental DNA metabarcoding is increasingly implemented in biodiversity monitoring, including phytoplankton studies. Using 21 mock communities composed of seven unicellular diatom and dinoflagellate algae, assembled with different composition and abundance by controlling the number of cells, we tested the accuracy of an eDNA metabarcoding protocol in reconstructing patterns of alpha and beta diversity. This approach allowed us to directly evaluate both qualitative and quantitative metabarcoding estimates. Our results showed non-negligible rates (17-25%) of false negatives (i.e., failure to detect a taxon in a community where it was included), for three taxa. This led to a statistically significant underestimation of metabarcoding-derived alpha diversity (Wilcoxon p = 0.02), with the detected species richness being lower than expected (based on cell numbers) in 8/21 mock communities. Considering beta diversity, the correlation between metabarcoding-derived and expected community dissimilarities was significant but not strong (R2 = 0.41), indicating suboptimal accuracy of metabarcoding results. Average biovolume and rDNA gene copy number were estimated for the seven taxa, highlighting a potential, though not exhaustive, role of the latter in explaining the recorded biases. Our findings highlight the importance of mock communities for assessing the reliability of phytoplankton eDNA metabarcoding studies and identifying their limitations.
Collapse
Affiliation(s)
- Nadia Marinchel
- Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy.
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| | - Alexis Marchesini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Davide Nardi
- DAFNAE, University of Padova, Legnaro, PD, Italy
| | - Matteo Girardi
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Silvia Casabianca
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
- Fano Marine Center, Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy
| | - Cristiano Vernesi
- National Biodiversity Future Center, Palermo, Italy
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
- Fano Marine Center, Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy.
| |
Collapse
|
6
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
7
|
Srisuphanunt M, Wilairatana P, Kooltheat N, Damrongwatanapokin T, Karanis P. Occurrence of Cryptosporidium oocysts in commercial oysters in southern Thailand. Food Waterborne Parasitol 2023; 32:e00205. [PMID: 37577105 PMCID: PMC10412772 DOI: 10.1016/j.fawpar.2023.e00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
The enteric parasite Cryptosporidium is spread through the fecal-oral pathway, most commonly by the consumption of contaminated water but also through food. Because eating raw or barely cooked shellfish might put consumers at risk for cryptosporidiosis, identifying the parasite in oysters is important for public health. A total of 240 oysters, collected from two shellfish aquaculture sites in Thailand's Gulf coast, Nakhon Si Thammarat and Surat Thani, were tested for the presence of Cryptosporidium. Escherichia coli, enterococci, and thermotolerant coliform total levels were measured to assess seawater quality in the shellfish production regions. Oocysts of Cryptosporidium spp. were detected in 13.8% of the samples processed by immunofluorescence analyses. The detection of Cryptosporidium spp. oocysts in oysters obtained from Surat Thani (17.5%) was higher than in those obtained from Nakhon Si Thammarat (9.2%). The difference in detection of positive samples obtained from Nakhon Si Thammarat and those obtained from Surat Thani may be attributed to the effects of physical, ecological, and anthropogenic conditions, resulting in an increased level of marine water contamination by Cryptosporidium spp. oocysts. These findings demonstrate that native commercial oysters obtained from Thailand's southern Gulf coast contained Cryptosporidium spp. oocysts which might serve as a source of human infection. Consequently, these findings pose a serious public health concern and suggest that more quality control measures need to be implemented by the oyster aquaculture business to ensure the safety of seafood.
Collapse
Affiliation(s)
- Mayuna Srisuphanunt
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Thanis Damrongwatanapokin
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Panagiotis Karanis
- University of Nicosia Medical School, Department of Basic and Clinical Sciences, Egkomi 2408, Cyprus
| |
Collapse
|
8
|
Merks H, Boone R, Janecko N, Viswanathan M, Dixon BR. Foodborne protozoan parasites in fresh mussels and oysters purchased at retail in Canada. Int J Food Microbiol 2023; 399:110248. [PMID: 37210953 DOI: 10.1016/j.ijfoodmicro.2023.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Studies worldwide have reported the presence of protozoan parasites in a variety of commercial bivalve shellfish. The uptake of these parasites by shellfish occurs during filter feeding in faecally-contaminated waters. The objective of the present study was to determine the prevalence of Giardia, Cryptosporidium and Toxoplasma in fresh, live shellfish purchased in three Canadian provinces as part of the retail surveillance activities led by FoodNet Canada (Public Health Agency of Canada). Packages containing mussels (n = 253) or oysters (n = 130) were purchased at grocery stores in FoodNet Canada sentinel sites on a biweekly basis throughout 2018 and 2019, and shipped in coolers to Health Canada for testing. A small number of packages were not tested due to insufficient quantity or poor quality. Following DNA extraction from homogenized, pooled tissues, nested PCR and DNA sequencing were used to detect parasite-specific sequences. Epifluorescence microscopy was used to confirm the presence of intact cysts and oocysts in sequence-confirmed PCR-positive samples. Giardia duodenalis DNA was present in 2.4 % of 247 packages of mussels and 4.0 % of 125 packages of oysters, while Cryptosporidium parvum DNA was present in 5.3 % of 247 packages of mussels and 7.2 % of 125 packages of oysters. Toxoplasma gondii DNA was only found in mussels in 2018 (1.6 % of 249 packages). Parasite DNA was detected in shellfish purchased in all three Canadian provinces sampled, and there was no apparent seasonal variation in prevalence. While the present study did not test for viability, parasites are known to survive for long periods in the marine environment, and these findings suggest that there is a risk of infection, especially when shellfish are consumed raw.
Collapse
Affiliation(s)
- Harriet Merks
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Ryan Boone
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom; Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Mythri Viswanathan
- Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
9
|
Diagnostic Methods of Common Intestinal Protozoa: Current and Future Immunological and Molecular Methods. Trop Med Infect Dis 2022; 7:tropicalmed7100253. [PMID: 36287994 PMCID: PMC9606991 DOI: 10.3390/tropicalmed7100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal protozoan infection is a persisting public health problem affecting the populations of developing countries in the tropical and subtropical regions. The diagnosis of intestinal protozoa remains a challenge especially in developing countries due to a shortage of laboratory facilities, limited health funding, and the remoteness of communities. Despite still being widely used, conventional diagnoses using microscopy and staining methods pose important limitations, particularly due to their low sensitivities and specificities. The selection of diagnostic methods needs to be carefully considered based on the objective of examination, availability of resources, and the expected parasite to be found. In this review, we describe various immunodiagnosis and molecular diagnostic methods for intestinal protozoa infection, including their advantages, disadvantages, and suitability for different settings, with a focus on Entamoeba histolytica, Giardia duodenalis, and Cryptosporidium spp.
Collapse
|
10
|
Toxoplasma gondii in Foods: Prevalence, Control, and Safety. Foods 2022; 11:foods11162542. [PMID: 36010541 PMCID: PMC9407268 DOI: 10.3390/foods11162542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, with approximately one third of the population around the world seropositive. The consumption of contaminated food is the main source of infection. These include meat products with T. gondii tissue cysts, and dairy products with tachyzoites. Recently, contamination has been detected in fresh products with oocysts and marine products. Despite the great health problems that are caused by T. gondii, currently there are no standardized methods for its detection in the food industry. In this review, we analyze the current detection methods, the prevalence of T. gondii in different food products, and the control measures. The main detection methods are bioassays, cell culture, molecular and microscopic techniques, and serological methods, but some of these do not have applicability in the food industry. As a result, emerging techniques are being developed that are aimed at the detection of multiple parasites simultaneously that would make their application more efficient in the industry. Since the prevalence of this parasite is high in many products (meat and milk, marine products, and vegetables), it is necessary to standardize detection methods, as well as implement control measures.
Collapse
|
11
|
Evaluation of Next-Generation Sequencing Applied to Cryptosporidium parvum and Cryptosporidium hominis Epidemiological Study. Pathogens 2022; 11:pathogens11080938. [PMID: 36015058 PMCID: PMC9414878 DOI: 10.3390/pathogens11080938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background. Nowadays, most of the C. parvum and C. hominis epidemiological studies are based on gp60 gene subtyping using the Sanger sequencing (SgS) method. Unfortunately, SgS presents the limitation of being unable to detect mixed infections. Next-Generation Sequencing (NGS) seems to be an interesting solution to overcome SgS limits. Thus, the aim of our study was to (i) evaluate the reliability of NGS as a molecular typing tool for cryptosporidiosis, (ii) investigate the genetic diversity of the parasite and the frequency of mixed infections, (iii) assess NGS usefulness in Cryptosporidium sp. outbreak investigations, and (iv) assess an interpretation threshold of sequencing data. Methods. 108 DNA extracts from positive samples were sequenced by NGS. Among them, two samples were used to validate the reliability of the subtyping obtained by NGS and its capacity to detect DNA mixtures. In parallel, 106 samples from French outbreaks were used to expose NGS to epidemic samples. Results. NGS proved suitable for Cryptosporidium sp. subtyping at the gp60 gene locus, bringing more genetic information compared to SgS, especially by working on many samples simultaneously and detecting more diversity. Conclusions. This study confirms the usefulness of NGS applied to C. hominis and C. parvum epidemiological studies, especially aimed at detecting minority variants.
Collapse
|
12
|
Paruch L. Molecular Diagnostic Tools Applied for Assessing Microbial Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5128. [PMID: 35564522 PMCID: PMC9105083 DOI: 10.3390/ijerph19095128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Microbial water quality is of vital importance for human, animal, and environmental health. Notably, pathogenically contaminated water can result in serious health problems, such as waterborne outbreaks, which have caused huge economic and social losses. In this context, the prompt detection of microbial contamination becomes essential to enable early warning and timely reaction with proper interventions. Recently, molecular diagnostics have been increasingly employed for the rapid and robust assessment of microbial water quality implicated by various microbial pollutants, e.g., waterborne pathogens and antibiotic-resistance genes (ARGs), imposing the most critical health threats to humans and the environment. Continuous technological advances have led to constant improvements and expansions of molecular methods, such as conventional end-point PCR, DNA microarray, real-time quantitative PCR (qPCR), multiplex qPCR (mqPCR), loop-mediated isothermal amplification (LAMP), digital droplet PCR (ddPCR), and high-throughput next-generation DNA sequencing (HT-NGS). These state-of-the-art molecular approaches largely facilitate the surveillance of microbial water quality in diverse aquatic systems and wastewater. This review provides an up-to-date overview of the advancement of the key molecular tools frequently employed for microbial water quality assessment, with future perspectives on their applications.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO Oluf Thesens vei 43, 1433 Aas, Norway
| |
Collapse
|
13
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
O'Leary JK, Sleator RD, Lucey B. Cryptosporidium spp. diagnosis and research in the 21 st century. Food Waterborne Parasitol 2021; 24:e00131. [PMID: 34471706 PMCID: PMC8390533 DOI: 10.1016/j.fawpar.2021.e00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Cryptosporidium has emerged as a leading cause of diarrhoeal illness worldwide, posing a significant threat to young children and immunocompromised patients. While endemic in the vast majority of developing countries, Cryptosporidium also has the potential to cause waterborne epidemics and large scale outbreaks in both developing and developed nations. Anthroponontic and zoonotic transmission routes are well defined, with the ingestion of faecally contaminated food and water supplies a common source of infection. Microscopy, the current diagnostic mainstay, is considered by many to be suboptimal. This has prompted a shift towards alternative diagnostic techniques in the advent of the molecular era. Molecular methods, particularly PCR, are gaining traction in a diagnostic capacity over microscopy in the diagnosis of cryptosporidiosis, given the laborious and often tedious nature of the latter. Until now, developments in the field of Cryptosporidium detection and research have been somewhat hampered by the intractable nature of this parasite. However, recent advances in the field have taken the tentative first steps towards bringing Cryptosporidium research into the 21st century. Herein, we provide a review of these advances.
Collapse
Affiliation(s)
- Jennifer K. O'Leary
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| |
Collapse
|
15
|
DeMone C, Trenton McClure J, Greenwood SJ, Fung R, Hwang MH, Feng Z, Shapiro K. A metabarcoding approach for detecting protozoan pathogens in wild oysters from Prince Edward Island, Canada. Int J Food Microbiol 2021; 360:109315. [PMID: 34215423 DOI: 10.1016/j.ijfoodmicro.2021.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/30/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Food and waterborne protozoan pathogens including Cryptosporidium parvum, Giardia enterica and Toxoplasma gondii are a global concern for human public health. While all three pathogens have been detected in commercial shellfish, there is currently no standard approach for detecting protozoan parasites in shellfish. Common molecular and microscopic methods are limited in the number of pathogens they can simultaneously detect and are often targeted at one or two of these pathogens. Previously, we developed and validated a novel 18S amplicon-based next-generation sequencing assay for simultaneous detection of Cryptosporidium spp., Giardia spp. and T. gondii in shellfish. In this study, we applied the assay for protozoan pathogen detection in wild oysters from Prince Edward Island (PEI). Oysters were harvested from restricted and prohibited areas, classified by the Canadian government according to fecal coliform counts in surrounding waters, and different fractions (whole tissue homogenate and hemolymph) were analyzed. Protozoan DNA was detected using metabarcoding in 28%, of oysters tested (N = 128), and the pathogen read counts in oyster homogenate were considerably higher than those in hemolymph. Protozoan read count thresholds were established for classifying probable oyster contamination with pathogens to account for low levels of background protozoan reads detected in negative controls. Assay results showed protozoan contamination was not associated with harvesting site classifications, suggesting that using fecal indicators for ensuring food safety may be insufficient. Due to the complex matrix, an oyster DNA reduction step may further improve the pathogen detection sensitivity of the assay. Results from this study affirm that novel metabarcoding is a promising screening tool for detection of protozoan pathogens in shellfish.
Collapse
Affiliation(s)
- Catherine DeMone
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada; Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - J Trenton McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Rebecca Fung
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Mei-Hua Hwang
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Zeny Feng
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Karen Shapiro
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada; Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada; Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Ave, Cavis, CA 95616, USA.
| |
Collapse
|
16
|
Mthethwa NP, Amoah ID, Reddy P, Bux F, Kumari S. A review on application of next-generation sequencing methods for profiling of protozoan parasites in water: Current methodologies, challenges, and perspectives. J Microbiol Methods 2021; 187:106269. [PMID: 34129906 DOI: 10.1016/j.mimet.2021.106269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023]
Abstract
The advancement in metagenomic techniques has provided novel tools for profiling human parasites in environmental matrices, such as water and wastewater. However, application of metagenomic techniques for the profiling of protozoan parasites in environmental matrices is not commonly reported in the literature. The key factors leading to the less common use of metagenomics are the complexity and large eukaryotic genome, the prevalence of small parasite populations in environmental samples compared to bacteria, difficulties in extracting DNA from (oo)cysts, and limited reference databases for parasites. This calls for further research to develop optimized methods specifically looking at protozoan parasites in the environment. This study reviews the current workflow, methods and provide recommendations for the standardization of techniques. The article identifies and summarizes the key methods, advantages, and limitations associated with metagenomic analysis, like sample pre-processing, DNA extraction, sequencing approaches, and analysis methods. The study enhances the understanding and application of standardized protocols for profiling of protozoan parasite community from highly complexe samples and further creates a resourceful comparison among datasets without any biases.
Collapse
Affiliation(s)
- N P Mthethwa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - I D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - P Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - F Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - S Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
17
|
Braima K, Zahedi A, Egan S, Austen J, Xiao L, Feng Y, Witham B, Pingault N, Perera S, Oskam C, Reid S, Ryan U. Molecular analysis of cryptosporidiosis cases in Western Australia in 2019 and 2020 supports the occurrence of two swimming pool associated outbreaks and reveals the emergence of a rare C. hominis IbA12G3 subtype. INFECTION GENETICS AND EVOLUTION 2021; 92:104859. [PMID: 33848684 DOI: 10.1016/j.meegid.2021.104859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
Cryptosporidium is an important protozoan parasite and due to its resistance to chlorine is a major cause of swimming pool-associated gastroenteritis outbreaks. The present study combined contact tracing and molecular techniques to analyse cryptosporidiosis cases and outbreaks in Western Australia in 2019 and 2020. In the 2019 outbreak, subtyping at the 60 kDa glycoprotein (gp60) gene identified 89.0% (16/18) of samples were caused by the C. hominis IdA15G1 subtype. Amplicon next generation sequencing (NGS) at the gp60 locus identified five C. hominis IdA15G1 subtype samples that also had C. hominis IdA14 subtype DNA, while multi locus sequence typing (MLST) analysis on a subset (n = 14) of C. hominis samples identified three IdA15G1 samples with a 6 bp insertion at the end of the trinucleotide repeat region of the cp47 gene. In 2020, 88.0% (73/83) of samples typed were caused by the relatively rare C. hominis subtype IbA12G3. Four mixed infections were observed by NGS with three IdA15G1/ IdA14 mixtures and one C. parvum IIaA18G3R1 sample mixed with IIaA16G3R1. No genetic diversity using MLST was detected. Epidemiological and molecular data indicates that the outbreaks in 2019 and 2020 were each potentially from swimming pool point sources and a new C. hominis subtype IbA12G3 is emerging in Australia. The findings of the present study are important for understanding the introduction and transmission of rare Cryptosporidium subtypes to vulnerable populations.
Collapse
Affiliation(s)
- Kamil Braima
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia.
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Siobhon Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jill Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Benjamin Witham
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Nevada Pingault
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Shalinie Perera
- Western Diagnostic Pathology, Perth, Western Australia 6154, Australia
| | - Charlotte Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Simon Reid
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| | - Una Ryan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|