1
|
Cansu Ü. Utilization of Infrared Drying as Alternative to Spray- and Freeze-Drying for Low Energy Consumption in the Production of Powdered Gelatin. Gels 2024; 10:522. [PMID: 39195051 DOI: 10.3390/gels10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
This study evaluated possible utilization of infrared drying (ID) as an alternative to spray- (SD) and freeze-drying (FD) for fish skin-derived gelatins. Physical, functional, thermal, and spectroscopic analyses were conducted for characterization of the resulting gelatin powders. Energy consumption for the applied drying methods were 3.41, 8.46 and 25.33 kWh/kg for ID, SD and FD respectively, indicating that ID had the lowest energy consumption among the studied methods. Gel strength, on the other hand, was lower (398.4 g) in infrared-dried gelatin (ID-FG) compared to that (454.9 g) of freeze-dried gelatin (FD-FG) and that (472.7 g) of spray-dried gelatin (SD-FG). TGA curves indicated that ID-FG showed more resilience to thermal degradation. SDS-PAGE and UV-Vis spectra indicated that slight degradation was observed in the β-configuration of ID-FG. ID-FG and SD-FG gelatins had the highest water holding capacity (WHC), protein solubility and transparency values compared to that of FD-FG. Morphological structures of the samples were quite different as shown by SEM visuals. Ultimately, the findings showed that infrared drying may be a promising alternative for gelatin processing, maintaining product quality and supporting sustainable practices in food and other industries.
Collapse
Affiliation(s)
- Ümran Cansu
- Organized Industrial Zone Vocational School, Harran University, 63200 Şanlıurfa, Turkey
| |
Collapse
|
2
|
Ramachandran RP, Nadimi M, Cenkowski S, Paliwal J. Advancement and Innovations in Drying of Biopharmaceuticals, Nutraceuticals, and Functional Foods. FOOD ENGINEERING REVIEWS 2024; 16:540-566. [PMID: 39759549 PMCID: PMC11698300 DOI: 10.1007/s12393-024-09381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/19/2024] [Indexed: 01/07/2025]
Abstract
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods. Our thorough research extensively covers ten notable drying methods: heat pump drying, freeze-drying, spray drying, vacuum drying, fluidized bed drying, superheated steam drying, infrared drying, microwave drying, osmotic drying, vacuum drying, and supercritical fluid drying. Each method is tailored to address the requirements of specific functional foods and biopharmaceuticals and provides a comprehensive account of each technique's inherent advantages and potential limitations. Further, the review ventures into the exploration of combined hybrid drying techniques and smart drying technologies with industry 4.0 tools such as automation, AI, machine learning, IoT, and cyber-physical systems. These innovative methods are designed to enhance product performance and elevate the quality of the final product in the drying of functional foods and biopharmaceuticals. Through a thorough survey of the drying landscape, this review illuminates the intricacies of these operations and underscores their pivotal role in functional foods and biopharmaceutical production.
Collapse
Affiliation(s)
- Rani Puthukulangara Ramachandran
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Boulevard Casavant Ouest Saint-Hyacinthe, Québec J2S 8E3 Canada
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Mohammad Nadimi
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Stefan Cenkowski
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
3
|
Dai W, He S, Huang L, Lin S, Zhang M, Chi C, Chen H. Strategies to reduce fishy odor in aquatic products: Focusing on formation mechanism and mitigation means. Food Chem 2024; 444:138625. [PMID: 38325089 DOI: 10.1016/j.foodchem.2024.138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Aquatic products, integral to human diets, often bear a distinct fishy odor that diminishes their appeal. Currently, the formation mechanisms of these odoriferous compounds are not fully understood, complicating their effective control. This review aims to provide a comprehensive overview of key fishy compounds, with a focus on their formation mechanisms and innovative methods for controlling fishy odors. Fishy odors in aquatic products arise not only from the surrounding environment but also from endogenous transformations due to lipid autoxidation, enzymatic reactions, degradation of trimethylamine oxide, and Strecker degradation. Methods such as sensory masking, adsorbent and biomaterial adsorption, nanoliposome encapsulation, heat treatment, vacuum treatment, chemical reactions, and biological metabolic transformations have been developed to control fishy odors. Investigating the formation mechanisms of fishy odors will provide solid foundational knowledge that can inspire creative approaches to controlling these unpleasant odors.
Collapse
Affiliation(s)
- Wanting Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; College of Food, Nanchang University, Nanchang 330001, PR China; State Key Laboratory of Food Science and Resources, Nanchang 330001, PR China
| | - Shiying He
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Linshan Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Miao Zhang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Chengdeng Chi
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Huibin Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
4
|
Charoenchokpanich W, Muangrod P, Roytrakul S, Rungsardthong V, Wonganu B, Charoenlappanit S, Casanova F, Thumthanaruk B. Exploring the Model of Cefazolin Released from Jellyfish Gelatin-Based Hydrogels as Affected by Glutaraldehyde. Gels 2024; 10:271. [PMID: 38667690 PMCID: PMC11048929 DOI: 10.3390/gels10040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Due to its excellent biocompatibility and ease of biodegradation, jellyfish gelatin has gained attention as a hydrogel. However, hydrogel produced from jellyfish gelatin has not yet been sufficiently characterized. Therefore, this research aims to produce a jellyfish gelatin-based hydrogel. The gelatin produced from desalted jellyfish by-products varied with the part of the specimen and extraction time. Hydrogels with gelatin: glutaraldehyde ratios of 10:0.25, 10:0.50, and 10:1.00 (v/v) were characterized, and their cefazolin release ability was determined. The optimal conditions for gelatin extraction and chosen for the development of jellyfish hydrogels (JGel) included the use of the umbrella part of desalted jellyfish by-products extracted for 24 h (WU24), which yielded the highest gel strength (460.02 g), viscosity (24.45 cP), gelling temperature (12.70 °C), and melting temperature (22.48 °C). The quantities of collagen alpha-1(XXVIII) chain A, collagen alpha-1(XXI) chain, and collagen alpha-2(IX) chain in WU24 may influence its gel properties. Increasing the glutaraldehyde content in JGel increased the gel fraction by decreasing the space between the protein chains and gel swelling, as glutaraldehyde binds with lateral amino acid residues and produces a stronger network. At 8 h, more than 80% of the cefazolin in JGel (10:0.25) was released, which was higher than that released from bovine hydrogel (52.81%) and fish hydrogel (54.04%). This research is the first report focused on the production of JGel using glutaraldehyde as a cross-linking agent.
Collapse
Affiliation(s)
- Wiriya Charoenchokpanich
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
| | - Pratchaya Muangrod
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.R.); (S.C.)
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
- Food and Agro-Industry Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Center for Food Industry Innovation Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Benjamaporn Wonganu
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.R.); (S.C.)
| | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, 28000 Kongens Lyngby, Denmark;
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
- Food and Agro-Industry Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Center for Food Industry Innovation Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
5
|
da Silva ACP, Barbosa JR, da Silva Araújo C, Sousa Batista JT, Xavier Neves EMP, Pereira Cardoso DN, Peixoto Joele MRS, de Fátima Henriques Lourenço L. A new edible coating of fish gelatin incorporated into açaí oil to increase the post-harvest shelf life of tomatoes. Food Chem 2024; 438:138047. [PMID: 38007951 DOI: 10.1016/j.foodchem.2023.138047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Açaí oil (Euterpe oleracea) is a new active ingredient, originating from the Amazon Forest, which offers numerous benefits as an antioxidant and antimicrobial agent. Here, we report how açaí oil can be used as an active ingredient in gelatin coatings to increase the shelf life of tomatoes. The optimized viscosity and gel strength conditions were 5.40 % gelatin, 17.25 % açaí oil and 18 % plasticizer. FTIR, XRD and zeta potential analysis reveals that repulsive forces dominate the interactions between açaí oil and gelatin. The optimized coating (GAO) reduced mass loss by 8 % and achieved greater firmness (25 N), proving its effectiveness in maintaining tomato quality during storage. For the first time, it was found that the addition of açaí oil to fish gelatin improves the percentage of acidity and firmness of the tomato, delaying ripening, making it a promising alternative as packaging for climacteric fruits.
Collapse
Affiliation(s)
- Ana Caroline Pereira da Silva
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Jhonatas Rodrigues Barbosa
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Cleidiane da Silva Araújo
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | - Jáira Thayse Sousa Batista
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | - Eleda Maria Paixão Xavier Neves
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | - Dilson Nazareno Pereira Cardoso
- Institute of Technology (ITEC), Chemical Engineering Laboratory, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| | | | - Lúcia de Fátima Henriques Lourenço
- Institute of Technology (ITEC), Food Science and Technology Department, Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil
| |
Collapse
|
6
|
Salem A, Abdelhedi O, Sebii H, Ben Taheur F, Fakhfakh N, Jridi M, Zouari N, Debeaufort F. Techno-functional characterization of gelatin extracted from the smooth-hound shark skins: Impact of pretreatments and drying methods. Heliyon 2023; 9:e19620. [PMID: 37809726 PMCID: PMC10558885 DOI: 10.1016/j.heliyon.2023.e19620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Gelatin derived from marine by-products could be an interesting alternative to classic mammalian gelatin. The pretreatment and extraction conditions could influence the size of the resulting peptide chains and therefore their techno-functional properties. Thus, it is important to optimize the production process to get a gelatin for the appropriate applications. Skin pretreatment was done by microwaves or oven-drying and the extracted gelatin was dried by spray- or freeze-drying. Freeze-dried gelatin extracted from untreated skin (FGUS) had the highest gelatin yield (10.40%). Gelatin proximate composition showed that proteins were the major component (87.12-89.95%), while lipids showed the lowest contents (0.65-2.26%). Glycine showed the highest level (299-316/1000 residues) in the extracted gelatins. Proline and hydroxyproline residues of gelatins from untreated skin were significantly higher than those from pretreated skin-gelatin. FTIR spectra were characterized by peaks of the amide A (3430-3284 cm-1), B (3000-2931 cm-1), I (1636-1672 cm-1), II (1539-1586 cm-1) and III (1000-1107 cm-1). Spray-drying decreased the gelling properties of gelatins, since it reduced gelling and melting temperatures compared to freeze-drying. Skin pretreatment significantly reduced the gel strength of gelatin by about 50-100 g depending on the gelatin drying method. The FGUS showed better surface properties compared to other gelatins. The highest emulsion activity index (39.42 ± 1.02 m2/g) and foaming expansion (172.33 ± 2.35%) were measured at 3% FGUS. Therefore, the promising properties of freeze-dried gelatin derived from untreated skin, gave it the opportunity to be successfully used as a techno-functional ingredient in many formulations.
Collapse
Affiliation(s)
- Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Haifa Sebii
- Food Valuation and Safety Analysis Laboratory, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Fadia Ben Taheur
- High Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Nahed Fakhfakh
- High Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Nacim Zouari
- High Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Frederic Debeaufort
- Univ. Bourgogne Franche-Comté/Agrosup Dijon, UMR PAM A02.102, Physical-Chemistry of Food and Wine Lab, 1 Esplanade Erasme, 21000, Dijon, France
- IUT Dijon-Auxerre, BioEngineering Department, University of Burgundy, 7 Blvd Docteur Petit Jean, 21078, Dijon Cedex, France
| |
Collapse
|
7
|
Kaewbangkerd K, Hamzeh A, Yongsawatdigul J. Ultrasound-assisted extraction of collagen from broiler chicken trachea and its biochemical characterization. ULTRASONICS SONOCHEMISTRY 2023; 95:106372. [PMID: 36944278 PMCID: PMC10036945 DOI: 10.1016/j.ultsonch.2023.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Broiler chicken tracheas are a co-product from chicken slaughterhouses which are normally turned into low value animal feed despite their high levels of collagen. Typical collagen extraction by acid and/or pepsin usually results in relatively low yield. Ultrasound-assisted extraction (UAE) could be a means to improve collagen yield. The objectives of this study were to investigate the effects of ultrasonic parameters on the yield and biochemical properties of trachea collagen (TC). Conventional extraction using acetic acid and pepsin for 48 h resulted in acid-soluble (AS) and pepsin-soluble (PS) collagen with a yield of 0.65% and 3.10%, respectively. When an ultrasound with an intensity of 17.46 W·cm-2 was applied for 20 min, followed by acid extraction for 42 h (U-AS), the collagen yield increased to 1.58%. A yield of 6.28% was obtained when the ultrasound treatment was followed by pepsin for 36 h (U-PS). PS and U-PS contained collagen of 82.84% and 85.70%, respectively. Scanning electron microscopy images revealed that the ultrasound did not affect the collagen microstructure. All collagen samples showed an obvious triple helix structure as measured by circular dichroism spectroscopy. Fourier transform infrared spectroscopy indicated that the ultrasound did not disturb the secondary structure of the protein in which approximately 30% of the α-helix content was a major structure for all collagen samples. Micro-differential scanning calorimetry demonstrated that the denaturation temperature of collagen in the presence of deionized water was higher than collagen solubilized in 0.5 M acetic acid, regardless of the extraction method. All collagen comprised of α1 and α2-units with molecular weights of approximately 135 and 116 kDa, respectively, corresponding to the type I characteristic. PS and U-PS collagen possessed higher imino acids than their AS and U-AS counterparts. Based on LC-MS/MS peptide mapping, PS and U-PS collagen showed a high similarity to type I collagen. These results suggest that chicken tracheas are an alternative source of type I collagen. UAE is a promising technique that could increase collagen yield without damaging its structure.
Collapse
Affiliation(s)
- Kitsanapong Kaewbangkerd
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
8
|
Cao S, Cai J, Wang X, Zhou K, Liu L, He L, Qi X, Yang H. Cryoprotective effect of collagen hydrolysates from squid skin on frozen shrimp and characterizations of its antifreeze peptides. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
CAO S, CAI J, YING S, CHEN T, LIU L, YANG H, MA J, HE L, QI X. Characteristics comparison of collagens from squid skin by different extraction methods. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.69422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Liang LIU
- Zhejiang Pharmaceutical University, China
| | - Hua YANG
- Zhejiang Wanli University, China
| | | | - Luyao HE
- Zhejiang Wanli University, China
| | | |
Collapse
|
10
|
Barbosa JR, S. Freitas MM, Oliveira LC, S. Martins LH, Almada-Vilhena AO, Oliveira RM, Pieczarka JC, B. Brasil DDS, Carvalho Junior RN. Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chem 2020; 330:127173. [DOI: 10.1016/j.foodchem.2020.127173] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
|
11
|
Yang H, Chen Q, Xiao Y, Li C, Bi H, Zhang M, Wei L, Du Y. Effect of preparation method on physicochemical, scavenging, and proliferative properties of gelatin from Yak skin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongxia Yang
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Qi Chen
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
- University of Chinese Academic of Sciences Beijing China
| | - Yuancan Xiao
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Cen Li
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Hongtao Bi
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Ming Zhang
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Lixin Wei
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Yuzhi Du
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| |
Collapse
|
12
|
Wang S, Yang Z, Li Z, Tian Y. Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties. J Microbiol Biotechnol 2020; 30:1082-1091. [PMID: 32325545 PMCID: PMC9728238 DOI: 10.4014/jmb.2002.02049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50°C and 8.0, respectively. MTG activity increased 1.42- fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8°C. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.
Collapse
Affiliation(s)
- Shiting Wang
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, P.R. China,College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zhigang Yang
- Chengdu Jinkai Bioengineering Co., Ltd., Chengdu 611130, P.R. China
| | - Zhenjiang Li
- Chengdu Jinkai Bioengineering Co., Ltd., Chengdu 611130, P.R. China,Corresponding author Z.L. Phone: +17790268754 E-mail:
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, P.R. China,College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China,Corresponding author Z.L. Phone: +17790268754 E-mail:
| |
Collapse
|
13
|
Boughriba S, Souissi N, Jridi M, Li S, Nasri M. Thermal, mechanical and microstructural characterization and antioxidant potential of Rhinobatos cemiculus gelatin films supplemented by titanium dioxide doped silver nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Functional and Bioactive Properties of Gelatin Extracted from Aquatic Bioresources – A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1747486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
15
|
Oliveira LCD, Barbosa JR, Ribeiro SDCA, Vasconcelos MAMD, Aguiar BAD, Pereira GVDS, Albuquerque GA, Silva FNLD, Crizel RL, Campelo PH, Lourenço LDFH. Improvement of the characteristics of fish gelatin - gum arabic through the formation of the polyelectrolyte complex. Carbohydr Polym 2019; 223:115068. [PMID: 31426983 DOI: 10.1016/j.carbpol.2019.115068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate and characterize the interaction between fish gelatin (FG) and Gum Arabic(GA) and its effects in obtaining optimal atomization conditions. The optimal conditions (D = 0.866) founded in this paper were: Gum Arabic concentration of 33.4% and inlet air temperature of 130 °C. These conditions afforded 6.62 g/h yield, 0.27 aw and 247 g of Gel Strength, that are considered as suitable characteristics for food grade gelatin. The complex formed (FG-GA) was successfully obtained, as demonstrated by the results of amino acid profile, SDS-PAGE, FTIR spectroscopy, zeta potential and morphology. It was also verified that the formation of FG-GA promotes positive changes, such as higher atomization yield, adequate Gel Strength, low hygroscopicity and high solubility. The technological properties of FG-GA shown high potential to be applied in the food industry as well in other industrial fields like chemical and pharmaceutical areas.
Collapse
Affiliation(s)
- Luã Caldas de Oliveira
- Instituto de Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Pará - IFPA Campus Breves, 68800-000, Breves, PA, Brazil
| | - Jhonatas Rodrigues Barbosa
- Instituto de Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Laboratório de Extração, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | | | | | - Bruna Araújo de Aguiar
- Instituto de Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Gleice Vasconcelos da Silva Pereira
- Instituto de Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Gilciane Américo Albuquerque
- Instituto de Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Fabricio Nilo Lima da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Pará - IFPA Campus Breves, 68800-000, Breves, PA, Brazil
| | - Rosane Lopes Crizel
- Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, 96050-500, Capão do Leão, RS, Brazil
| | - Pedro Henrique Campelo
- Faculdade de Ciências Agrárias,Univesidade Federal do Amazonas, 69067-005, Manaus, AM, Brazil
| | - Lúcia de Fátima Henriques Lourenço
- Instituto de Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Laboratório de Produtos de Origem Animal, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| |
Collapse
|