1
|
ElNaggar MH, Abdelmohsen UR, Abdel Bar FM, Kamer AA, Bringmann G, Elekhnawy E. Investigation of bioactive components responsible for the antibacterial and anti-biofilm activities of Caroxylon volkensii by LC-QTOF-MS/MS analysis and molecular docking. RSC Adv 2024; 14:11388-11399. [PMID: 38595719 PMCID: PMC11002840 DOI: 10.1039/d4ra01646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Caroxylon volkensii is a wild desert plant of the family Amaranthaceae. This study represents the first report of the metabolomic profiling of C. volkensii by liquid chromatography quadrupole-time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The dereplication study of its secondary metabolites led to the characterization of 66 known compounds. These compounds include catecholamines, tyramine derivatives, phenolic acids, triterpenoids, flavonoids, and others. A new tyramine derivative, alongside other known compounds, was reported for the first time in the Amaranthaceae family. The new derivative and the first-reported compounds were putatively identified through MS/MS fragmentation data. Given the notorious taxonomical challenges within the genus Salsola, to which C. volkensii previously belonged, our study could offer a valuable insight into its chemical fingerprint and phylogenetic relationship to different Salsola species. The antibacterial potential of C. volkensii methanolic extract (CVM) against Pseudomonas aeruginosa was screened. The minimum inhibitory concentration (MIC) of CVM ranged from 32 to 256 μg mL-1. The anti-quorum sensing potential of CVM resulted in a decrease in the percentage of strong and moderate biofilm-forming isolates from 47.83% to 17.39%. It revealed a concentration-dependent inhibitory activity on violacein formation by Chromobacterium violaceum. Moreover, CVM exhibited an in vivo protective potential against the killing capacity of P. aeruginosa isolates. A molecular docking study revealed that the quorum-sensing inhibitory effect of CVM can be attributed to the binding of tyramine conjugates, ethyl-p-digallate, and isorhamnetin to the transcriptional global activator LasR.
Collapse
Affiliation(s)
- Mai H ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University 33516 Kafrelsheikh Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Amal Abo Kamer
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| |
Collapse
|
2
|
Anti-Inflammatory, Anti-Oxidant, GC-MS Profiling and Molecular Docking Analyses of Non-Polar Extracts from Five Salsola Species. SEPARATIONS 2023. [DOI: 10.3390/separations10020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genus Salsola (family Amaranthaceae) is one of the most prevailing genera in Saudi Arabia. Although several species were reported for their traditional uses, the majority of Salsola species still need to be phytochemically and biologically explored. The current study presents the GC-MS profiling as well as an in vitro investigation of the bioactivities of the n-hexane extracts from the five Salsola species: Salsola arabica, S. cyclophylla, S. imbricata, S. incanescens and S. villosa. Additionally, the compounds identified in the most active extracts were screened for their interaction with the active sites of cyclooxygenase enzyme isoforms (COX-1 and COX-2). GC-MS analysis of the n-hexane extracts from the five species resulted in the identification of 67 constituents. Oleic acid (75.57%), 1-octadecene (14.46%), cinnamaldehyde α-hexyl (57.15%), octacosyl heptafluorobutyrate (25.36%) and hexadecanoic acid methyl ester (26.15%) represent the major constituents in S. arabica, S. cyclophylla, S. imbricata, S. inscanescence and S. villosa, respectively. Results of bioactivity testing highlighted S. villosa as having the highest anti-oxidant activity (IC50 0.99 ± 0.05 mg/mL), which was closely followed by S. cyclophylla (IC50 1.36 ± 0.06 mg/mL) compared to the IC50 of 0.16 ± 0.01 mg/mL recorded by ascorbic acid. S. villosa was further noted for having the strongest COX-2 inhibitory activity (IC50 4.6 ± 0.13 µg/mL) among the tested extracts followed by S. arabica (IC50 13.1 ± 0.37 µg/mL) and S. cyclophylla (IC50 20.1 ± 0.57 µg/mL). On the other hand, S. imbricata extract displayed the most characteristic inhibition activity against COX-1 (IC50 10.2 ± 0.52 µg/mL), which was non-significant from the standard drug celecoxib. Based upon bioactivity results, the phytoconstituents identified in S. villosa and S. imbricata extracts were investigated for their capability to interact with the active sites of both cyclooxygenase enzyme isoforms adopting molecular docking. Results indicated the possibility to incorporate the compounds to active sites of the enzymes where some of them bind with their polar end into the cavity beyond Arg120 and their aliphatic chain oriented to the catalytically important Tyr385 similar to the natural substrate arachidonic acid, indicating that they could be promising candidates for the future development of selective COX inhibitors.
Collapse
|
3
|
ElNaggar MH, Eldehna WM, Abourehab MAS, Abdel Bar FM. The old world salsola as a source of valuable secondary metabolites endowed with diverse pharmacological activities: a review. J Enzyme Inhib Med Chem 2022; 37:2036-2062. [PMID: 35875938 PMCID: PMC9327781 DOI: 10.1080/14756366.2022.2102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Salsola is an important genus in the plant kingdom with diverse traditional, industrial, and environmental applications. Salsola species are widely distributed in temperate regions and represent about 45% of desert plants. They are a rich source of diverse phytochemical classes, such as alkaloids, cardenolides, triterpenoids, coumarins, flavonoids, isoflavonoids, and phenolic acids. Salsola spp. were traditionally used as antihypertensive, anti-inflammatory, and immunostimulants. They attracted great interest from researchers as several pharmacological activities were reported, including analgesic, antipyretic, antioxidant, cytotoxic, hepatoprotective, contraceptive, antidiabetic, neuroprotective, and antimicrobial activities. Genus Salsola is one of the most notorious plant genera from the taxonomical point of view. Our study represents a comprehensive review of the previous phytochemical and biological research on the old world Salsola secies. It is designed to be a guide for future research on different plant species that still belong to this genus or have been transferred to other genera.
Collapse
Affiliation(s)
- Mai H ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Bañuelos GS, Centofanti T, Zambrano MC, Vang K, Lone TA. Salsola soda as selenium biofortification crop under high saline and boron growing conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:996502. [PMID: 36226288 PMCID: PMC9549694 DOI: 10.3389/fpls.2022.996502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In California, there is a shortage of good quality water available for irrigated agriculture due to severe drought. Consequently, saline groundwaters and drainage waters containing natural-occurring selenium (Se) and boron (B) salts are being considered as alternative sources of water for irrigation on salt and B tolerant crops like the edible halophyte-agretti (Salsola soda L.). In this multi-year field study, we evaluated agretti grown as a Se-biofortification crop in typical saline/B-laden soils (10 dS m-1 and 12 mg B/L) and irrigated with saline (3-8 dS m-1) and low-saline water (<1 d/S m) containing B (3-6 mg B/L) and Se (0.02-0.25 mg Se/L) at different evaporation transpiration (Et o ) rates (100, 75, and 50 %, respectively). During the four-year study, fresh biomass yields ranged from 1 to 3 kg/m2 and were generally highest with irrigation at 100 % Et o with either saline or low-saline water. Tissue Se concentrations ranged from 2 to 3.2 mg Se / kg DW and 0.4-0.5 mg Se/kg DW with saline and low-saline irrigation, respectively. Selenium speciation in plant tissue showed the following: selenomethionine (SeMet) > selenate (SeO4) > methylselenocysteine (MeSeCy s ), irrespective of any treatment (i.e., year of planting, saline or low saline irrigation, rate of water application, direct seeding or transplanted). Agretti did not exhibit any toxicity symptoms as indicated by changes in total phenolic concentrations. Total phenolics ranged from 180 to 257 GAE/L and showed no significant differences among all treatments, although they were generally higher at the lowest water treatment (50% Et o ). In regard to toxic ion accumulation, agretti tolerated excessive sodium (Na) and boron (B) and tissue concentrations ranging from 5.5 to 8.8% Na and 60 to 235 mg B/kg DW, respectively. Results from this multi-year study have identified a unique Se-biofortification strategy for producing Se-enriched agretti using saline, B- and Se-laden soil and irrigating with saline and low-saline water, respectively. Successful production of this crop may promote Se- biofortification strategies in poor quality regions where natural- occurring Se is present in soils and in waters used for irrigation.
Collapse
Affiliation(s)
- Gary S. Bañuelos
- United States Department of Agriculture (USDA), Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Tiziana Centofanti
- Department of Environmental Sciences and Policy, Central European University, Vienna, Austria
| | - Maria C. Zambrano
- Center for Irrigation Technology, California State University Fresno, Fresno, CA, United States
| | - Kaomine Vang
- Department of Agricultural Business, Jordan College of Agricultural Sciences and Technology, California State University Fresno, Fresno, CA, United States
| | - Todd A. Lone
- Department of Agricultural Business, Jordan College of Agricultural Sciences and Technology, California State University Fresno, Fresno, CA, United States
| |
Collapse
|
5
|
Landi N, Ragucci S, Citores L, Clemente A, Hussain HZF, Iglesias R, Ferreras JM, Di Maro A. Isolation, Characterization and Biological Action of Type-1 Ribosome-Inactivating Proteins from Tissues of Salsola soda L. Toxins (Basel) 2022; 14:toxins14080566. [PMID: 36006228 PMCID: PMC9412391 DOI: 10.3390/toxins14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are known as RNA N-glycosylases. They depurinate the major rRNA, damaging ribosomes and inhibiting protein synthesis. Here, new single-chain (type-1) RIPs named sodins were isolated from the seeds (five proteins), edible leaves (one protein) and roots (one protein) of Salsola soda L. Sodins are able to release Endo's fragment when incubated with rabbit and yeast ribosomes and inhibit protein synthesis in cell-free systems (IC50 = 4.83-79.31 pM). In addition, sodin 5, the major form isolated from seeds, as well as sodin eL and sodin R, isolated from edible leaves and roots, respectively, display polynucleotide:adenosine glycosylase activity and are cytotoxic towards the Hela and COLO 320 cell lines (IC50 = 0.41-1200 nM), inducing apoptosis. The further characterization of sodin 5 reveals that this enzyme shows a secondary structure similar to other type-1 RIPs and a higher melting temperature (Tm = 76.03 ± 0.30 °C) and is non-glycosylated, as other sodins are. Finally, we proved that sodin 5 possesses antifungal activity against Penicillium digitatum.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Angela Clemente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Hafiza Z. F. Hussain
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
6
|
DʼAngiolo M, De Leo M, Camangi F, Magliocca G, De Tommasi N, Braca A, Marzocco S. Chemical Constituents of Ulmus minor subsp. minor Fruits Used in the Italian Phytoalimurgic Tradition and Their Anti-inflammatory Activity Evaluation. PLANTA MEDICA 2022; 88:762-773. [PMID: 35240714 DOI: 10.1055/a-1787-1342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The phytochemical investigation of Ulmus minor subsp. minor samaras EtOAc and n-BuOH extracts is reported in this work for the first time, resulting in the isolation and characterization of twenty compounds (1: - 20: ) including one new flavan-3-ol (1: ), one new trihydroxy fatty acid (2: ), and two glycosylated flavonoids (6: - 7: ) whose NMR data are not available in the literature. Structure elucidation of the isolated compounds was obtained by 1D and 2D NMR and HRESIMS data. Prior to further pharmacological investigations, the extracts (100 - 6.25 µg/mL) and compounds 1: - 12: (50 - 5 µM) were tested for their influence on viability of a murine macrophage cell line (J774A.1). Subsequently, extracts and compounds that did not impede viability, were studied for their inhibitory effect on some mediators of inflammation in J774A.1 cells stimulated with lipopolysaccharide of Escherichia coli (LPS). The NO release and the expression of iNOS and COX-2 were then evaluated and both extracts (50 - 6.25 µg/mL) and compounds (20 - 5 µM) significantly inhibited NO release as well as iNOS and COX-2 expression in macrophages. These data highlight the anti-inflammatory properties of several isolated compounds from U. minor samaras supporting their possible alimentary use.
Collapse
Affiliation(s)
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, Pisa University, Pisa, Italy
| | | | - Giorgia Magliocca
- Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
| | | | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, Pisa University, Pisa, Italy
| | - Stefania Marzocco
- Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
| |
Collapse
|
7
|
Murshid SSA, Atoum D, Abou-Hussein DR, Abdallah HM, Hareeri RH, Almukadi H, Edrada-Ebel R. Genus Salsola: Chemistry, Biological Activities and Future Prospective-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:714. [PMID: 35336596 PMCID: PMC8953912 DOI: 10.3390/plants11060714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
The genus Salsola L. (Russian thistle, Saltwort) includes halophyte plants and is considered one of the largest genera in the family Amaranthaceae. The genus involves annual semi-dwarf to dwarf shrubs and woody tree. The genus Salsola is frequently overlooked, and few people are aware of its significance. The majority of studies focus on pollen morphology and species identification. Salsola has had little research on its phytochemical makeup or biological effects. Therefore, we present this review to cover all aspects of genus Salsola, including taxonomy, distribution, differences in the chemical constituents and representative examples of isolated compounds produced by various species of genus Salsola and in relation to their several reported biological activities for use in folk medicine worldwide.
Collapse
Affiliation(s)
- Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (D.A.); (R.E.-E.)
| | - Dana Atoum
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (D.A.); (R.E.-E.)
| | - Dina R. Abou-Hussein
- Department of Pharmacoagnosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacoagnosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.H.H.); (H.A.)
| | - Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.H.H.); (H.A.)
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (D.A.); (R.E.-E.)
| |
Collapse
|
8
|
Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is one of the oldest and most serious environmental problems in the world. The increasingly widespread salinization of soils and water resources represents a growing threat to agriculture around the world. A strategy to cope with this problem is to cultivate salt-tolerant crops and, therefore, it is necessary to identify plant species that are naturally adapted to high-salinity conditions. In this review, we focus our attention on some plant species that can be considered among the most representative halophytes of the Mediterranean region; they can be potential resources, such as new or relatively new vegetable crops, to produce raw or minimally processed (or ready-to-eat) products, considering their nutritional properties and nutraceuticals. The main biological and agronomic characteristics of these species and the potential health risks due to mycotoxigenic fungi have been analyzed and summarized in a dedicated section. The objective of this review is to illustrate the main biological and agronomical characteristics of the most common halophytic species in the Mediterranean area, which could expand the range of leafy vegetables on the market.
Collapse
|
9
|
Todorović M, Zlatić N, Bojović B, Kanjevac M. Biological properties of selected Amaranthaceae halophytic species: A review. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
10
|
Hegazi NM, Khattab AR, Frolov A, Wessjohann LA, Farag MA. Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chem 2021; 367:130739. [PMID: 34371278 DOI: 10.1016/j.foodchem.2021.130739] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Saffron is a spice revered for its unique flavor and health attributes often subjected to fraudulence. In this study, molecular networking as a visualization tool for UPLC/MS dataset of saffron and its common substitutes i.e. safflower and calendula (n = 21) was employed for determining genuineness of saffron and detecting its common substitutes i.e. safflower and calendula. Saffron was abundant in flavonol-O-glycosides and crocetin esters versus richness of flavanones/chalcones glycosides in safflower and cinnamates/terpenes in calendula. OPLS-DA identified differences in UPLC/MS profiles of different saffron accessions where oxo-hydroxy-undecenoic acid-O-hexoside was posed as saffron authentication marker and aided in discrimination between Spanish saffron of high quality from its inferior grade i.e. Iranian saffron along with crocetin di-O-gentiobiosyl ester and kaempferol-O-sophoroside. Kaempferol-O-neohesperidoside and N,N,N,-p-coumaroyl spermidine were characteristic safflower metabolites, whereas, calendulaglycoside C and di-O-caffeoyl quinic acid were unique to calendula. UV/VIS fingerprint spectral regions of picrocrocin (230-260 nm) and crocin derivatives (400-470 nm) were posed as being discriminatory of saffron authenticity and suggestive it can replace UPLC/MS in saffrom quality determination.
Collapse
Affiliation(s)
- Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany; Department of Biochemistry, St. Petersburg State University, St Petersburg, Russia
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, the American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
11
|
Mohammed HA, Al-Omar MS, Mohammed SAA, Alhowail AH, Eldeeb HM, Sajid MSM, Abd-Elmoniem EM, Alghulayqeh OA, Kandil YI, Khan RA. Phytochemical Analysis, Pharmacological and Safety Evaluations of Halophytic Plant, Salsola cyclophylla. Molecules 2021; 26:2384. [PMID: 33923964 PMCID: PMC8073378 DOI: 10.3390/molecules26082384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Salsola cyclophylla, an edible halophyte, is traditionally used for inflammation and pain. To confirm the claimed anti-inflammatory and analgesic properties, a detailed study on respective pharmacological actions was undertaken. The activities are contemplated to arise from its phytoconstituents. The LC-MS analysis of S. cyclophylla 95% aqueous-ethanolic extract revealed the presence of 52 compounds belonging to phenols, flavonoids, coumarins, and aliphatics class. A high concentration of Mn, Fe, and Zn was detected by atomic absorption spectroscopic analysis. The ethyl acetate extract showed the highest flavonoid contents (5.94 ± 0.04 mg/g, Quercetin Equivalents) and Fe2+-chelation (52%) potential with DPPH radicals-quenching IC50 at 1.35 ± 0.16 mg/mL, while the aqueous ethanolic extract exhibited maximum phenolics contents (136.08 ± 0.12 mg/g, gallic acid equivalents) with DPPH scavenging potential at IC50 0.615 ± 0.06 mg/mL. Aqueous ethanolic extract and standard quercetin DPPH radicals scavenging's were equal potent at 10 mg/mL concentrations. The aqueous ethanolic extract showed highest analgesic effect with pain reduction rates 89.86% (p = 0.03), 87.50% (p < 0.01), and 99.66% (p = 0.0004) after 60, 90, and 120 min, respectively. Additionally, aqueous ethanolic extract exhibited the highest anti-inflammation capacity at 41.07% (p < 0.0001), 34.51% (p < 0.0001), and 24.82% (p < 0.0001) after 2, 3, and 6 h of extract's administration, respectively. The phytochemical constituents, significant anti-oxidant potential, remarkable analgesic, and anti-inflammatory bioactivities of extracts supported the traditionally claimed anti-inflammatory and analgesic plant activities.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohsen S. Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, JUST, Irbid 22110, Jordan
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (S.A.A.M.); (A.H.A.); (H.M.E.); (M.S.M.S.)
| | - Ahmad H. Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (S.A.A.M.); (A.H.A.); (H.M.E.); (M.S.M.S.)
| | - Hussein M. Eldeeb
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (S.A.A.M.); (A.H.A.); (H.M.E.); (M.S.M.S.)
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut, 71524, Egypt
| | - Mohammed S. M. Sajid
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (S.A.A.M.); (A.H.A.); (H.M.E.); (M.S.M.S.)
| | - Essam M. Abd-Elmoniem
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Qassim 51452, Saudi Arabia;
| | | | - Yasser I. Kandil
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
| |
Collapse
|
12
|
Physiological Adaptation to Water Salinity in Six Wild Halophytes Suitable for Mediterranean Agriculture. PLANTS 2021; 10:plants10020309. [PMID: 33562812 PMCID: PMC7914791 DOI: 10.3390/plants10020309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023]
Abstract
Owing to the high interspecific biodiversity, halophytes have been regarded as a tool for understanding salt tolerance mechanisms in plants in view of their adaptation to climate change. The present study addressed the physiological response to salinity of six halophyte species common in the Mediterranean area: Artemisia absinthium, Artemisia vulgaris, Atriplex halimus, Chenopodium album, Salsola komarovii, and Sanguisorba minor. A 161-day pot experiment was conducted, watering the plants with solutions at increasing NaCl concentration (control, 100, 200, 300 and 600 mM). Fresh weight (FW), leaf stomatal conductance (GS), relative water content (RWC) and water potential (WP) were measured. A principal component analysis (PCA) was used to describe the relationships involving the variables that accounted for data variance. A. halimus was shown to be the species most resilient to salinity, being able to maintain FW up to 300 mM, and RWC and WP up to 600 mM; it was followed by C. album. Compared to them, A. vulgaris and S. komarovii showed intermediate performances, achieving the highest FW (A. vulgaris) and GS (S. komarovii) under salinity. Lastly, S. minor and A. absinthium exhibited the most severe effects with a steep drop in GS and RWC. Lower WP values appeared to be associated with best halophyte performances under the highest salinity levels, i.e., 300 and 600 mM NaCl.
Collapse
|
13
|
Aslam S, Khan I, Jameel F, Zaidi MB, Salim A. Umbilical cord-derived mesenchymal stem cells preconditioned with isorhamnetin: potential therapy for burn wounds. World J Stem Cells 2020; 12:1652-1666. [PMID: 33505606 PMCID: PMC7789118 DOI: 10.4252/wjsc.v12.i12.1652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired wound healing can be associated with different pathological states. Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide. Mesenchymal stem cells (MSCs) possess the ability to regenerate tissues by secreting factors involved in promoting cell migration, proliferation and differentiation, while suppressing immune reactions. Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.
AIM To enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.
METHODS Human umbilical cord MSCs (hU-MSCs) were isolated and characterized by surface markers, CD105, vimentin and CD90. For preconditioning, hU-MSCs were treated with isorhamnetin after selection of the optimized concentration (5 µmol/L) by cytotoxicity analysis. The migration potential of these MSCs was analyzed by the in vitro scratch assay. The healing potential of normal, and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound. Normal, and preconditioned MSCs (IH + MSCs) were transplanted after 72 h of burn injury and observed for 2 wk. Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.
RESULTS The scratch assay analysis showed a significant reduction in the scratch area in the case of IH + MSCs compared to the normal untreated MSCs at 24 h, while complete closure of the scratch area was observed at 48 h. Histological analysis showed reduced inflammation, completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH + MSCs. Gene expression analysis was time dependent and more pronounced in the case of IH + MSCs. Interleukin (IL)-1β, IL-6 and Bcl-2 associated X genes showed significant downregulation, while transforming growth factor β, vascular endothelial growth factor, Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound, showing increased angiogenesis and reduced inflammation and apoptosis.
CONCLUSION Preconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation, and improving tissue architecture and wound healing. The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.
Collapse
Affiliation(s)
- Shazmeen Aslam
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Irfan Khan
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Fatima Jameel
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Midhat Batool Zaidi
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Asmat Salim
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| |
Collapse
|