1
|
Wang X, Liu X, Sun C, Cheng Y, Li Z, Qiu S, Huang Y. Effect of temperature on the quality and microbial community during Daocai fermentation. Food Chem X 2024; 24:101827. [PMID: 39421152 PMCID: PMC11483281 DOI: 10.1016/j.fochx.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Daocai is a traditional salted pickle in the southeastern region of Guizhou with a unique aroma, color, and taste. The quality of Daocai is greatly influenced by the fermentation temperature. In this study, high-throughput sequencing and headspace-gas chromatography-ion mobility spectrometry were used to investigate the changes in microbial community succession and volatile flavor compounds during Daocai fermentation under temperature-controlled (D group) and non-temperature-controlled (C group).We found that the predominant genera in the C group samples were Latilactobacillus(40.57 %), Leuconostoc(21.25 %), Cystofilobasidium(22.12 %), Vishniacozyma(23.89 %), and Leucosporidium(24.95 %), whereas Weissella(29.39 %), Lactiplantibacillus(45.61 %), Mucor(68.26 %), and Saccharomyces(23.94 %) were the predominant genera in the D group. A total of 92 VFCs were detected in Daocai samples, including 5 isothiocyanates, 16 esters, 14 alcohols, 24 aldehydes, 17 ketones, 3 acids, 2 pyrazines, 1 pyridines, 1 thiazoles, 3 furans, 4 alkenes, and 2 nitriles. Further analysis revealed Latilactobacillus, Leuconostoc, Lactococcus, Cystofilobasidium, Leucosporidium, Holtermanniella, and Dioszegia as key bacteria involved in flavor formation. They are closely related to the formation of flavors such as aldehydes, furans, pyridines, and alkenes. This study contributes to our understanding of the relationship between bacterial communities and the flavor formation during Daocai fermentation.
Collapse
Affiliation(s)
- Xueli Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Xueting Liu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Chunmei Sun
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Yanwei Cheng
- Department of Food and Drug, Guizhou Vocational College of Agriculture, Guiyang 551400, China
| | - Zhen Li
- Zhenyuan County Li's Food Co., Ltd. Qiandongnan Miao and Dong Autonomous Prefecture, 557700, China
| | - Shuyi Qiu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Yongguang Huang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| |
Collapse
|
2
|
Liu W, Chang L, Xu Y, Shan T, Mu G, Qian F. Effects of the Lactiplantibacillus plantarum YB-106 and Leuconostoc mesenteroides YB-23 strains on the quality and microbial diversity of spicy cabbage. Int J Food Microbiol 2024; 418:110743. [PMID: 38749262 DOI: 10.1016/j.ijfoodmicro.2024.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Spicy cabbage is a popular fermented vegetable food. The study aimed to determine the physicochemical properties, volatile flavor components, sensory evaluation, and microbial diversity of spicy cabbage prepared using different methods. Three methods were used: single-bacteria fermentation with Lactiplantibacillus plantarum YB-106 and Leuconostoc mesenteroides YB-23, mixed fermentation (LMP) using both strains, and natural fermentation as the blank control (CON). The LMP group has the best quality of spicy cabbage and the highest sensory score. Esters and alkenes were the main volatile flavor components of the spicy cabbage by GC-MS. The fermentation time of LMP group was shorter, and the nitrite degradation rate was >60 %, which was significantly higher than that of other groups (p < 0.05). From the perspective of microbial diversity, the dominant bacteria genera in each group were Lactobacillus, Pantoea, Enterococcus and Pseudomonas. However, mixed fermentation decreased the abundance of pathogenic bacteria, of which the abundance of Serratia was <0.1 %. In conclusion, mixed fermentation can significantly improve the quality of spicy cabbage and shorten the fermentation time. These findings laid the theoretical foundation for the industrial production of high-quality spicy cabbage.
Collapse
Affiliation(s)
- Weichao Liu
- School of Food Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Lixuan Chang
- School of Food Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yunpeng Xu
- School of Food Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Tingting Shan
- Dalian Center for Certification and Food and Drug Control, Dalian, Liaoning 116021, China
| | - Guangqing Mu
- School of Food Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Fang Qian
- School of Food Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
3
|
Wang R, Zeng Y, Liang J, Zhang H, Yi J, Liu Z. Effect of Rhodotorula mucilaginosa inoculation on the aroma development of a fermented vegetables simulated system. Food Res Int 2024; 179:113941. [PMID: 38342554 DOI: 10.1016/j.foodres.2024.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
Fermented vegetables are known for their unique flavors and aromas, which are influenced by the complex microbial processes that occur during fermentation. Rhodotorula mucilaginosa is a red yeast strain that is frequently isolated from fermented vegetables. However, the specific mechanisms underlying their effects on aroma production remain unclear. In this study, a simulated system of vegetables fermented using vegetable juices was used to investigate the effects of R. mucilaginosa inoculation on aroma development. The results demonstrated that this red yeast strain could utilize the nutrients present in the vegetable juices to support its growth and reproduction. Moreover, the inoculation of fermented vegetable juices with this yeast strain led to an increase in the levels of umami amino acids and sweet amino acids. Furthermore, this yeast strain was found able to significantly reduce the content of sulfur-containing compounds, which may decrease the unpleasant odor of fermented vegetables. Additionally, the yeast strain was capable of producing high concentrations of aromatic compounds such as phenylethyl alcohol, methyl 2-methylbutyrate, methyl butyrate, and nonanoic acid in a minimum medium. However, only phenylethyl alcohol has been identified as a core aromatic compound in fermented vegetable juice. The three fermented vegetable juices exhibited significantly different flavor profiles according to comparative analysis. Therefore, the core flavor compounds found in fermented vegetables are primarily derived from the release and modification of endogenous flavors naturally present in the vegetables, facilitated by the yeast during fermentation.
Collapse
Affiliation(s)
- Rui Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
| | - Yi Zeng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
| | - Jiaqian Liang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
| | - Huixin Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
| | - Zhijiia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China.
| |
Collapse
|
4
|
Kao CC, Lin JY. Anti-inflammatory effects of a naturally lacto-fermented cucumber product on RAW 264.7 macrophages in association with increased functional ingredients. Food Chem X 2023; 20:101039. [PMID: 38144729 PMCID: PMC10740051 DOI: 10.1016/j.fochx.2023.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A naturally lacto-fermented cucumber product was developed for use as anti-inflammatory functional foods. To explore the anti-inflammatory characteristics, water (CWE) and ethanol extracts (CEE) from this product were selected to assess their anti-inflammatory potential on RAW 264.7 macrophages in the absence or presence of lipopolysaccharide (LPS), using four different inflammatory models. Changes in pro- (IL-1β, IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokine secretions by treated macrophages were measured using ELISA. The results showed that both CWE and CEE had strong potential to inhibit LPS-stimulated inflammation in macrophages in a repair manner. CWE had a better effect than CEE. The total phenolic, flavonoid and saponin contents in CEE were significantly (P < 0.05) correlated with IL-10 (r = 0.384, P = 0.036*) and TNF-α (r = 0.371, P = 0.043*) levels, but slightly correlated with TNF-α/IL-10 secretion ratios (r = -0.184, P = 0.359) by treated RAW 264.7 cells, respectively.
Collapse
Affiliation(s)
- Chien-Chia Kao
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| |
Collapse
|
5
|
Tan X, Cui F, Wang D, Lv X, Li X, Li J. Fermented Vegetables: Health Benefits, Defects, and Current Technological Solutions. Foods 2023; 13:38. [PMID: 38201066 PMCID: PMC10777956 DOI: 10.3390/foods13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
This review summarizes current studies on fermented vegetables, analyzing the changes in nutritional components during pickling, the health benefits of fermented vegetables, and their safety concerns. Additionally, the review provides an overview of the applications of emergent non-thermal technologies for addressing these safety concerns during the production and processing of fermented vegetables. It was found that vitamin C would commonly be lost, the soluble protein would degrade into free amino acids, new nutrient compositions would be produced, and the flavor correlated with the chemical changes. These changes would be influenced by the variety/location of raw materials, the original bacterial population, starter cultures, fermentation conditions, seasoning additions, and post-fermentation processing. Consuming fermented vegetables benefits human health, including antibacterial effects, regulating intestinal bacterial populations, and promoting health (anti-cancer effects, anti-diabetes effects, and immune regulation). However, fermented vegetables have chemical and biological safety concerns, such as biogenic amines and the formation of nitrites, as well as the existence of pathogenic microorganisms. To reduce hazardous components and control the quality of fermented vegetables, unique starter cultures, high pressure, ultrasound, cold plasma, photodynamic, and other technologies can be used to solve these problems.
Collapse
Affiliation(s)
- Xiqian Tan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xinran Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China (X.L.); (J.L.)
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| |
Collapse
|
6
|
Xiao Y, Zhang S, Liu Z, Wang T, Cai S, Chu C, Hu X, Yi J. Effect of inoculating Pichia spp. starters on flavor formation of fermented chili pepper: Metabolomics and genomics approaches. Food Res Int 2023; 173:113397. [PMID: 37803735 DOI: 10.1016/j.foodres.2023.113397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
The influence of Pichia spp. on flavor formation and metabolic pathways during chili pepper fermentation was investigated in this study. Multiple omics approaches were employed, including metabolomics analysis to identify volatile and non-volatile flavor compounds, and genomic analysis to gain insights into the underlying molecular mechanism driving flavor formation of chili peppers inoculated with Pichia spp. The results showed that inoculation with Pichia spp. accelerated fermentation process of chili peppers compared to spontaneous fermentation. Metabolomics analysis showed P. fermentans promoted characteristic terpenes [e.g., (Z)-β-ocimene and linalool], L-glutamate, gamma-aminobutyric acid, and succinate production, while P. manshurica produced more alcohols (e.g., isoamyl alcohol and phenylethyl alcohol) and phenols (e.g., 4-ethylguaiacol and 2-methoxy-4-methylphenol). Genomics analysis revealed that a substantial portion of the genes in Pichia spp. were associated with amino acid and carbohydrate metabolism. Specifically, the pathways involved in amino acid metabolism and the release of glycoside-bound aromatic compounds were identified as the primary drivers behind the unique flavor of fermented chili peppers, facilitated by Pichia spp.
Collapse
Affiliation(s)
- Yue Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| |
Collapse
|
7
|
Kao CC, Lin JY. Culture condition optimization of naturally lacto-fermented cucumbers based on changes in detrimental and functional ingredients. Food Chem X 2023; 19:100839. [PMID: 37780341 PMCID: PMC10534157 DOI: 10.1016/j.fochx.2023.100839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 08/12/2023] [Indexed: 10/03/2023] Open
Abstract
A two-step trial was used to optimize the culture condition of naturally lacto-fermented cucumbers. In the first trial, changes in pH values and total biogenic amines were measured to optimize the pickling juice formula. A 15% crystal sugar solution with low-salt brine at 4 °C was proved to be the best formula. In the second trial, pH values, organic acids, total phenolics, flavonoids, saponins and free amino acids, as well as biogenic amines and nitrites under the optimal pickling formula were measured. The optimal fermentation day was suggested at around 8 days. During the cucumber's fermentation process, the pH value was quickly lowered to <4.6. Meanwhile, the functional ingredients increased significantly. In contrast, total biogenic amines and nitrites did not exceed the risk limit, evidencing the safety and functional characteristics for the naturally lacto-fermented cucumbers. The two-step trial has evidenced the possibility to develop desirable lacto-fermented cucumbers.
Collapse
Affiliation(s)
- Chien-Chia Kao
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung City 40227, Taiwan
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung City 40227, Taiwan
| |
Collapse
|
8
|
Kao CC, Wang HM, Tsai SJ, Lin JY. Sensory and microbial analyses on naturally lacto-fermented cucumbers. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Regulation of the nitrite, biogenic amine and flavor quality of Cantonese pickle by selected lactic acid bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Luo Y, Li D, Liao H, Xia X. Patterns of biogenic amine during broad bean paste fermentation: microbial diversity and functionality via Bacillus bioaugmentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1315-1325. [PMID: 36114594 DOI: 10.1002/jsfa.12225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Broad bean paste is a high nitrogen and high salt traditional Chinese condiment, which triggers biosynthesis of nitrogen hazards like biogenic amines (BAs). Mechanisms of association and applied research of functional safety and community assembly within multiple-microbial fermentation are currently lacking. Here, bioaugmentation was performed based on the profiles of BAs accumulation and microbial succession to evaluate the functional variation within broad bean paste fermentation. RESULTS Putrescine, spermine, and spermidine were the main BAs during traditional broad bean paste fermentation. Staphylococcus, Streptococcus, Lactococcus, Lactobacillus, Leuconostoc, and Bacillus were the predominant bacteria, whereas Aspergillus and Zygosaccharomyces dominated in fungal species, and community structure shifted upon salt exposure. PICRUSt software uncovered that Bacillus contributed significantly (>1%) to the amine oxidase gene family. Bacillus amyloliquefaciens 1-G6 and Bacillus licheniformis 2-B3 were screened to perform the bioaugmentation of broad bean paste, which achieved a 29% and 16% BA decrease respectively. Interaction network analysis showed that Cronobacter and Lactobacillus were significantly negatively correlated with Bacillus (ρ = -0.829 and ρ = -0.714, respectively, P < 0.05) in the B. amyloliquefaciens 1-G6 group, and Staphylococcus and Buttiauxella were inhibited by Bacillus (ρ = -0.657 and ρ = -0.543, respectively, P < 0.05) in the B. licheniformis 2-B3 group. CONCLUSION The synergism of amine oxidase activity and microbial interactions led to the decline of BAs. Thus, this study improves our understanding of the underlying mechanisms of microbial succession and functional variation to further facilitate the optimization of the fermented food industry.
Collapse
Affiliation(s)
- Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Dongrui Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
11
|
Systematic analysis of key fermentation parameters influencing biogenic amines production in spontaneous fermentation of soy sauce. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Zhang S, Xiao Y, Jiang Y, Wang T, Cai S, Hu X, Yi J. Effects of Brines and Containers on Flavor Production of Chinese Pickled Chili Pepper ( Capsicum frutescens L.) during Natural Fermentation. Foods 2022; 12:foods12010101. [PMID: 36613316 PMCID: PMC9818826 DOI: 10.3390/foods12010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The effects of (fresh/aged) brine and (pool/jar) containers on the flavor characteristics of pickled chili peppers were investigated based on a multivariate analysis integrated with kinetics modeling. The results showed that the effect of brine on organic acid, sugar, and aroma was more dominant than that of containers, while free amino acids production was more affected by containers than brines. Chili pepper fermented using aged brine exhibited higher acidity (3.71−3.92) and sugar (7.92−8.51 mg/g) than that using fresh brine (respective 3.79−3.96; 6.50−9.25 mg/g). Besides, chili peppers fermented using pool containers showed higher free amino acids content (424.74−478.82 mg/100 g) than using a jar (128.77−242.90 mg/100 g), particularly with aged brine. As for aroma, the number of volatiles in aged brine was higher (88−96) than that in fresh brine (76−80). The contents of the esters, alcohols, and ketones were significantly higher in the aged brine samples than those in fresh brine (p < 0.05), while terpenes in chili pepper fermented using the pool were higher than those using the jar. In general, jar fermentation with aged brine contributed more flavor to pickled chili peppers than other procedures.
Collapse
Affiliation(s)
- Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Yue Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Correspondence: ; Tel.: +86-15810687441
| |
Collapse
|
13
|
Huang Y, Ge L, Lai H, Wang Y, Mei Y, Zeng X, Su Y, Shi Q, Yuan H, Li H, Zhu Y, Liao Q, Zuo Y, Zhao N. Seasonal alteration of environmental condition-driven shift in microbiota composition, physicochemical attributes and organic compound profiles in aged Paocai brine during intermittent back-slopping fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Mi T, Wang D, Yao S, Yang H, Che Y, Wu C. Effects of salt concentration on the quality and microbial diversity of spontaneously fermented radish paocai. Food Res Int 2022; 160:111622. [DOI: 10.1016/j.foodres.2022.111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
|
15
|
Hu Y, Zhang L, Badar IH, Liu Q, Liu H, Chen Q, Kong B. Insights into the flavor perception and enhancement of sodium-reduced fermented foods: A review. Crit Rev Food Sci Nutr 2022; 64:2248-2262. [PMID: 36095069 DOI: 10.1080/10408398.2022.2121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Salt (sodium chloride, NaCl) is a vital ingredient in fermented foods, which affects their safety, texture, and flavor characteristics. Recently, the demand for reduced-sodium fermented foods has increased, as consumers have become more health-conscious. However, reducing sodium content in fermented foods may negatively affect flavor perception, which is a critical quality attribute of fermented foods for both the food industry and consumers. This review summarizes the role of salt in the human body and foods and its role in the flavor perception of fermented foods. Current sodium reduction strategies used in the food industry mainly include the direct stealth reduction of NaCl, substituting NaCl with other chloride salts, and structure modification of NaCl. The odor-induced saltiness enhancement, application of starter cultures, flavor enhancers, and non-thermal processing technology are potential strategies for flavor compensation of sodium-reduced fermented foods. However, reducing sodium in fermented food is challenging due to its specific role in flavor perception (e.g., promoting saltiness and volatile compound release from food matrices, inhibiting bitterness, and changing microflora structure). Therefore, multiple challenges must be addressed in order to improve the flavor of low-sodium fermented foods. Future studies should thus focus on the combination of several strategies to compensate for the deficiencies in flavor resulting from sodium reduction.
Collapse
Affiliation(s)
- Yingying Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Li X, Liu D. Effects of wheat bran co-fermentation on the quality and bacterial community succession during radish fermentation. Food Res Int 2022; 157:111229. [DOI: 10.1016/j.foodres.2022.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
17
|
Chang L, Mu G, Wang M, Zhao T, Tuo Y, Zhu X, Qian F. Microbial Diversity and Quality-Related Physicochemical Properties of Spicy Cabbage in Northeastern China and Their Correlation Analysis. Foods 2022; 11:1511. [PMID: 35627081 PMCID: PMC9141884 DOI: 10.3390/foods11101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Chinese spicy cabbage (CSC) is a popular special fermented food in Northeast China. The bacterial community and quality of CSC from different regions of northeastern China (Group_J: Jilin province, Group_L: Liaoning province, Group_H: Heilongjiang province) at retail (Group_P) and home-made (Group_C) were investigated in this study. The determination of the microbial community was achieved using high-throughput sequencing and the quality-related physicochemical characteristics included pH, salinity, total acid (TA), amino acid nitrogen (AAN), reducing sugar (RS), nitrite, and biogenic amines (BAs). Based on OPLS-DA analysis, there was a difference between the quality of Group_C and Group_P. No significant difference was observed in province grouping. Proteobacteria and Firmicutes were the dominant phyla, and the dominant genera were Lactobacillus, Pantoea, Weissella, and Pseudomonas. All groups had significant differences in community structure (p < 0.05). Compared with Group_C, the relative abundance of opportunistic pathogens (Pseudomonas and Serratia) in Group_P was lower. Pseudomonas and Serratia were the biomarkers in Group_H. At the genus level, Lactobacilluss and Weissella had a positive correlation with pH, Cadaverrine, and salinity (p < 0.05), however, they were negatively related to tryptamine. Pseudomonas was negatively correlated with salinity (p < 0.05). Bacterial community and physicochemical parameters of CSC, as well as the correlation between them, were discussed in this study, providing a reference for future studies on CSC inoculation and fermentation.
Collapse
Affiliation(s)
- Lixuan Chang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Mingxu Wang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Tong Zhao
- Dalian Center for Certification and Food and Drug Control, Dalian 116021, China;
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| |
Collapse
|