1
|
Indriani S, Srisakultiew N, Yuliana ND, Yongsawatdigul J, Benjakul S, Pongsetkul J. Metabolomic profiles and compositional differences involved in flavor characteristics of raw breast meat from slow- and fast-growing chickens in Thailand. Poult Sci 2024; 103:104230. [PMID: 39236465 PMCID: PMC11405792 DOI: 10.1016/j.psj.2024.104230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
This study aimed to differentiate the flavor characteristics of raw chicken breast meat from Thai slow-growing breeds (NC: native chicken, and KC: Korat/crossbred chicken) and fast-growing broilers (BR: broiler chicken) by using NMR-based metabolomic approaches along with multivariate data analysis. Chemical compounds related to chicken's flavor including free amino acids (FAA), ATP and its related compounds, sugars, as well as volatile compounds (VOC), were also investigated. BR had the highest total FAAs, followed by NC and KC (P < 0.05). In contrast, the accumulations of ATP degradation products, particularly ADP and IMP, were found at higher levels in the NC and KC (P < 0.05), while the highest total reducing sugars were noted in the KC (P < 0.05). Most VOCs found in the fresh breasts were products from the degradation of lipids, especially through lipid oxidation, which was found in varied types and proportions among samples. Not only chemical compounds but varying amounts of metabolites among samples were also detected. Apart from 21 identified metabolites, Glu, Gln, and betaine were the most prevalent in all samples with VIP > 1.00. Among 19 metabolic pathways, the most important pathways (P-value < 0.05, FDR < 0.05, impact > 0.05) were discovered to differentiate the flavor of raw chicken breast meat from various breeds. These metabolic pathways included (1) Ala, Asp and Glu metabolism; (2) D-Gln and D-Glu metabolism; (3) Purine metabolism; (4) β-Ala metabolism; (5) Aminoacyl-tRNA biosynthesis; (6) Nicotinate and nicotinamide metabolism; (7) Pyrimidine metabolism. Interestingly, based on the principal component analysis plot and partial least square-discriminant analysis (R2 = 0.9804; Q2 = 0.9782), NC and KC were clustered in the same area and discriminated from BR, indicating their similar flavor characteristics and metabolic profiles. Therefore, the findings could comprehend and distinguish the flavor of chicken breast meat of slow- from fast-growing chicken breeds based on their chemical characteristics and metabolite profiles.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nattanan Srisakultiew
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; Halal Science Center, IPB University, Bogor 16129, Indonesia
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon, Ratchasima 30000, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
You Z, Bai Y, Bo D, Feng Y, Shen J, Wang Y, Li J, Bai Y. A review of taste-active compounds in meat: Identification, influencing factors, and taste transduction mechanism. J Food Sci 2024. [PMID: 39468910 DOI: 10.1111/1750-3841.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Poultry and livestock meat are important parts of the human diet. As living standards have improved, food taste has become a major influence on consumer quality assessment and meat purchasing choices. There is increasing research interest in meat taste and meat taste-active compounds, which include free amino acids, flavor nucleotides, taste-active peptides, organic acids, soluble sugars, and inorganic ions. Taste component research is also an important part of sensory science. A deeper understanding of the meat taste perception mechanism and interactions among different taste compounds will promote the development of meat science and sensory evaluation. This article reviews the main taste compounds in meat, factors influencing their concentrations, and the identification and measurement of taste-active compounds, as well as summarizing the mechanisms of taste sensing and perception. Finally, the future of scientific taste component evaluation is discussed. This review provides a theoretical basis for research on meat taste and an important reference for the development of the meat industry.
Collapse
Affiliation(s)
- Zerui You
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yilin Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Bo
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqing Feng
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiameng Shen
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Luo X, Zhang J, Guo J, Zhao W, Tian Y, Xiang H, Kang H, Ye F, Chen S, Li H, Ma Z. Transcriptomic Analysis Reveals the Effects of miR-122 Overexpression in the Liver of Qingyuan Partridge Chickens. Animals (Basel) 2024; 14:2132. [PMID: 39061594 PMCID: PMC11274173 DOI: 10.3390/ani14142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The liver of chickens is essential for maintaining physiological activities and homeostasis. This study aims to investigate the specific function and molecular regulatory mechanism of microRNA-122 (miR-122), which is highly expressed in chicken liver. A lentivirus-mediated overexpression vector of miR-122 was constructed and used to infect 12-day-old female Qingyuan Partridge chickens. Transcriptome sequencing analysis was performed to identify differentially expressed genes in the liver. Overexpression of miR-122 resulted in 776 differentially expressed genes (DEGs). Enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed associations with lipid metabolism, cellular senescence, cell adhesion molecules, and the MAPK signaling pathway. Eight potential target genes of miR-122 (ARHGAP32, CTSD, LBH, PLEKHB2, SEC14L1, SLC2A1, SLC6A14, and SP8) were identified through miRNA target prediction platforms and literature integration. This study provides novel insights into the molecular regulatory mechanisms of miR-122 in chicken liver, highlighting its role in key biological processes and signaling pathways. These discoveries enhance our understanding of miR-122's impact on chicken liver function and offer valuable information for improving chicken production performance and health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (X.L.); (J.Z.); (J.G.); (W.Z.); (Y.T.); (H.X.); (H.K.); (F.Y.); (S.C.); (H.L.)
| |
Collapse
|
4
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Chen J, Cai X, Liu J, Yuan C, Yi Y, Qiao M. Investigation of different ingredients affected the flavor changes of Yu-Shiang shredded pork by using GC-IMS and GC-MS combined with E-nose and E-tongue. Heliyon 2024; 10:e31486. [PMID: 38828359 PMCID: PMC11140597 DOI: 10.1016/j.heliyon.2024.e31486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
The objective of this study was to assess and compare the characteristics of Yu-Shiang Shredded Pork made with different ingredients by using physicochemical measurements and intelligent sensory analysis. The study revealed that there were 18 varied amino acids present, with the taste active values (TAVs) of Leu, Glu, Asp, Asn, and Ala all higher than 1.0. Intelligent sensory analysis showed that the samples lacking lettuce and fungus had similar aromas and flavors, while those lacking shredded pork and pickled chillies had distinct aromas and flavors. Moreover, VOCs (volatile organic compounds) were detected in five types of Yu-Shiang Shredded Pork, with 43, 42, 53, 36, and 50 identified in GC-MS (gas chromatography-mass spectrometry), respectively. Olefins (20.62 %-30.93 %) were the most abundant. GC-IMS (gas chromatography-ion mobility spectrometry) detected 68 volatiles flavor compounds, with esters having a significantly higher relative content than other compounds, indicating their significant role in the flavor formation process of Yu-Shiang Shredded Pork. Furthermore, the Orthogonal Partial Least Squares-discriminant analysis (OPLS-DA) model analysis identified 19 marker compounds that could differentiate the five types of Yu-Shiang Shredded Pork. These fundamental results lay the groundwork for future research on the connection between ingredients and the flavor characteristics of Yu-Shiang Shredded Pork.
Collapse
Affiliation(s)
- Jia Chen
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, 610100, China
- College of Food, Sichuan Tourism University, Chengdu, 610100, China
| | - Xuemei Cai
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, 610100, China
| | - Junliang Liu
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, 610100, China
- College of Food, Sichuan Tourism University, Chengdu, 610100, China
| | - Can Yuan
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, 610100, China
- College of Food, Sichuan Tourism University, Chengdu, 610100, China
| | - Yuwen Yi
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, 610100, China
| | - Mingfeng Qiao
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, 610100, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu, 610213, China
| |
Collapse
|
6
|
Li H, Zhao X, Qin S, Li J, Tang D, Xi B. GC-IMS and multivariate analyses of volatile organic components in different Chinese breeds of chickens. Heliyon 2024; 10:e29664. [PMID: 38655366 PMCID: PMC11035028 DOI: 10.1016/j.heliyon.2024.e29664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
This study examined the difference in volatile flavor characteristics among four different local breeds of chicken by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with multivariate analysis. In total, 65 volatile organic compounds (VOCs) were identified (17 aldehydes, 12 alcohols, 7 ketones, 5 esters, 2 acids, and 22 unidentified, i.e., 26.15% aldehydes, 18.46% alcohols, 10.77% ketones, 7.69% esters, 3.08% acids, and 33.84% unidentified), of which 43 were annotated. The chicken meats from the four breeds exhibited good separation in topographic plots, VOC fingerprinting, and multivariate analysis. Meanwhile, 20 different volatile components, with variable importance in projection value > 1, were selected as potential markers to distinguish different breeds of chicken by partial least squares discriminant analysis (PLS-DA). These findings provide insights into the flavor traits of chicken meat. Also, HS-GC-IMS combined with multivariate analysis can be a convenient and powerful method for characterizing different meats.
Collapse
Affiliation(s)
- Hongqiang Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bin Xi
- Laboratory of Quality & Safety Risk Assessment for Livestock Products of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| |
Collapse
|
7
|
Shao X, Wang H, Song X, Xu N, Sun J, Xu X. Effects of different mixed starter cultures on microbial communities, taste and aroma compounds of traditional Chinese fermented sausages. Food Chem X 2024; 21:101225. [PMID: 38389578 PMCID: PMC10881521 DOI: 10.1016/j.fochx.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of this study was to investigate and compare the effects of different mixed starter cultures (Lactiplantibacillus plantarum and Staphylococcus simulans) on the bacterial communities and flavor of fermented sausages. The results indicated that native starters grew well in fermented sausages and became dominant at the end of ripening. Among them, Lactobacillus spp. had the highest relative abundance, followed by Staphylococcus spp. In addition, the inoculation of the mixed starters promoted the formation of taste and aroma compounds that contribute to the overall flavor of the fermented sausages. Among them, the L. plantarum CQ01107 + S. simulans CD207 (CCA) treatment was found to have the highest umami amino acid, nucleotide, lactic acid, fatty acid and ketone contents (P < 0.05), as well as excellent sensory properties. In conclusion, the CCA starter may be a desirable starter culture to enhance the flavor of fermented sausages.
Collapse
Affiliation(s)
- Xuefei Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangyu Song
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Na Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
8
|
Sun X, Yu Y, Saleh ASM, Yang X, Ma J, Gao Z, Zhang D, Li W, Wang Z. Characterization of aroma profiles of chinese four most famous traditional red-cooked chickens using GC-MS, GC-IMS, and E-nose. Food Res Int 2023; 173:113335. [PMID: 37803645 DOI: 10.1016/j.foodres.2023.113335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
The aroma profile of the four most popular types of red-cooked chickens in China was analyzed using a combination of gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose (E-nose). Principal component analysis (PCA) demonstrated that the E-nose could successfully distinguish between the four types of red-cooked chickens. Additionally, a fingerprint was created using GC-IMS to examine the variations in volatile organic compounds (VOCs) distribution in the four chicken types. A total number of 84 and 62 VOCs were identified in the four types of red-cooked chickens using GC-MS and GC-IMS, respectively. Odor activity value (OAV) showed that 1-octen-3-ol, heptanal, hexanal, nonanal, octanal, eugenol, dimethyl trisulfide, anethole, anisaldehyde, estragole, and eucalyptol were the key volatile components in all samples. Furthermore, partial least squares-discriminant analysis (PLS-DA) demonstrated that (E, E)-2,4-decadienal, dimethyl trisulfide, octanal, eugenol, hexanal, (E)-2-nonenal, 1-octen-3-ol, butanal, ethyl acetate, ethyl acetate (D), nonanal, and heptanal could be used as markers to distinguish aroma of the four types of red-cooked chickens. Also, it is worth noting that levels of VOCs varied between chicken breast muscle and skin. The obtained results offer theoretical and technological support for flavor identification and control in red-cooked chickens to enhance their quality and encourage consumer consumption, which will be advantageous for the red-cooked chicken production chain.
Collapse
Affiliation(s)
- Xiangxiang Sun
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yumei Yu
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ahmed S M Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Xinyu Yang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jiale Ma
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ziwu Gao
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Zhenyu Wang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
9
|
Chen D, Sheng M, Wang S, Chen X, Leng A, Lin S. Dynamic changes and formation of key contributing odorants with amino acids and reducing sugars as precursors in shiitake mushrooms during hot air drying. Food Chem 2023; 424:136409. [PMID: 37220684 DOI: 10.1016/j.foodchem.2023.136409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The dynamic variations in key contributing odorants, amino acids and reducing sugars in shiitake mushrooms during hot-air drying were determined by gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-tandem mass (HPLC-MS/MS) and ion chromatography (IC). The potential precursors were explored by the partial least squares-discriminant analysis and Pearson correlation analysis, and Met, Cys, and ribose were considered as the possible precursors of dimethyl trisulfide and lenthionine. The verification experiments in the absence and presence of shiitake mushroom matrix further confirmed that Met and its interaction with ribose both contributed to generating dimethyl trisulfide. The polynomial nonlinear fitting curve could better represent the dose-effect relationships of Met and Met-ribose to produce dimethyl trisulfide with R2 of 0.9579 and 0.9957. Conversely, ribose, Cys or Cys-ribose were verified to be unable to form the key contributing odorants. Collectively, the results provided a method to reveal precursors and generation pathway of odorants.
Collapse
Affiliation(s)
- Dong Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Menglong Sheng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Silu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Xiuhan Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Aoxue Leng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Research Center of Special Dietary Food, China.
| |
Collapse
|
10
|
Nie J, Fu X, Wang L, Xu J, Gao X. Impact of Monascus purpureus fermentation on antioxidant activity, free amino acid profiles and flavor properties of kelp (Saccharina japonica). Food Chem 2023; 400:133990. [PMID: 36063678 DOI: 10.1016/j.foodchem.2022.133990] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
This study evaluated the efficacy of Monascus purpureus fermentation on Saccharina japonica (SJ). Healthy substances and antioxidant activity of fermented SJ (FSJ) were determined. Results showed that fermentation caused the release of phenolic compounds and flavonoids, which resulted in the enhancement of antioxidant activity. Essential amino acids and γ-aminobutyric acid also greatly accumulated in FSJ. Sensory evaluation and gas chromatography-ion mobility spectrometry (GC-IMS) were used to evaluate flavor properties of FSJ. A lexicon consisted of 24 descriptors was established for SJ and FSJ, of which 14 descriptors were regarded as odor attributes. A total of 46 volatile compounds were identified by GC-IMS and showed positive correlation with odor attributes. Fifteen volatile compounds were screened as key compounds, tricarboxylic acid cycle, embden-meyerhof-parnas and amino acid catabolism were main formation metabolisms of them. Advanced properties of FSJ indicated that fermentation is a promising approach for the production of SJ food.
Collapse
Affiliation(s)
- Jinlan Nie
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China.
| | - Lei Wang
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| |
Collapse
|
11
|
Zhu Z, Pius Bassey A, Cao Y, Du X, Huang T, Cheng Y, Huang M. Meat quality and flavor evaluation of Nanjing water boiled salted duck (NWSD) produced by different Muscovy duck (Cairina moschata) ingredients. Food Chem 2022; 397:133833. [PMID: 35933751 DOI: 10.1016/j.foodchem.2022.133833] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Reports on meat quality and flavor evaluation of Nanjing water boiled salted duck (NWSD) produced by different Muscovy duck (Cairina moschata) ingredients are limited. To select a suitable Muscovy duck ingredient for the NWSD processing, six kinds of NWSD products were produced using female (65, 70, and 75 days) and male (75, 80, and 85 days) Muscovy duck ingredients. The meat quality, volatile organic compounds (VOCs), smell and taste were investigated by using colorimeter, texture analyzer, headspace-gas chromatography-ion mobility spectroscopy (HS-GC-IMS), electronic nose (E-nose), electronic tongue (E-tongue), etc. Results exhibited that 32 iconic VOCs were obtained by using partial least squares discrimination analysis (PLS-DA), principal component analysis (PCA), and variable importance projection (VIP) methods. 80-day-old male Muscovy duck showed moderate moisture and protein content, good meat texture and bright color, diverse iconic VOCs and clear differentiation, making it the preferred ingredient for NWSD processing.
Collapse
Affiliation(s)
- Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Anthony Pius Bassey
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaqi Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaolan Du
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianran Huang
- Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co. Ltd., Nanjing 211200, PR China
| | - Yiqun Cheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000, PR China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co. Ltd., Nanjing 211200, PR China.
| |
Collapse
|
12
|
Enrichment of taste and aroma compounds in braised soup during repeated stewing of chicken meat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Deng S, Liu R, Li C, Xu X, Zhou G. Meat quality and flavor compounds of soft-boiled chickens: Effect of Chinese yellow-feathered chicken breed and slaughter age. Poult Sci 2022; 101:102168. [PMID: 36228527 PMCID: PMC9573924 DOI: 10.1016/j.psj.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this research was to investigate the effects of Mahuang and Tuer chickens, 2 representatives of the native chicken breed, and the slaughter age on meat quality and flavor compounds of soft-boiled chickens (SCs) in comparison to a commercial cross boiler. A total of 432 chicks were randomly allocated into the following groups: 817 groups raised for 55 d, and Mahuang and Tuer chickens raised for 60, 65, 70, and 75 days (d). After the completion of rearing period, the chickens were slaughtered, and 5 carcasses per group were randomly selected for SC manufacturing. Meat quality was determined based on product yield, pH, color, meat tenderness, and textural and sensorial attributes. The volatile compounds of chicken breast were identified by gas chromatography-ion mobility spectrometry (GC-IMS). The results showed that the yellow-feathered chicken breed, especially Mahuang chicken, had a higher product yield, and lower shear force and sensorial scores than the cross broiler. The pH, L* and b* values in SC breast meat were not significantly influenced by breed (P > 0.05), while greater a* was observed in SC of yellow-feathered chickens compared to cross broilers. The slaughter age had a significant effect on the pH, color, shear force, and textural properties of SC (P < 0.05). The meat tenderness of SC was significantly decreased as the age of chicken increased from 65 d to 75 d (P < 0.05). The relatively young age of yellow-feathered chickens (60 d and 65 d) was rated to have a higher overall sensory score of SC (P < 0.05). A total of 65 organic volatile compounds were identified in SC, including 18 aldehydes, 16 alcohols, 10 ketones, 9 esters, 2 acids, 3 furans, 5 pyrazines, and 2 sulfur-containing compounds. Three chicken breeds were separately clustered in the plot of principal component analysis, indicating breed-specific flavor characteristics. Collectively, the present study provides valuable information for SC processing in terms of carcass selection of yellow-feathered chicken breeds and slaughter age.
Collapse
Affiliation(s)
- Shaolin Deng
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Zhou H, Cui W, Gao Y, Li P, Pu X, Wang Y, Wang Z, Xu B. Analysis of the volatile compounds in Fuliji roast chicken during processing and storage based on GC-IMS. Curr Res Food Sci 2022; 5:1484-1493. [PMID: 36132489 PMCID: PMC9483743 DOI: 10.1016/j.crfs.2022.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
To investigate the flavor changes of Fuliji roast chicken during processing and storage, the volatile organic compounds (VOCs) during processing (fresh, fried, stewed and sterilized) and storage (1 month, 2 months and 4 months) were determined by gas chromatography ion mobility spectrometry (GC-IMS). A total of 47 kinds of VOCs were identified across seven sampling stages, including aldehydes, hydrocarbons, alcohols, ketones, esters, ethers and heterocyclic compounds. More diverse range of aldehydes, alcohols, ketones and esters have been detected compared to acids, ethers and heterocyclic substances. Fingerprints directly reflect the pattern of VOCs at different stages of growth and decay, revealing that frying and stewing are key processes in flavor formation, and that sterilization and storage processes lead to flavor loss in Fuliji roast chicken. Hexanal, nonanal, octanal, 2-heptanone, 3-octanol, 1-octene-3-alcohol, 1-pentanol and ethyl acetate were mainly generated during the frying process. Benzaldehyde, nonanal, octanal, methyl-5-hepten-2-one, 2-methyl-3-heptanone, 1,8-Cineole, linalool, butyl acetate, ethyl propionate, ethyl acetate, coumarin, 2-furfuryl methyl disulfide and 2-pentyl furan were mainly generated during the stewing process. After sterilization, the content of octanal-D, 2-heptanone-D, 2-Methyl-3-heptanone, pentan-1-ol-D decreased, resulting in the reduction of aroma, lemon flavor and oil flavor of Fuliji roast chicken. Seven flavor markers, including hexanal-D, nonanal-M, octanal-M, heptanal-D, acetone, 3-octanol and ethyl acetate-D, were identified in the evolution of the aroma profile of Fuliji roast chicken. GC-IMS profiles of flavor components in poultry product processing line. 47 kinds of volatile substances were identified by GC-IMS. Frying and stewing were the key processes of flavor formation. Flavor markers in the evolution of aroma characteristics of Fuliji roast chicken were determined.
Collapse
|
15
|
Zhu W, Jiang B, Zhong F, Chen J, Zhang T. Effect of Microbial Fermentation on the Fishy-Odor Compounds in Kelp ( Laminaria japonica). Foods 2021; 10:foods10112532. [PMID: 34828815 PMCID: PMC8623561 DOI: 10.3390/foods10112532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Kelp (Laminaria japonica) is an important marine resource with low cost and rich nutrition. However, its fishy odor has compromised consumer acceptance. In this study, the effects of fermentation with Lactobacillus plantarum FSB7, Pediococcus pentosaceus CICC 21862 and Saccharomyces cerevisiae SK1.008 on fishy notes in kelp was studied using gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS) and odor activity values (OAVs). Forty-four volatile organic compounds (VOCs) were identified in unfermented kelp, most of which were aldehydes, followed by alkanes, alcohols and ketones. Among them were 19 volatile compounds with OAV greater than one. Substances containing α,β-unsaturated carbonyl structure (1-Octen-3-one, (E,Z)-2,6-nonadienal, (E,E)-2,4-decadienal, etc.) are the main contributors to kelp fishy odor. The number of VOCs in kelp samples fermented by L. plantarum, P. pentosaceus and S. cerevisiae were decreased to 22, 24 and 34, respectively. GC-IMS shows that the fingerprint of the S. cerevisiae fermented sample had the most obvious changes. The disappearance of 1-octen-3-one and a 91% decrease in unsaturated aldehydes indicate that S. cerevisiae was the most effective, while L. plantarum and P. pentosaceus only reached 43-55%. The decrease in kelp fishy notes was related to the decrease in α,β-unsaturated carbonyl groups. The experimental results show that odor reduction with fermentation is feasible.
Collapse
Affiliation(s)
- Wenyang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85915296
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.Z.); (J.C.); (T.Z.)
- International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|