1
|
Yao L, He P, Xia Z, Li J, Liu J. Typical Marine Ecological Disasters in China Attributed to Marine Organisms and Their Significant Insights. BIOLOGY 2024; 13:678. [PMID: 39336105 PMCID: PMC11429238 DOI: 10.3390/biology13090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Owing to global climate change or the ever-more frequent human activities in the offshore areas, it is highly probable that an imbalance in the offshore ecosystem has been induced. However, the importance of maintaining and protecting marine ecosystems' balance cannot be overstated. In recent years, various marine disasters have occurred frequently, such as harmful algal blooms (green tides and red tides), storm surge disasters, wave disasters, sea ice disasters, and tsunami disasters. Additionally, overpopulation of certain marine organisms (particularly marine faunas) has led to marine disasters, threatening both marine ecosystems and human safety. The marine ecological disaster monitoring system in China primarily focuses on monitoring and controlling the outbreak of green tides (mainly caused by outbreaks of some Ulva species) and red tides (mainly caused by outbreaks of some diatom and dinoflagellate species). Currently, there are outbreaks of Cnidaria (Hydrozoa and Scyphozoa organisms; outbreak species are frequently referred to as jellyfish), Annelida (Urechis unicinctus Drasche, 1880), Mollusca (Philine kinglipini S. Tchang, 1934), Arthropoda (Acetes chinensis Hansen, 1919), and Echinodermata (Asteroidea organisms, Ophiuroidea organisms, and Acaudina molpadioides Semper, 1867) in China. They not only cause significant damage to marine fisheries, tourism, coastal industries, and ship navigation but also have profound impacts on marine ecosystems, especially near nuclear power plants, sea bathing beaches, and infrastructures, posing threats to human lives. Therefore, this review provides a detailed introduction to the marine organisms (especially marine fauna species) causing marine biological disasters in China, the current outbreak situations, and the biological backgrounds of these outbreaks. This review also provides an analysis of the causes of these outbreaks. Furthermore, it presents future prospects for marine biological disasters, proposing corresponding measures and advocating for enhanced resource utilization and fundamental research. It is recommended that future efforts focus on improving the monitoring of marine biological disasters and integrating them into the marine ecological disaster monitoring system. The aim of this review is to offer reference information and constructive suggestions for enhancing future monitoring, early warning systems, and prevention efforts related to marine ecological disasters in support of the healthy development and stable operation of marine ecosystems.
Collapse
Affiliation(s)
- Lulu Yao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhangyi Xia
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Jiye Li
- Key Laboratory of Ecological Prewarning of Bohai Sea of Ministry of Natural Resources, North China Sea Environmental Monitoring Center of State Oceanic Administration, Qingdao 266033, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
- Project Management Office of China, National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Charoenchokpanich W, Muangrod P, Roytrakul S, Rungsardthong V, Wonganu B, Charoenlappanit S, Casanova F, Thumthanaruk B. Exploring the Model of Cefazolin Released from Jellyfish Gelatin-Based Hydrogels as Affected by Glutaraldehyde. Gels 2024; 10:271. [PMID: 38667690 PMCID: PMC11048929 DOI: 10.3390/gels10040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Due to its excellent biocompatibility and ease of biodegradation, jellyfish gelatin has gained attention as a hydrogel. However, hydrogel produced from jellyfish gelatin has not yet been sufficiently characterized. Therefore, this research aims to produce a jellyfish gelatin-based hydrogel. The gelatin produced from desalted jellyfish by-products varied with the part of the specimen and extraction time. Hydrogels with gelatin: glutaraldehyde ratios of 10:0.25, 10:0.50, and 10:1.00 (v/v) were characterized, and their cefazolin release ability was determined. The optimal conditions for gelatin extraction and chosen for the development of jellyfish hydrogels (JGel) included the use of the umbrella part of desalted jellyfish by-products extracted for 24 h (WU24), which yielded the highest gel strength (460.02 g), viscosity (24.45 cP), gelling temperature (12.70 °C), and melting temperature (22.48 °C). The quantities of collagen alpha-1(XXVIII) chain A, collagen alpha-1(XXI) chain, and collagen alpha-2(IX) chain in WU24 may influence its gel properties. Increasing the glutaraldehyde content in JGel increased the gel fraction by decreasing the space between the protein chains and gel swelling, as glutaraldehyde binds with lateral amino acid residues and produces a stronger network. At 8 h, more than 80% of the cefazolin in JGel (10:0.25) was released, which was higher than that released from bovine hydrogel (52.81%) and fish hydrogel (54.04%). This research is the first report focused on the production of JGel using glutaraldehyde as a cross-linking agent.
Collapse
Affiliation(s)
- Wiriya Charoenchokpanich
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
| | - Pratchaya Muangrod
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.R.); (S.C.)
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
- Food and Agro-Industry Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Center for Food Industry Innovation Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Benjamaporn Wonganu
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.R.); (S.C.)
| | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, 28000 Kongens Lyngby, Denmark;
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (W.C.); (P.M.); (V.R.)
- Food and Agro-Industry Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Center for Food Industry Innovation Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
3
|
Vieira H, Lestre GM, Solstad RG, Cabral AE, Botelho A, Helbig C, Coppola D, de Pascale D, Robbens J, Raes K, Lian K, Tsirtsidou K, Leal MC, Scheers N, Calado R, Corticeiro S, Rasche S, Altintzoglou T, Zou Y, Lillebø AI. Current and Expected Trends for the Marine Chitin/Chitosan and Collagen Value Chains. Mar Drugs 2023; 21:605. [PMID: 38132926 PMCID: PMC10744996 DOI: 10.3390/md21120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.
Collapse
Affiliation(s)
- Helena Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Gonçalo Moura Lestre
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Runar Gjerp Solstad
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Ana Elisa Cabral
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Anabela Botelho
- GOVCOPP—Research Unit on Governance, Competitiveness and Public Policies, DEGEIT, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Helbig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Kjersti Lian
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Kyriaki Tsirtsidou
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Miguel C. Leal
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Nathalie Scheers
- Department of Life Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden;
| | - Ricardo Calado
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Sofia Corticeiro
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Themistoklis Altintzoglou
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Ana I. Lillebø
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| |
Collapse
|
4
|
Cruz-Padilla J, Reyes V, Cavender G, Chotiko A, Gratzek J, Mis Solval K. Comparative Analysis of Concurrent (CC), Mixed Flow (MX), and Combined Spray Drying Configurations on the Physicochemical Characteristics of Satsuma Mandarin ( Citrus unshiu) Juice Powders. Foods 2023; 12:3514. [PMID: 37761223 PMCID: PMC10530200 DOI: 10.3390/foods12183514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Satsuma mandarins are good sources of vitamin C and can be used as raw materials to produce novel plant-based food ingredients including satsuma mandarin juice powders (SJP). Food powders produced via spray drying often show thermal degradation due to the drying conditions and high drying air temperatures. The aim of this study was to evaluate the effect of using different spray drying configurations, including concurrent (CC), mixed flow (MX), and combined (CC + MX), at two inlet air temperatures (160 and 180 °C) on the physicochemical properties of SJP. Remarkably, SJP produced using the CC spray drying configuration exhibited a higher vitamin C content (3.56-4.01 mg/g) and lower moisture levels (15.18-16.35 g/100 g) than powders produced via MX or CC + MX. The vitamin C content of MX and CC + MX powders ranged from 2.88 to 3.33 mg/g. Meanwhile, all SJP had water activity values below 0.19. Furthermore, MX powders displayed the largest mean particle sizes (D50) (8.69-8.83 µm), higher agglomeration, and a rapid dissolution. Despite these differences, all SJP variants exhibited consistent color, surface area, and pore volumes. Notably, powders dried at higher inlet air temperatures (180 °C) showed less vitamin C content and increased thermal damage when compared with powders dried at 160 °C inlet air temperature. This study demonstrated the feasibility of producing high-quality SJP with an extended shelf life. SJP can be used as a novel plant-based ingredient in different food applications.
Collapse
Affiliation(s)
- Javier Cruz-Padilla
- Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA; (J.C.-P.); (V.R.); (J.G.)
| | - Vondel Reyes
- Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA; (J.C.-P.); (V.R.); (J.G.)
| | - George Cavender
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Arranee Chotiko
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Bangkok 12110, Thailand;
| | - James Gratzek
- Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA; (J.C.-P.); (V.R.); (J.G.)
| | - Kevin Mis Solval
- Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA; (J.C.-P.); (V.R.); (J.G.)
| |
Collapse
|
5
|
Lueyot A, Wonganu B, Rungsardthong V, Vatanyoopaisarn S, Hutangura P, Wongsa-Ngasri P, Roytrakul S, Charoenlappanit S, Wu T, Thumthanaruk B. Improved jellyfish gelatin quality through ultrasound-assisted salt removal and an extraction process. PLoS One 2022; 17:e0276080. [PMID: 36322524 PMCID: PMC9629545 DOI: 10.1371/journal.pone.0276080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
The use of by-products of salted jellyfish for gelatin production offers valuable gelatin products rather than animal feed. Several washes or washing machines have reported removing salt in salted jellyfish. However, the green ultrasound technique has never been reported for the desalination of salted jellyfish. The objectives were to determine how effectively the raw material's salt removal was done by combining the traditional wash and then subjected to the ultrasonic waves in a sonication bath for 20-100 min. For gelatin production, the ultrasonicated jellyfish by-products were pretreated with sodium hydroxide and hydrochloric acid, washed, and extracted with hot water for 4, 6, and 8 h. Results showed that the increased duration of ultrasound time increased the desalination rate. The highest desalination rate of 100% was achieved using 100 min ultrasonic time operated at a fixed frequency (40 kHz) and power (220 W). The jellyfish gelatin extracted for 4, 6, and 8 h showed gel strengths in 121-447, 120-278, and 91-248 g. The 80 min ultrasonicated sample and hot water extraction for 8 h (JFG80-8) showed the highest gel yield of 32.69%, with a gel strength of 114.92 g. Still, the 40 min ultrasonicated sample with 4 h of extraction delivered the highest gel strength of 447.01 g (JFG40-4) and the lower yield of 10.60%. The melting and gelling temperatures of jellyfish gelatin from ultrasonicated samples ranged from 15-25°C and 5-12°C, which are lower than bovine gelatin (BG) and fish gelatin (FG). Monitored by FITR, the synergistic effect of extended sonication time (from 20-100 min) with 4 h extraction time at 80 °C caused amide I, II, and III changes. Based on the proteomic results, the peptide similarity of JFG40-4, having the highest gel strength, was 17, 23, or 20 peptides compared to either BG, FG, or JFG100-8 having the lowest gel strength. The 14 peptides were similarly found in all JFG40-4, BG, and FG samples. In conclusion, for the first time in this report, the improved jellyfish gel can be achieved when combined with traditional wash and 40 min ultrasonication of desalted jellyfish and extraction time of 4 h at 80 °C.
Collapse
Affiliation(s)
- Artima Lueyot
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Benjamaporn Wonganu
- Food and Agro-Industry Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Savitri Vatanyoopaisarn
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Pokkwan Hutangura
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Pisit Wongsa-Ngasri
- Fishery Technological Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Tao Wu
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
- * E-mail:
| |
Collapse
|