1
|
Zeng A, Yang R, Tong Y, Zhao W. Functional bacterial cellulose nanofibrils with silver nanoparticles and its antibacterial application. Int J Biol Macromol 2023; 235:123739. [PMID: 36806768 DOI: 10.1016/j.ijbiomac.2023.123739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Bacterial cellulose (BC) with good biocompatibility and superior mechanical properties has broad applications. BC functionalized with silver nanoparticles (AgNPs) has been assessed as an antimicrobial membrane for wound-healing treatment. During the AgNPs synthesis, avoiding the use of toxic chemicals is very necessary for the development of environmentally friendly procedures. Herein, a Komagataeibacter xylinus-based direct biosynthetic method to fabricate D-Saccharic acid potassium salt (SA)-grafted BC (SABC) through in situ bacterial metabolism was firstly explored. Subsequently, the SABC pellicles were immersed in AgNO3 solution for ion-exchanged process, and the silver nanoparticles (AgNPs) with diameter of ∼25.2 nm were in situ synthesized on SABC nanofiber surfaces by thermal reduction instead of using a reducing agent. The morphology and microstructure of SABC/AgNPs pellicles were analyzed by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectra. Moreover, antibacterial activity measurement performed against the Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) by disk diffusion and plate count methods, showed high-efficiency bacteria-killing performance of SABC/AgNPs pellicles. This work proposed a new method by using microbial metabolism to prepare BC pellicles with functional groups, and antimicrobial films containing AgNPs was prepared by thermal reduction, exhibiting valuable prospects in wound healing treatment.
Collapse
Affiliation(s)
- Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Ding S, Zhao J, Jiang Z, Mu J, Huang L, Dai C. Fabrication of whey protein isolate/chitosan complexes and its protective effect on allicin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shuang Ding
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Jun Zhao
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Zhiyuan Jiang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Jing Mu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Liurong Huang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
3
|
Larki M, Enayati M, Rostamabadi H. Basil seed gum promotes the electrospinnability of WPI for co-encapsulation of ZnO nanoparticles and curcumin. Carbohydr Polym 2022; 296:119966. [DOI: 10.1016/j.carbpol.2022.119966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
|
4
|
Lai YR, Lai JT, Wang SSS, Kuo YC, Lin TH. Silver nanoparticle-deposited whey protein isolate amyloid fibrils as catalysts for the reduction of methylene blue. Int J Biol Macromol 2022; 213:1098-1114. [PMID: 35688277 DOI: 10.1016/j.ijbiomac.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022]
Abstract
The unique structural characteristics and superior biocompatibility make the protein nanofibers promising immobilization platforms/substrates for catalysts/enzymes. Metal nanoparticles have been employed as the catalysts in industries due to their excellent catalytic activity and stability, whereas their high surface energy leads to nanoparticle aggregation, thereby hampering their catalytic performance. Here, amyloid fibril (AF) derived from whey protein isolate (WPI) was chosen as the support of silver nanoparticles (AgNP) and utilized for the catalytic reduction of methylene blue (MB). The one-dimensional amyloid-based hybrid materials (AgNP/WPI-AF) were first synthesized via chemical or photochemical route. The characterization of AgNP/WPI-AF by UV-vis spectrophotometry and electron microscopy revealed that the sizes of AgNP on WPI-AF's surface ranged from 2 to 30 nm. Next, the catalytic performances of AgNP/WPI-AF prepared by various routes for MB degradation were investigated. Additionally, the kinetic data were analyzed using two different models and the apparent rate constants and thermodynamic parameters were further determined accordingly. Moreover, the reusability of AgNP/WPI-AF was assessed by monitoring the percentage removal of MB over consecutive filtering cycles. Our results indicated that Langmuir-Hinshelwood-type mechanism better described the catalytic MB reduction using AgNP/WPI-AF. This work provides a nice example of application of nanoparticle-amyloid fibril composite materials for catalysis.
Collapse
Affiliation(s)
- You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jinn-Tsyy Lai
- Food Industry Research and Development Institute, Hsinchu 300, Taiwan; HeySong Corporation, 178, Zhongyuan Rd., Zhongli Dist., Taoyuan City 320021, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|