1
|
Spínola MP, Mendes AR, Prates JAM. Chemical Composition, Bioactivities, and Applications of Spirulina ( Limnospira platensis) in Food, Feed, and Medicine. Foods 2024; 13:3656. [PMID: 39594071 PMCID: PMC11593816 DOI: 10.3390/foods13223656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Spirulina (Limnospira platensis) is a microalga recognised for its rich nutritional composition and diverse bioactive compounds, making it a valuable functional food, feed, and therapeutic agent. This review examines spirulina's chemical composition, including its high levels of protein, essential fatty acids, vitamins, minerals, and bioactive compounds, such as the phycocyanin pigment, polysaccharides, and carotenoids, in food, feed, and medicine. These compounds exhibit various biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiviral, anticancer, antidiabetic and lipid-lowering effects. Spirulina's potential to mitigate oxidative stress, enhance immune function, and inhibit tumour growth positions it as a promising candidate for preventing chronic diseases. Additionally, spirulina is gaining interest in the animal feed sector as a promotor of growth performance, improving immune responses and increasing resistance to diseases in livestock, poultry, and aquaculture. Despite its well-documented health benefits, future research is needed to optimize production/cultivation methods, improve its bioavailability, and validate its efficacy (dose-effect relationship) and safety through clinical trials and large-scale human trials. This review underscores the potential of spirulina to address global health and nutrition challenges, supporting its continued application in food, feed, and medicine.
Collapse
Affiliation(s)
- Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ana R. Mendes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.P.S.); (A.R.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Tayebati H, Pajoum Shariati F, Soltani N, Sepasi Tehrani H. Effect of various light spectra on amino acids and pigment production of Arthrospira platensis using flat-plate photobioreactor. Prep Biochem Biotechnol 2024; 54:1028-1039. [PMID: 34289777 DOI: 10.1080/10826068.2021.1941102] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Today, the use of nutrients derived from natural bioactive compounds application in the food, pharmaceutical, and cosmetic industries is on the increase. This paper aimed to evaluate the amino acids profile (essential and non-essential) and pigments composition (chlorophyll a, carotenoids, and phycocyanin) of Arthrospira platensis (a blue-green microalga) cultivation in a flat-plate photobioreactor under various types of light-emitting diodes (red: 620-680 nm, white: 380-780 nm, yellow: 570-600nm, blue: 445-480 nm). The maximum biomass concentration (604.96 mg L-1) occurred when the red LED was applied for cultivation, and the minimum biomass concentration (279.39 mg L-1) was obtained under blue LED. The sequence of pigments and amino acids concentrations (mg L-1culture volume) was approximately in accordance with the biomass productivity. It means the red light produces the maximum concentration of pigments (chlorophyll a: 5.42, carotenoids: 2.92, phycocyanin: 67.54 mg L-1) and amino acids (essential amino acids: 110.47, nonessential amino acids: 179.10 mg L-1). Nevertheless, when these values were measured in mg per g of dry weight, the utmost contents were observed in microalgal products cultivated under blue LED. These consequences are due to the highest cell productivity and the most extended length of cells that occurred under red and blue LEDs, respectively.
Collapse
Affiliation(s)
- Hanieh Tayebati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Pajoum Shariati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Neda Soltani
- Department of Petroleum Microbiology, Institute of Applied Science, ACECR, Tehran, Iran
| | - Hessam Sepasi Tehrani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Diotto D, Barbera E, Borella L, Trivellin N, Sforza E. Modeling Approach to Capture the Effect of High Frequency Flashing Light in Steady-State Microalgae Cultures. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniele Diotto
- Interdepartmental Centre Giorgio Levi Cases, Via Marzolo 9, Padova35131, Italy
| | - Elena Barbera
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, Padova35131, Italy
| | - Lisa Borella
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, Padova35131, Italy
| | - Nicola Trivellin
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, Padova35131, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, Padova35131, Italy
| |
Collapse
|
5
|
Nosratimovafagh A, Fereidouni AE, Krujatz F. Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM). Life (Basel) 2022; 12:life12030371. [PMID: 35330122 PMCID: PMC8953219 DOI: 10.3390/life12030371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
Arthrospira platensis (Spirulina) biomass is a valuable source of sustainable proteins, and the basis for new food and feed products. State-of-the-art production of Spirulina biomass in open pond systems only allows limited control of essential process parameters, such as light color, salinity control, or mixotrophic growth, due to the high risk of contaminations. Closed photobioreactors offer a highly controllable system to optimize all process parameters affecting Spirulina biomass production (quantity) and biomass composition (quality). However, a comprehensive analysis of the impact of light color, salinity effects, and mixotrophic growth modes of Spirulina biomass production has not been performed yet. In this study, Response Surface Methodology (RSM) was employed to develop statistical models, and define optimal mixotrophic process conditions yielding maximum quantitative biomass productivity and high-quality biomass composition related to cellular protein and phycocyanin content. The individual and interaction effects of 0, 5, 15, and 30 g/L of sodium chloride (S), and 0, 1.5, 2, and 2.5 g/L of glucose (G) in three costume-made LED panels (L) where the dominant color was white (W), red (R), and yellow (Y) were investigated in a full factorial design. Spirulina was cultivated in 200 mL cell culture flasks in different treatments, and data were collected at the end of the log growth phase. The lack-of-fit test showed that the cubic model was the most suitable to predict the biomass concentration and protein content, and the two-factor interaction (2FI) was preferred to predict the cellular phycocyanin content (p > 0.05). The reduced models were produced by excluding insignificant terms (p > 0.05). The experimental validation of the RSM optimization showed that the highest biomass concentration (1.09, 1.08, and 0.85 g/L), with improved phycocyanin content of 82.27, 59.47, 107 mg/g, and protein content of 46.18, 39.76, 53.16%, was obtained under the process parameter configuration WL4.28S2.5G, RL10.63S1.33G, and YL1.00S0.88G, respectively.
Collapse
Affiliation(s)
- Ahmad Nosratimovafagh
- Department of Fisheries Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari P.O. Box 578, Iran;
| | - Abolghasem Esmaeili Fereidouni
- Department of Fisheries Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari P.O. Box 578, Iran;
- Correspondence: ; Tel.: +98-1133822565
| | - Felix Krujatz
- Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01069 Dresden, Germany;
- biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, Bautzner Landstraße 45, 01454 Radeberg, Germany
| |
Collapse
|
6
|
Walther J, Erdmann N, Stoffel M, Wastian K, Schwarz A, Strieth D, Muffler K, Ulber R. Passively immobilized cyanobacteria Nostoc species BB 92.2 in a moving bed photobioreactor (MBPBR): design, cultivation and characterization. Biotechnol Bioeng 2022; 119:1467-1482. [PMID: 35211957 DOI: 10.1002/bit.28072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 01/09/2023]
Abstract
The cyanobacterium Nostoc sp. BB 92.3. had shown antibacterial activity. A cultivation as biofilm, a self-forming matrix of cells and extracellular polymeric substances, increased the antibacterial effect. A new photobioreactor system was developed that allows a surface-associated cultivation of Nostoc sp. as biofilm. High-density polyethylene carriers operated as a moving bed were selected as surface for biomass immobilization. This system, well established in heterotrophic wastewater treatment, was for the first time used for phototrophic biofilms. The aim was a cultivation on a large scale without inhibiting growth while maximizing immobilization. Cultivation in a small photobioreactor (1.5 L) with different volumetric filling degrees of carriers (13.4-53.8 %) in a batch process achieved immobilization rates of 70-85 % and growth was similar to a no-carrier-control. In a larger photobioreactor (65-liter) essentially all of the biomass was immobilized on the carriers and the space-time yield of biomass (0.018 gcell dry weight L-1 day-1 ) was competitive compared to phototrophic biofilm cultivations from literature. The use of carriers increased the gas exchange in the reactor by a factor of 2.5-3, but doubled the mixing time. Enriched gassing with carbon dioxide resulted in a short-term increase in growth rate, but unexpectedly it also adversely changed the growth morphology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jakob Walther
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Niklas Erdmann
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Michael Stoffel
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Katharina Wastian
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany
| | - Dorina Strieth
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
7
|
Borella L, Sforza E, Bertucco A. Effect of residence time in continuous photobioreactor on mass and energy balance of microalgal protein production. N Biotechnol 2021; 64:46-53. [PMID: 34087470 DOI: 10.1016/j.nbt.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
There is increasing interest in new protein sources for the food and feed industry and for the agricultural sector, and microalgae are considered a good alternative, having a high protein content and a well-balanced amino acid profile. However, protein production from microalgae presents several unsolved issues, as the biomass composition changes markedly as a function of cultivation operating conditions. Continuous systems, however, may be properly set to boost the accumulation of protein in the biomass, ensuring stable production. Here, two microalgae and two cyanobacterial species were cultivated in continuous operating photobioreactors (PBR) under nonlimiting nutrient conditions, to study the effects of light intensity and residence time on both biomass and protein productivity at steady state. Although light strongly affected biomass growth inside the PBR, the overall protein pool did not vary in response to irradiance. On the other hand, shorter residence times resulted in protein accumulation of up to 68 % in cyanobacteria, in contrast with green algae, where a minor influence of residence time on biomass composition was observed. Energy balance showed that light conversion to protein decreased with light intensity. Protein content was also related to energy costs for cell maintenance. In conclusion, it is shown that residence time is the key variable to increase protein content and yield of protein production, but its effect depends on the specific species.
Collapse
Affiliation(s)
- Lisa Borella
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
| | - Alberto Bertucco
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| |
Collapse
|
8
|
Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules 2020; 25:molecules25122834. [PMID: 32575444 PMCID: PMC7356364 DOI: 10.3390/molecules25122834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/03/2023] Open
Abstract
The purpose of this work is to define optimal growth conditions to maximise biomass for batch culture of the cyanobacterium Arthrospira maxima and the microalgae Chlorella vulgaris, Isochrysis galbana and Nannochloropsis gaditana. Thus, we study the effect of three variables on cell growth: i.e., inoculum:culture medium volume ratio (5:45, 10:40, 15:35 and 20:30 mL:mL), light:dark photoperiod (8:16, 12:12 and 16:8 h) and type of culture medium, including both synthetic media (Guillard’s F/2 and Walne’s) and wastewaters. The results showed that the initial inoculum:culture medium volume ratio, within the range 5:45 to 20:30, did not affect the amount of biomass at the end of the growth (14 days), whereas high (18 h) or low (6 h) number of hours of daily light was important for cell growth. The contribution of nutrients from different culture media could increase the growth rate of the different species. A. maxima was favoured in seawater enriched with Guillard’s F/2 as well as C. vulgaris and N. gaditana, but in freshwater medium. I. galbana had the greatest growth in the marine environment enriched with Walne’s media. Nitrogen was the limiting nutrient for growth at the end of the exponential phase of growth for C. vulgaris and N. gaditana, while iron was for A. maxima and I. galbana. The growth in different synthetic culture media also determines the biochemical composition of each of the microalgae. All species demonstrated their capability to grow in effluents from a wastewater treatment plant and they efficiently consume nitrogen, especially the three microalga species.
Collapse
|
9
|
CO2 enrichment: Enhancing antioxidant, antibacterial and anticancer activities in Arthrospira platensis. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Velu C, Cirés S, Brinkman DL, Heimann K. Bioproduct Potential of Outdoor Cultures of Tolypothrix sp.: Effect of Carbon Dioxide and Metal-Rich Wastewater. Front Bioeng Biotechnol 2020; 8:51. [PMID: 32117931 PMCID: PMC7026013 DOI: 10.3389/fbioe.2020.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Rising CO2 levels, associated climatic instability, freshwater scarcity and diminishing arable land exacerbate the challenge to maintain food security for the fast growing human population. Although coal-fired power plants generate large amounts of CO2 emissions and wastewater, containing environmentally unsafe concentrations of metals, they ensure energy security. Nitrogen (N2)-fixation by cyanobacteria eliminate nitrogen fertilization costs, making them promising candidates for remediation of waste CO2 and metals from macronutrient-poor ash dam water and the biomass is suitable for phycocyanin and biofertilizer product development. Here, the effects of CO2 and metal mixtures on growth, bioproduct and metal removal potential were investigated for the self-flocculating, N2-fixing freshwater cyanobacterium Tolypothrix sp. Tolypothrix sp. was grown outdoors in simulated ash dam wastewater (SADW) in 500 L vertical bag suspension cultures and as biofilms in modified algal-turf scrubbers. The cultivation systems were aerated with air containing either 15% CO2 (v/v) or not. CO2-fertilization resulted in ∼1.25- and 1.45-fold higher biomass productivities and ∼40 and 27% increased phycocyanin and phycoerythrin contents for biofilm and suspension cultures, respectively. CO2 had no effect on removal of Al, As, Cu, Fe, Sr, and Zn, while Mo removal increased by 37% in both systems. In contrast, Ni removal was reduced in biofilm systems, while Se removal increased by 73% in suspension cultures. Based on biomass yields and biochemical data obtained, net present value (NPV) and sensitivities analyses used four bioproduct scenarios: (1) phycocyanin sole product, (2) biofertilizer sole product, (3) 50% phycocyanin and 50% biofertilizer, and (4) 100% phycocyanin and 100% biofertilizer (residual biomass) for power station co-located and not co-located 10 ha facilities over a 20-year period. Economic feasibility for the production of food-grade phycocyanin either as a sole product or with co-production of biofertilizer was demonstrated for CO2-enriched vertical and raceway suspension cultures raised without nitrogen-fertilization and co-location with power stations significantly increased profit margins.
Collapse
Affiliation(s)
- Chinnathambi Velu
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Samuel Cirés
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diane L. Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, QLD, Australia
| | - Kirsten Heimann
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Marine Bioproducts Development (CMBD), College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
11
|
Abstract
Cultivation of microalgae requires consideration of shear stress, which is generated by operations such as mixing, circulation, aeration and pumping that are designed to facilitate mass and heat transfer as well as light distribution in cultures. Excessive shear stress can cause increased cell mortality, decreased growth rate and cell viability, or even cell lysis. This review examines the sources of shear stress in different cultivation systems, shear stress tolerance of different microalgal species and the physiological factors and environmental conditions that may affect shear sensitivity, and potential approaches to mitigate the detrimental effects of shear stress. In general, green algae have the greatest tolerance to shear stress, followed by cyanobacteria, haptophytes, red algae, and diatoms, with dinoflagellates comprising the most shear-sensitive species. The shear-sensitivity of microalgae is determined primarily by cell wall strength, cell morphology and the presence of flagella. Turbulence, eddy size, and viscosity are the most prominent parameters affecting shear stress to microalgal cells during cultivation.
Collapse
Affiliation(s)
- Chinchin Wang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada; Department of Biochemistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher Q Lan
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
12
|
Bermejo E, Ruiz-Domínguez MC, Cuaresma M, Vaquero I, Ramos-Merchante A, Vega JM, Vílchez C, Garbayo I. Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. J Biosci Bioeng 2018; 125:669-675. [PMID: 29370982 DOI: 10.1016/j.jbiosc.2017.12.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
Abstract
In this study, the effect of abiotic stress on the acidophilic eukaryotic microalga, Coccomyxa onubensis, was analyzed for the production of lutein and PUFAs (polyunsaturated fatty acids). It grows autotrophically at a pH of 2.5. It showed a growth rate of 0.30 d-1, and produced approximately 122.50 mg·L-1·d-1 biomass, containing lipids (300.39 mg g-1dw), lutein (5.30 mg g-1dw), and β-carotene (1.20 mg g-1dw). The fatty acid methyl ester (FAME) fraction was 89.70 mg g-1dw with abundant palmitic acid (28.70%) and linoleic acid (37.80%). The addition of 100 mM NaCl improved the growth rate (0.54 d-1), biomass productivity (243.75 mg·L-1·d-1), and lipids accumulation (416.16 mg g-1dw). The microalga showed a lutein content of 6.70 mg g-1dw and FAME fraction of 118.90 mg g-1dw; 68% of the FAMEs were PUFAs. However, when 200-500 mM salt was added, its growth was inhibited but there was a significant induction of lutein (up to 7.80 mg g-1dw). Under continuous illumination with PAR (photosynthetically active radiations) +UVA (ultraviolet A, 8.7 W m-2), C. onubensis showed a growth rate of 0.40 d-1, and produced 226.3 mg·L-1·d-1 biomass, containing lipids, (487.26 mg g-1dw), lutein (7.07 mg g-1dw), and FAMEs (232.9 mg g-1dw); 48.4% of the FAME were PUFAs. The illumination with PAR + UVB (ultraviolet B, 0.16 W m-2) was toxic for cells. These results indicate that C. onubensis biomass is suitable as a supplement for functional foods and/or source of high added value products.
Collapse
Affiliation(s)
- Elisabeth Bermejo
- Algal Biotechnology Group, University of Huelva, CIDERTA, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain
| | - María C Ruiz-Domínguez
- Microencapsulation of Bioactive Compounds Laboratory (LAMICBA), Food Sciences and Nutrition Department, Faculty of Health Sciences, University of Antofagasta, Avda. Universidad de Antofagasta 02800, Antofagasta, Chile
| | - María Cuaresma
- Algal Biotechnology Group, University of Huelva, CIDERTA, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain
| | - Isabel Vaquero
- Algal Biotechnology Group, University of Huelva, CIDERTA, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain
| | - Adrian Ramos-Merchante
- Department of Integrated Sciences, University of Huelva, Campus Universitario El Carmen, Avda, Andalucía S/n, 21071 Huelva, Spain
| | - José M Vega
- Plant Biochemistry and Molecular Biology Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva, CIDERTA, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva, CIDERTA, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| |
Collapse
|
13
|
Furmaniak MA, Misztak AE, Franczuk MD, Wilmotte A, Waleron M, Waleron KF. Edible Cyanobacterial Genus Arthrospira: Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine. Front Microbiol 2017; 8:2541. [PMID: 29326676 PMCID: PMC5741684 DOI: 10.3389/fmicb.2017.02541] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterial genus Arthrospira appears very conserved and has been divided into five main genetic clusters on the basis of molecular taxonomy markers. Genetic studies of seven Arthrospira strains, including genome sequencing, have enabled a better understanding of those photosynthetic prokaryotes. Even though genetic manipulations have not yet been performed with success, many genomic and proteomic features such as stress adaptation, nitrogen fixation, or biofuel production have been characterized. Many of above-mentioned studies aimed to optimize the cultivation conditions. Factors like the light intensity and quality, the nitrogen source, or different modes of growth (auto-, hetero-, or mixotrophic) have been studied in detail. The scaling-up of the biomass production using photobioreactors, either closed or open, was also investigated to increase the production of useful compounds. The richness of nutrients contained in the genus Arthrospira can be used for promising applications in the biomedical domain. Ingredients such as the calcium spirulan, immulina, C-phycocyanin, and γ-linolenic acid (GLA) show a strong biological activity. Recently, its use in the fight against cancer cells was documented in many publications. The health-promoting action of "Spirulina" has been demonstrated in the case of cardiovascular diseases and age-related conditions. Some compounds also have potent immunomodulatory properties, promoting the growth of beneficial gut microflora, acting as antimicrobial and antiviral. Products derived from Arthrospira were shown to successfully replace biomaterial scaffolds in regenerative medicine. Supplementation with the cyanobacterium also improves the health of livestock and quality of the products of animal origin. They were also used in cosmetic preparations.
Collapse
Affiliation(s)
- Magda A Furmaniak
- Chair and Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka E Misztak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna D Franczuk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Annick Wilmotte
- InBios-Centre for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Małgorzata Waleron
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof F Waleron
- Chair and Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
14
|
Zhou W, Li Y, Gao Y, Zhao H. Nutrients removal and recovery from saline wastewater by Spirulina platensis. BIORESOURCE TECHNOLOGY 2017; 245:10-17. [PMID: 28892678 DOI: 10.1016/j.biortech.2017.08.160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
As an important alternative to alleviate the pressure of fresh water shortage, seawater application is facing a great challenge on the wastewater treatment due to the salinity brought from seawater. Spirulina platensis originated from salty lake was used to treat mixed synthetic toilet flushing wastewater of seawater with washing wastewater of freshwater. It was showed that 79.96% of TN (to 15.69mg/L), 93.35% of TP (to 1.03mg/L) and 90.02% of CODCr (to 90.24mg/L) were removed with 0.76g/L of biomass production in the optimal ratio 7:3 of the above mixed synthetic wastewater. The performance was better than that of current strategy of seawater toilet flushing treatment. With the evaluation of nutrients uptake, biomass composition and microalgal aggregation, a model of nutrients recovery and metabolism of Spirulina platensis in saline wastewater treatment was proposed. It is provided a promising strategy for saline wastewater treatment with valuable biomass yield.
Collapse
Affiliation(s)
- Weizhi Zhou
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Yating Li
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yizhan Gao
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haixia Zhao
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
15
|
Dejsungkranont M, Chisti Y, Sirisansaneeyakul S. Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp. Bioprocess Biosyst Eng 2017; 40:1173-1188. [PMID: 28497178 DOI: 10.1007/s00449-017-1778-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/01/2017] [Indexed: 11/28/2022]
Abstract
The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk's medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m-2 s-1 (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk's culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk's medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m-2 s-1 with the earlier specified light-dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk's medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.
Collapse
Affiliation(s)
- Monchai Dejsungkranont
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Sarote Sirisansaneeyakul
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Tropical Natural Resources (CASTNAR), National Research University-Kasetsart University (NRU-KU), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
16
|
Meireles Dos Santos A, Vieira KR, Basso Sartori R, Meireles Dos Santos A, Queiroz MI, Queiroz Zepka L, Jacob-Lopes E. Heterotrophic Cultivation of Cyanobacteria: Study of Effect of Exogenous Sources of Organic Carbon, Absolute Amount of Nutrients, and Stirring Speed on Biomass and Lipid Productivity. Front Bioeng Biotechnol 2017; 5:12. [PMID: 28265559 PMCID: PMC5316909 DOI: 10.3389/fbioe.2017.00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
The production of bioproducts from cyanobacteria with techno-economic feasibility is a challenge to these biotechnological processes. The choice of low-cost raw materials is of great importance for the overall economy of bioprocesses, as they represent a significant percentage in the final cost of the product. The objective of this work was to study the operational parameters of cultivation (exogenous sources of organic carbon and absolute amount of nutrients) to optimize productivity in bioproducts by Aphanothece microscopica Nägeli, for further evaluation of stirring speed. The experiments were performed in a bubble column bioreactor, operating at 30°C, pH of 7.6, C/N ratio of 20, 100 mg/L of inoculum, continuous aeration of 1 volume of air per volume of culture per minute (VVM), and absence of light. The results indicate that absolute amounts of 5,000/250 using cassava starch resulted in improved system performance, reaching biomass productivity of 36.66 mg/L/h in parallel with lipid productivity of 6.65 mg/L/h. Finally, experiments with variation in stirring speed indicate that 200 rpm resulted in better average rate of substrate consumption (44.01 mg/L/h), in parallel to biomass productivity of 39.27 mg/L/h. However, the increase of stirring speed had a negative effect on lipid productivity of the process. The technological route developed indicates potential to production of biomass and bulk oil, as a result of the capacity of cyanobacteria to adapt their metabolism in varying culture conditions, which provides opportunities to modify, control, and thereby maximize the formation of targeted compounds.
Collapse
Affiliation(s)
- Aline Meireles Dos Santos
- Food Science and Technology Department, Federal University of Santa Maria (UFSM) , Santa Maria , Brazil
| | - Karem Rodrigues Vieira
- Food Science and Technology Department, Federal University of Santa Maria (UFSM) , Santa Maria , Brazil
| | - Rafaela Basso Sartori
- Food Science and Technology Department, Federal University of Santa Maria (UFSM) , Santa Maria , Brazil
| | | | - Maria Isabel Queiroz
- School of Chemistry and Food, Federal University of Rio Grande (FURG) , Rio Grande , Brazil
| | - Leila Queiroz Zepka
- Food Science and Technology Department, Federal University of Santa Maria (UFSM) , Santa Maria , Brazil
| | - Eduardo Jacob-Lopes
- Food Science and Technology Department, Federal University of Santa Maria (UFSM) , Santa Maria , Brazil
| |
Collapse
|
17
|
Romero Maza LDLÁ, Guevara MÁ, Gómez BJ, Arredondo-Vega B, Cortez R, Licet B. Producción de pigmentos procedentes de Arthrospira maxima cultivada en fotobiorreactores. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n1.59671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El cultivo de cianobacterias, como Arthrospira, puede realizarse en sistemas abiertos y sistemas cerrados o fotobiorreactores. El objetivo de la presente investigación fue evaluar la producción de pigmentos de Arthrospira maxima cultivada en dos tipos de fotobiorreactores. El cultivo se realizó de forma discontinua (Batch) bajo ambiente controlado, en fotobiorreactores helicoidales y cilíndricos, durante 30 días, en medio Zarrouk. La determinación de los pigmentos se realizó en las fases de crecimiento exponencial y estacionario. Para los pigmentos liposolubles, la biomasa se sometió a extracción con acetona 90%, y posterior determinación por Cromatografía Líquida de Alta Eficiencia, y para la extracción de los pigmentos ficobiliproteínicos se ensayaron cuatro métodos: 1. regulador de fosfatos/enzimas; 2. solución alcalina, previo tratamiento con CaCl2; 3. buffer de fosfato, previo tratamiento con hielo seco y 4. agua (4ºC), y posterior determinación por Espectrofotometría UV-Visible. Los mayores valores de pigmentos liposolubles fueron obtenidos en los cultivos realizados en fotobiorreactor helicoidal durante la fase exponencial (clorofila a 11,08±0,006 µg mL-1; β-caroteno 1,82±0,003 µg mL-1; zeaxantina 0,72±0,002 µg mL-1); mientras que los mayores contenidos de los pigmentos ficobiliproteínicos se obtuvieron en fotobiorreactor cilíndrico, durante la fase estacionaria, utilizando el buffer de fosfato tratado con hielo seco para la extracción. Dentro de las ficobiliproteínas, fue la ficocianina la que se encontró en mayor proporción (FC = 77,74±0,767 mg L-1), seguido por la aloficocianina y ficoeritrina. Se concluye que la biomasa de Arthrospira maxima presenta potencial biotecnológico por sus altos contenidos de pigmentos.
Collapse
|
18
|
Thomas DM, Mechery J, Paulose SV. Carbon dioxide capture strategies from flue gas using microalgae: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16926-16940. [PMID: 27397026 DOI: 10.1007/s11356-016-7158-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.
Collapse
Affiliation(s)
- Daniya M Thomas
- School of Environmental Sciences, Mahatma Gandhi University, PD Hills P.O., Kottayam, Kerala, 686 560, India.
| | - Jerry Mechery
- School of Environmental Sciences, Mahatma Gandhi University, PD Hills P.O., Kottayam, Kerala, 686 560, India
| | - Sylas V Paulose
- School of Environmental Sciences, Mahatma Gandhi University, PD Hills P.O., Kottayam, Kerala, 686 560, India
| |
Collapse
|
19
|
Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. ACTA ACUST UNITED AC 2016; 10:117-125. [PMID: 28352532 PMCID: PMC5040869 DOI: 10.1016/j.btre.2016.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/16/2016] [Accepted: 04/02/2016] [Indexed: 11/25/2022]
Abstract
Microalgae are source of valuable compounds as lipids, proteins, carbohydrates, pigments among others. Culture stress conditions increase biomass and high values compounds in microalgae. Nitrogen and salt stress increase lipids in microalgae. Two stages culture and electromagnetic fields enhancing microalgae biomass and pigments content.
Microalgae are a major natural source for a vast array of valuable compounds as lipids, proteins, carbohydrates, pigments among others. Despite many applications, only a few species of microalgae are cultured commercially because of poorly developed of cultivation process. Nowadays some strategies of culture have been used for enhancing biomass and value compounds yield. The most strategies applied to microalgae are classified into two groups: nutrimental and physical. The nutrimental are considered as change in media composition as nitrogen and phosphorous limitation and changes in carbon source, while physical are described as manipulation in operational conditions and external factors such as application of high-light intensities, medium salinity and electromagnetic fields. The exposition to electromagnetic field is a promising technique that can improve the pigments and biomass yield in microalgae culture. Therefore, is important to describe the advantages and applications of the overall process. The aim of this review was to describe the main culture strategies used to improve the photosynthetic and lipids content in chlorophyceae species.
Collapse
Affiliation(s)
- Juan Roberto Benavente-Valdés
- Department of Food Research, Universidad Autónoma de Coahuila, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Cristóbal Aguilar
- Department of Food Research, Universidad Autónoma de Coahuila, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Juan Carlos Contreras-Esquivel
- Department of Food Research, Universidad Autónoma de Coahuila, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Alejandro Méndez-Zavala
- Department of Chemical Engineering, Universidad Autónoma de Coahuila, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Universidad Autónoma de Coahuila, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
20
|
Chi Z, Xie Y, Elloy F, Zheng Y, Hu Y, Chen S. Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium. BIORESOURCE TECHNOLOGY 2013; 133:513-21. [PMID: 23455223 DOI: 10.1016/j.biortech.2013.01.150] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 05/25/2023]
Abstract
An extremely alkalihalophilic cyanobacteria Euhalothece ZM001 was tested in the Bicarbonate-based Integrated Carbon Capture and Algae Production System (BICCAPS), which utilize bicarbonate as carbon source for algae culture and use the regenerated carbonate to absorb CO2. Culture conditions including temperature, inoculation rate, medium composition, pH, and light intensity were investigated. A final biomass concentration of 4.79 g/L was reached in tissue flask culture with 1.0 M NaHCO3/Na2CO3. The biomass productivity of 1.21 g/L/day was achieved under optimal conditions. When pH increased from 9.55 to 10.51, 0.256 M of inorganic carbon was consumed during the culture process. This indicated sufficient carbon can be supplied as bicarbonate to the culture. This study proved that a high biomass production rate can be achieved in a BICCAPS. This strategy can also lead to new design of photobioreactors that provides an alternative supply of CO2 to sparging.
Collapse
Affiliation(s)
- Zhanyou Chi
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | | | | | | | | | | |
Collapse
|
21
|
Gu N, Lin Q, Li G, Tan Y, Huang L, Lin J. Effect of salinity on growth, biochemical composition, and lipid productivity ofNannochloropsis oculataCS 179. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100204] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Qiang Lin
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Gang Li
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Yehui Tan
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Liangmin Huang
- Key Laboratory of Marine Bio-resource Sustainable Utilization; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou; China
| | - Junda Lin
- Vero Beach Marine Laboratory; Florida Institute of Technology; Vero Beach; FL; USA
| |
Collapse
|