1
|
Chairez-Cantu K, González-González M, Rito-Palomares M. Generation of polyethylene glycol-dextran aqueous two-phase system droplets using different culture media under in vitro conditions. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Phakoukaki YV, O'Shaughnessy P, Angeli P. Flow patterns of ionic liquid based aqueous biphasic systems in small channels. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Raji F, Shayesteh H, Rahbar-Kelishami A. Y-Y microfluidic polymer/salt aqueous two-phase system for optimization of dye extraction: Evaluation of channel geometry. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2059677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Farshad Raji
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hadi Shayesteh
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ahmad Rahbar-Kelishami
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
4
|
Pajot A, Hao Huynh G, Picot L, Marchal L, Nicolau E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar Drugs 2022; 20:md20040222. [PMID: 35447895 PMCID: PMC9027613 DOI: 10.3390/md20040222] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a brown-colored pigment from algae, with great potential as a bioactive molecule due to its numerous properties. This review aims to present current knowledge on this high added-value pigment. An accurate analysis of the biological function of fucoxanthin explains its wide photon absorption capacities in golden-brown algae. The specific chemical structure of this pigment also leads to many functional activities in human health. They are outlined in this work and are supported by the latest studies in the literature. The scientific and industrial interest in fucoxanthin is correlated with great improvements in the development of algae cultures and downstream processes. The best fucoxanthin producing algae and their associated culture parameters are described. The light intensity is a major influencing factor, as it has to enable both a high biomass growth and a high fucoxanthin content. This review also insists on the most eco-friendly and innovative extraction methods and their perspective within the next years. The use of bio-based solvents, aqueous two-phase systems and the centrifugal partition chromatography are the most promising processes. The analysis of the global market and multiple applications of fucoxanthin revealed that Asian companies are major actors in the market with macroalgae. In addition, fucoxanthin from microalgae are currently produced in Israel and France, and are mostly authorized in the USA.
Collapse
Affiliation(s)
- Anne Pajot
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
- Correspondence:
| | - Gia Hao Huynh
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| | - Laurent Picot
- Unité Mixte de Recherche CNRS 7266 Littoral Environnement et Sociétés (LIENSs), Université La Rochelle, F-17042 La Rochelle, France;
| | - Luc Marchal
- Génie des Procédés Environnement (GEPEA), Université Nantes, F-44000 Saint Nazaire, France;
| | - Elodie Nicolau
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| |
Collapse
|
5
|
Ebrahimi N, Sadeghi R. Carbohydrate-based aqueous biphasic systems for biomolecules extraction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Vieira AW, da Cruz Silva K, Mageste AB, Rodrigues GD, de Lemos LR. Lycopene partition in new aqueous two-phase systems. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Wei Y, Chen X, Yang T, Wan J, Cao X. Partition of Tea Saponin with a Novel Recyclable Thermo-pH Aqueous Two-Phase Systems. Appl Biochem Biotechnol 2021; 193:3062-3078. [PMID: 33999391 DOI: 10.1007/s12010-021-03583-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Aqueous two-phase systems (ATPS) have the advantages of environmentally friendly, high mass transfer efficiency, and mild extraction conditions. However, it is difficult to recycle these polymers, which limits the large-scale application of ATPS. In this study, a novel recyclable ATPS was constructed with thermo-responsive polymer PN and pH-responsive polymer PADB4.78 for the partition of tea saponin. PN represents poly-(N-isopropylacrylamide), and PADB4.78 represents poly-(acrylic acid-dimethylamine ethyl methacrylate-butyl methacrylate), where 4.78 in the subscript indicate the isoelectric point of the polymer. The recoveries of PN and PADB4.78 were 95.36% and 93.48%, respectively, after two cycles. Meanwhile, the phase formation mechanism of ATPS was studied by surface tension and low-field nuclear magnetic resonance (LF-NMR). The effects of polymer concentration, pH, temperature, types and concentrations of salt were investigated on tea saponin partition. In the 1.5% (w/v) PN/3.5% (w/v) PADB4.78 ATPS, the optimal partition coefficient (K) of crude tea saponin were 0.15 in the presence of 1.5 mM KCl at pH 7.6 and 25 °C while the extraction recovery (ERb) reached 92.13%. The K and ERb of tea saponin from tea seeds were 0.12 and 94.50% with 7.5 mM LiBr at pH 8.0 and 25 °C, respectively.
Collapse
Affiliation(s)
- Yanli Wei
- State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ting Yang
- State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Turpeinen DG, Joshi PU, Kriz SA, Kaur S, Nold NM, O'Hagan D, Nikam S, Masoud H, Heldt CL. Continuous purification of an enveloped and non-enveloped viral particle using an aqueous two-phase system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
10
|
Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Pedro MDS, Oliveira LAF, Padilha CEDA, Santos ESD, Oliveira JAD, Souza DFDS. Effect of flow patterns on bovine serum albumin and ampicillin partitioning using aqueous two-phase systems in microdevice. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Teke GM, Pott RWM. Design and evaluation of a continuous semipartition bioreactor for in situ liquid-liquid extractive fermentation. Biotechnol Bioeng 2020; 118:58-71. [PMID: 32876954 DOI: 10.1002/bit.27550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 11/09/2022]
Abstract
Extractive fermentation (or in situ product removal (ISPR)) is an operational method used to combat product inhibition in fermentations. To achieve ISPR, different separation techniques, modes of operation and physical reactor configurations have been proposed. However, the relative paucity of industrial application necessitates continued investigation into reactor systems. This article outlines a bioreactor designed to facilitate in situ product extraction and recovery, through adapting the reaction volume to include a settler and solvent extraction and recycle section. This semipartition bioreactor is proposed as a new mode of operation for continuous liquid-liquid extractive fermentation. The design is demonstrated as a modified bench-top fermentation vessel, initially analysed in terms of fluid dynamic studies, in a model two-liquid phase system. A continuous abiotic simulation of lactic acid (LA) fermentation is then demonstrated. The results show that mixing in the main reaction vessel is unaffected by the inserted settling zone, and that the size of the settling tube effects the maximum volumetric removal rate. In these tests the largest settling tube gave a potential continuous volumetric removal rate of 7.63 ml/min; sufficiently large to allow for continuous product extraction even in a highly productive fermentation. To demonstrate the applicability of the developed reactor, an abiotic simulation of a LA fermentation was performed. LA was added to reactor continuously at a rate of 33ml/h, while continuous in situ extraction removed the LA using 15% trioctylamine in oleyl alcohol. The reactor showed stable LA concentration of 1 g/L, with the balance of the LA successfully extracted and recovered using back extraction. This study demonstrates a potentially useful physical configuration for continuous in situ extraction.
Collapse
Affiliation(s)
- George M Teke
- Department of Process Engineering, University of Stellenbosch, Stellenbosch, South Africa
| | - Robert W M Pott
- Department of Process Engineering, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
13
|
Sandate-Flores L, Rodríguez-Rodríguez J, Velázquez G, Mayolo-Deloisa K, Rito-Palomares M, Torres JA, Parra-Saldívar R. Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus). FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Veloso AV, Silva BC, Bomfim SA, de Souza RL, Soares CMF, Lima ÁS. Selective and continuous recovery of ascorbic acid and vanillin from commercial diet pudding waste using an aqueous two-phase system. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
16
|
Zhang J, Wang Y, Stevens GW, Fei W. A state-of-the-art review on single drop study in liquid–liquid extraction: Experiments and simulations. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Joshi PU, Turpeinen DG, Weiss M, Escalante-Corbin G, Schroeder M, Heldt CL. Tie line framework to optimize non-enveloped virus recovery in aqueous two-phase systems. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121744. [DOI: 10.1016/j.jchromb.2019.121744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023]
|
18
|
Mills J, Level G, Mangwandi C, Blesic M. Aqueous biphasic systems formed in (zwitterionic salt+inorganic salt) mixtures. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
The manuscript reports on a new class of aqueous biphasic systems (ABSs) formed in mixtures of inorganic salts (ISs) and zwitterionic salts (ZWSs). Aqueous ternary phase diagrams characterized by a binodal curve were determined for systems consisting of four ISs, K3PO4, K2HPO4, K2HPO4/KH2PO4, and K2CO3, and three structurally similar ZWSs differing in hydrophobicity. Comparison of phase behaviour of ABSs composed of ZWSs, ionic liquids (ILs) and zwitterions was provided. Potential of ZWSs based systems for extraction of aromatic molecules and amino acids, such as glycine, L-tryptophan, DL-phenylalanine, eugenol, and phenol was examined. Feasibility and limitations of isolation of products after partition and recovery of ZWS were discussed.
Collapse
Affiliation(s)
- Jordan Mills
- Queen’s University Belfast , School of Chemistry and Chemical Engineering , Belfast , United Kingdom of Great Britain and Northern Ireland
| | - Gaelle Level
- Queen’s University Belfast , School of Chemistry and Chemical Engineering , Belfast , United Kingdom of Great Britain and Northern Ireland
| | - Chirangano Mangwandi
- Queen’s University Belfast , School of Chemistry and Chemical Engineering , Belfast , United Kingdom of Great Britain and Northern Ireland
| | - Marijana Blesic
- Queen’s University Belfast , School of Chemistry and Chemical Engineering , Belfast , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
19
|
Patil R, Walther J. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:277-322. [PMID: 28265699 DOI: 10.1007/10_2016_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Collapse
Affiliation(s)
- Rohan Patil
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA
| | - Jason Walther
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA.
| |
Collapse
|
20
|
Ramos-de-la-Peña AM, Aguilar O. Progress and Challenges in PEGylated Proteins Downstream Processing: A Review of the Last 8 Years. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09840-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Yang O, Qadan M, Ierapetritou M. Economic Analysis of Batch and Continuous Biopharmaceutical Antibody Production: A Review. J Pharm Innov 2019; 14:1-19. [PMID: 30923586 PMCID: PMC6432653 DOI: 10.1007/s12247-018-09370-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE There is a growing interest in continuous biopharmaceutical processing due to the advantages of small footprint, increased productivity, consistent product quality, high process flexibility and robustness, facility cost-effectiveness, and reduced capital and operating cost. To support the decision making of biopharmaceutical manufacturing, comparisons between conventional batch and continuous processing are provided. METHODS Various process unit operations in different operating modes are summarized. Software implementation, as well as computational methods used, are analyzed pointing to the advantages and disadvantages that have been highlighted in the literature. Economic analysis methods and their applications in different parts of the processes are also discussed with examples from publications in the last decade. RESULTS The results of the comparison between batch and continuous process operation alternatives are discussed. Possible improvements in process design and analysis are recommended. The methods used here do not reflect Lilly's cost structures or economic evaluation methods. CONCLUSION This paper provides a review of the work that has been published in the literature on computational process design and economic analysis methods on continuous biopharmaceutical antibody production and its comparison with a conventional batch process.
Collapse
Affiliation(s)
- Ou Yang
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Maen Qadan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| |
Collapse
|
22
|
Thermo-separating polymer-based aqueous two-phase systems for the recovery of PEGylated lysozyme species. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:120-128. [PMID: 30583232 DOI: 10.1016/j.jchromb.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Accepted: 12/15/2018] [Indexed: 01/09/2023]
Abstract
Fractionation of native, mono and di-PEGylated lysozyme was performed in 36 different polymer-polymer aqueous two-phase systems using UCON as a phase-forming component. After a discrete partition analysis, dextran 75 kDa-UCON, volume ratio 3, tie-line length 35% w/w; ficoll 70 kDa-UCON, volume ratio 1, tie-line length 45% w/w and a PEG 8 kDa-UCON volume ratio 3, tie-line length 65% w/w systems were selected for optimization via salt addition and to observe the behavior of the lysozyme species in mixtures. The dextran-UCON and the PEG-UCON systems with 75 mM NaCl showed effectiveness in separating 75% and 87% of mono-PEGylated lysozyme from the rest of the lysozyme species in the top and bottom phases, respectively. These results are an advancement in incorporating these extractions in different processes since the use of UCON simplifies the removal of the polymers, providing the opportunity of recycling it to the operation.
Collapse
|
23
|
Vázquez-Villegas P, Espitia-Saloma E, Torres-Acosta MA, Ruiz-Ruiz F, Rito-Palomares M, Aguilar O. Factorial and Economic Evaluation of an Aqueous Two-Phase Partitioning Pilot Plant for Invertase Recovery From Spent Brewery Yeast. Front Chem 2018; 6:454. [PMID: 30333971 PMCID: PMC6175986 DOI: 10.3389/fchem.2018.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2018] [Indexed: 12/02/2022] Open
Abstract
Aqueous two-phase systems (ATPS) have been reported as an attractive biocompatible extraction system for recovery and purification of biological products. In this work, the implementation, characterization, and optimization (operational and economic) of invertase extraction from spent brewery yeast in a semi-automatized pilot plant using ATPS is reported. Gentian violet was used as tracer for the selection of phase composition through phase entrainment minimization. Yeast suspension was chosen as a complex cell matrix model for the recovery of the industrial relevant enzyme invertase. Flow rates of phases did not have an effect, given that a bottom continuous phase is given, while load of sample and number of agitators improved the recovery of the enzyme. The best combination of factors reached a recovery of 129.35 ± 2.76% and a purification factor of 4.98 ± 1.10 in the bottom phase of a PEG-Phosphate system, also resulting in the removal of inhibitor molecules increasing invertase activity as reported by several other authors. Then, an economic analysis was performed to study the production cost of invertase analyzing only the significant parameters for production. Results indicate that the parameters being analyzed only affect the production cost per enzymatic unit, while variations in the cost per batch are not significant. Moreover, only the sample load is significant, which, combined with operational optimization results, gives the same optimal result for operation, maximizing recovery yield (15% of sample load and 1 static mixer). Overall res ults of these case studies show continuous pilot-scale ATPS as a viable and reproducible extraction/purification system for high added-value biological compounds.
Collapse
Affiliation(s)
| | | | | | - Federico Ruiz-Ruiz
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, Mexico
| | - Marco Rito-Palomares
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Oscar Aguilar
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
24
|
Zhang F, Jia A, Guo Q, Sun T, Li P, Wang P, Pan Y, Zhang Y. Mass transfer of molybdenum in L35 + sodium sulfate + H2O aqueous two-phase system with a packed column. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Hernández-Vargas G, Ponce-Ponce de León CA, González-Valdez J, Iqbal HMN. “Smart” Polymers: Physicochemical Characteristics and Applications in Bio-Separation Strategies. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1356332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gustavo Hernández-Vargas
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| | | | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| |
Collapse
|
26
|
Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies. Antibodies (Basel) 2017; 6:antib6040021. [PMID: 31548537 PMCID: PMC6698824 DOI: 10.3390/antib6040021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022] Open
Abstract
Substantial improvements have been made to cell culturing processes (e.g., higher product titer) in recent years by raising cell densities and optimizing cultivation time. However, this has been accompanied by an increase in product-related impurities and therefore greater challenges in subsequent clarification and capture operations. Considering the paradigm shift towards the design of continuously operating dedicated plants at smaller scales—with or without disposable technology—for treating smaller patient populations due to new indications or personalized medicine approaches, the rising need for new, innovative strategies for both clarification and capture technology becomes evident. Aqueous two-phase extraction (ATPE) is now considered to be a feasible unit operation, e.g., for the capture of monoclonal antibodies or recombinant proteins. However, most of the published work so far investigates the applicability of ATPE in antibody-manufacturing processes at the lab-scale and for the most part, only during the capture step. This work shows the integration of ATPE as a combined harvest and capture step into a downstream process. Additionally, a model is applied that allows early prediction of settler dimensions with high prediction accuracy. Finally, a reliable process development concept, which guides through the necessary steps, starting from the definition of the separation task to the final stages of integration and scale-up, is presented.
Collapse
|
27
|
Cienfuegos N, Santos P, García A, Soares C, Lima A, Souza R. Integrated process for purification of capsaicin using aqueous two-phase systems based on ethanol. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Partition Behaviors of Different Polar Anthocyanins in Aqueous Two-Phase Systems and Extraction of Anthocyanins from Nitraria tangutorun Bobr. and Lycium ruthenicum Murr. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1071-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Nadar SS, Pawar RG, Rathod VK. Recent advances in enzyme extraction strategies: A comprehensive review. Int J Biol Macromol 2017; 101:931-957. [DOI: 10.1016/j.ijbiomac.2017.03.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
|
30
|
Response surface methodology for the evaluation of guanidine hydrochloride partitioning in polymer-salt aqueous two-phase system. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0108-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Dutta D. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing. J Chromatogr A 2017; 1484:85-92. [PMID: 28081900 PMCID: PMC5316482 DOI: 10.1016/j.chroma.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 01/24/2023]
Abstract
Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, United States.
| |
Collapse
|
32
|
Liquid-liquid equilibrium and physical properties of aqueous mixtures of poly(vinyl pyrrolidone) with potassium phosphate at different pH: Experiments and modeling. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-016-0326-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Kateja N, Agarwal H, Hebbi V, Rathore AS. Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study. Biotechnol Prog 2017; 33:998-1009. [DOI: 10.1002/btpr.2413] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nikhil Kateja
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Harshit Agarwal
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Vishwanath Hebbi
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Anurag S. Rathore
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| |
Collapse
|
34
|
Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB, Hussain HI, Ahmed S, Yuan Z. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 2016; 18:18. [PMID: 27807400 PMCID: PMC5084470 DOI: 10.1186/s12575-016-0048-8] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aqueous two-phase system (ATPS) is a liquid-liquid fractionation technique and has gained an interest because of great potential for the extraction, separation, purification and enrichment of proteins, membranes, viruses, enzymes, nucleic acids and other biomolecules both in industry and academia. Although, the partition behavior involved in the method is complex and difficult to predict. Current research shows that it has also been successfully used in the detection of veterinary drug residues in food, separation of precious metals, sewage treatment and a variety of other purposes. The ATPS is able to give high recovery yield and is easily to scale up. It is also very economic and environment friendly method. The aim of this review is to overview the basics of ATPS, optimization and its applications.
Collapse
Affiliation(s)
- Mujahid Iqbal
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Yufei Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Muhammad Abu Bakr Shabbir
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Hafiz Iftikhar Hussain
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Saeed Ahmed
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU)/MOA Key Laboratory of Food Safety Evaluation, Huazhong Agricultural University, Wuhan, Hubei 430070 China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|
35
|
Soares RRG, Silva DFC, Fernandes P, Azevedo AM, Chu V, Conde JP, Aires-Barros MR. Miniaturization of aqueous two-phase extraction for biological applications: From micro-tubes to microchannels. Biotechnol J 2016; 11:1498-1512. [PMID: 27624685 DOI: 10.1002/biot.201600356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
Abstract
Aqueous two-phase extraction (ATPE) is a biocompatible liquid-liquid (L-L) separation technique that has been under research for several decades towards the purification of biomolecules, ranging from small metabolites to large animal cells. More recently, with the emergence of rapid-prototyping techniques for fabrication of microfluidic structures with intricate designs, ATPE gained an expanded range of applications utilizing physical phenomena occurring exclusively at the microscale. Today, research is being carried simultaneously in two different volume ranges, mL-scale (microtubes) and nL-scale (microchannels). The objective of this review is to give insight into the state of the art at both microtube and microchannel-scale and to analyze whether miniaturization is currently a competing or divergent technology in a field of applications including bioseparation, bioanalytics, enhanced fermentation processes, catalysis, high-throughput screening and physical/chemical compartmentalization. From our perspective, both approaches are worthy of investigation and, depending on the application, it is likely that either (i) one of the approaches will eventually become obsolete in particular research areas such as purification at the preparative scale or high-throughput screening applications; or (ii) both approaches will function as complementing techniques within the bioanalytics field.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel F C Silva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Espitia-Saloma E, Vâzquez-Villegas P, Rito-Palomares M, Aguilar O. An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: From the microdevice to a multistage bench-scale mixer-settler device. Biotechnol J 2016; 11:708-16. [DOI: 10.1002/biot.201400565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Edith Espitia-Saloma
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey; Monterrey NL Mexico
| | - Patricia Vâzquez-Villegas
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey; Monterrey NL Mexico
| | - Marco Rito-Palomares
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey; Monterrey NL Mexico
| | - Oscar Aguilar
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey; Monterrey NL Mexico
| |
Collapse
|
37
|
|
38
|
Zydney AL. Continuous downstream processing for high value biological products: A Review. Biotechnol Bioeng 2015; 113:465-75. [DOI: 10.1002/bit.25695] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Andrew L. Zydney
- Department of Chemical Engineering; The Pennsylvania State University; University Park Pennsylvania 16802
| |
Collapse
|
39
|
Soares RRG, Azevedo AM, Van Alstine JM, Aires-Barros MR. Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats. Biotechnol J 2015. [PMID: 26213222 DOI: 10.1002/biot.201400532] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For half a century aqueous two-phase systems (ATPSs) have been applied for the extraction and purification of biomolecules. In spite of their simplicity, selectivity, and relatively low cost they have not been significantly employed for industrial scale bioprocessing. Recently their ability to be readily scaled and interface easily in single-use, flexible biomanufacturing has led to industrial re-evaluation of ATPSs. The purpose of this review is to perform a SWOT analysis that includes a discussion of: (i) strengths of ATPS partitioning as an effective and simple platform for biomolecule purification; (ii) weaknesses of ATPS partitioning in regard to intrinsic problems and possible solutions; (iii) opportunities related to biotechnological challenges that ATPS partitioning may solve; and (iv) threats related to alternative techniques that may compete with ATPS in performance, economic benefits, scale up and reliability. This approach provides insight into the current status of ATPS as a bioprocessing technique and it can be concluded that most of the perceived weakness towards industrial implementation have now been largely overcome, thus paving the way for opportunities in fermentation feed clarification, integration in multi-stage operations and in single-step purification processes.
Collapse
Affiliation(s)
- Ruben R G Soares
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - James M Van Alstine
- Division of Industrial Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden.,JMVA Biotech, Stockholm, Sweden
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
40
|
PEG–salt aqueous two-phase systems: an attractive and versatile liquid–liquid extraction technology for the downstream processing of proteins and enzymes. Appl Microbiol Biotechnol 2015; 99:6599-616. [DOI: 10.1007/s00253-015-6779-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
41
|
Muendges J, Zalesko A, Górak A, Zeiner T. Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant. Biotechnol Prog 2015; 31:925-36. [PMID: 25857432 DOI: 10.1002/btpr.2088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/27/2015] [Indexed: 11/08/2022]
Abstract
This article presents results of continuous multistage aqueous two-phase extraction of an immunoglobulin G1 from cell supernatant in a mixer-settler unit. An aqueous two-phase system consisting of polyethylene glycol 2000, phosphate salt, and water was applied without and with sodium chloride (NaCl). Influences of different parameters such as throughput, phase ratio, and stage number on the extraction performance were analyzed. For systems without NaCl, the extraction was carried out as a washing step. An increase of stage number from one to five stages enabled to increase the immunoglobulin G1 purity from 11.8 to 32.6% at a yield of nearly 90%. Furthermore, a reduction of product phase volume due to a higher phase ratio led to an increase of purity from 20.8 to 29.6% in a three-stage countercurrent extraction. For experiments with NaCl moderate partitioning conditions were adjusted by adding 8 wt% NaCl. In that case, the extraction was carried out as a stripping step.
Collapse
Affiliation(s)
- Jan Muendges
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany
| | - Alexej Zalesko
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany
| | - Andrzej Górak
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany.,Dept. of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lódz, 90-924, Poland
| | - Tim Zeiner
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany
| |
Collapse
|
42
|
Cao H, Yuan M, Wang L, Yu J, Xu F. Coupling purification and in situ immobilization process of monoclonal antibodies to clenbuterol for immunosensor application. Anal Biochem 2015; 476:59-66. [PMID: 25660529 DOI: 10.1016/j.ab.2015.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
Abstract
Clenbuterol (CL), which promotes the growth of muscular tissue and the reduction of body fat in pigs and cattle, has been confirmed to be a potential hazard to human health. In this study, a monoclonal antibody to clenbuterol (CL mAb) from a hybridoma culture supernatant was purified by an aqueous two-phase system (ATPS) at different polyethylene glycol (PEG) concentrations, PEG molecular weights, pH values, and NaCl concentrations. Then the CL mAb was immobilized in situ by directly adding polystyrene microspheres (PSMSs) into a PEG phase containing CL mAb. Using the immobilized antibody, an immunosensor was constructed to detect the CL residues in pork samples. The results showed that using an ATPS composed of 15% (w/w) PEG6000, 15% (w/w) phosphate, and 15% (w/w) NaCl at pH 8.0, the partition coefficient was 7.24, the activity recovery was 87.86%, and the purification fold was 2.88. The PEG-CL mAb-PSMS retained approximately 98% of its initial activity after 30-ml phosphate buffer (PBS) washings. After 30days of storage, the CL mAb-PSMS lost nearly 75% of its activity, whereas the PEG-CL mAb-PSMS retained as much as 95% of its initial activity. Furthermore, the constructed immunosensor obtained recoveries of 90.5 to 102.6% when applied to pork samples spiked with CL.
Collapse
Affiliation(s)
- Hui Cao
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Min Yuan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lili Wang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jingsong Yu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Fei Xu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| |
Collapse
|
43
|
Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Grilo AL, Raquel Aires-Barros M, Azevedo AM. Partitioning in Aqueous Two-Phase Systems: Fundamentals, Applications and Trends. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.983128] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Ottens M, Fee C. Advances in bioseparations for food and bioprocessing. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2014.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|