1
|
Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J Microbiol Biotechnol 2024; 34:436-456. [PMID: 38044750 PMCID: PMC10940756 DOI: 10.4014/jmb.2306.06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
Collapse
Affiliation(s)
- Suleiman D Allison
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Moddibo Adama University, Yola 640230, Nigeria
| | - Nur AdeelaYasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| |
Collapse
|
2
|
Sengupta S, Basak P, Ghosh P, Pramanik A, Chakraborty A, Mukhopadhyay M, Sen A, Bhattacharyya M. Study of nano-hydroxyapatite tagged alkaline protease isolated from Himalayan sub-alpine Forest soil bacteria and role in recalcitrant feather waste degradation. Int J Biol Macromol 2023; 253:127317. [PMID: 37820911 DOI: 10.1016/j.ijbiomac.2023.127317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Purified calcium serine metalloprotease from Stenotrophomonas maltophilia strain SMPB12 exhibits highest enzyme activity at pH 9 and temperature range between 15 °C-25 °C. Enzyme supplemented with 40 μM Ca-Hap-NP (NP-protease) showed maximum elevated activity of 17.29 μmole/min/ml (1.9-fold of original protease activity). The thermostability of the enzyme was maintained for 1 h at 60 °C over an alkaline pH range 7.5-10, as compared to the NP untreated enzyme whose activity was of 8.97 μmole/min/ml. A significant loss of activity with EDTA (1.05 μmole/min/ml, 11.75 %), PMSF (0.93 μmole/min/ml, 10.46 %) and Hg2+ (3.81 μmole/min/ml, 42.49 %) was also observed. Kinetics study of NP-protease showed maximum decreases in Km (28.11 %) from 0.28 mM (NP untreated enzyme) to 0.22 mM (NP-protease) along with maximum increase in Vmax (42.88 %) from 1.25 μmole/min/ml to 1.79 μmole/min/ml at varying temperatures. The enhanced activity of NP-protease was able to efficiently degrade recalcitrant solid wastes like feather to produce value-added products like amino acids and helps in declogging recalcitrant solid wastes. The nano-enabled protease may be utilized in a smaller amount for degrading in bulk recalcitrant solid proteinaceous waste at 15 °C temperature as declogging agents providing an eco-friendly efficient process.
Collapse
Affiliation(s)
- Shritoma Sengupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, Kolkata, West Bengal, India
| | - Piya Ghosh
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India
| | - Arnab Pramanik
- Jagadis Bose National Science Talent Search, Kolkata, West Bengal, India
| | | | | | - Aparna Sen
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India.
| | | |
Collapse
|
3
|
Saeed K, Riaz S, Adil A, Nawaz I, Naqvi SKUH, Baig A, Ali M, Zeb I, Ahmed R, Naqvi TA. Characterization of alkaline metalloprotease isolated from halophilic bacterium Bacillus cereus and its applications in various industrial processes. AN ACAD BRAS CIENC 2023; 95:e20230014. [PMID: 37878911 DOI: 10.1590/0001-3765202320230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/08/2023] [Indexed: 10/27/2023] Open
Abstract
Microbial proteases are one of the most demanding enzymes for various industries with diverse applications in food, pharmaceutics, and textile industries to name the few. An extracellular alkaline metalloprotease was produced and purified from moderate halophilic bacterial strain, Bacillus cereus TS2, with some unique characteristics required for various industrial applications. The protease was produced in basal medium supplemented with casein and was partially purified by ion exchange chromatography followed by ammonium sulphate precipitation. The alkaline metalloprotease has molecular weight of 35 kDa with specific activity of 535.4 µM/min/mg. It can work at wide range of pH from 3 to 12, while showing optimum activity at pH 10. Similarly, the alkaline metalloprotease is stable till the temperature of 80 °C and works at wide range of temperature from 20 to 90 °C with optimum activity at 60 °C. The turnover rate increases in the presence of NaCl and Co+2 with k cat/KM of 1.42 × 103 and 1.27 × 103 s-1.M-1 respectively, while without NaCl and Co+2 it has a value of 7.58× 102. The alkaline metalloprotease was relatively resistant to thermal and solvent mediated denaturation. Applications revealed that the metalloprotease was efficient to remove hair from goat skin, remove blood stains and degrade milk, thus can be a potential candidate for leather, detergent, and food industry.
Collapse
Affiliation(s)
- Kainat Saeed
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| | - Sania Riaz
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| | - Abdullah Adil
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| | - Ismat Nawaz
- COMSATS University Islamabad, Department of Biosciences, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Syed Kamran-U-Hassan Naqvi
- COMSATS University Islamabad, Department of Biosciences, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Ayesha Baig
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| | - Muhammad Ali
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| | - Iftikhar Zeb
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| | - Raza Ahmed
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| | - Tatheer Alam Naqvi
- COMSATS University Islamabad, Department of Biotechnology, Abbottabad Campus, University Road, Tobe Camp, Abbottabad 22060, Pakistan
| |
Collapse
|
4
|
Sisa A, Sotomayor C, Buitrón L, Gómez-Estaca J, Martínez-Alvarez O, Mosquera M. Evaluation of by-products from agricultural, livestock and fishing industries as nutrient source for the production of proteolytic enzymes. Heliyon 2023; 9:e20735. [PMID: 37867804 PMCID: PMC10585220 DOI: 10.1016/j.heliyon.2023.e20735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
This study presents an approach that utilizes low-value agro-industrial by-products as culture media for producing high-value proteolytic enzymes. The objective was to assess the impact of six agro-industrial by-products as culture media on the production of proteolytic enzymes. Bacillus subtilis strains, confirmed through comprehensive biochemical, morphological, and molecular analyses, were isolated and identified. Enzymatic activity was evaluated using azocasein and casein substrates, and the molecular sizes of the purified extract components were determined. The results demonstrated that the isolated bacteria exhibited higher metabolic and enzymatic activity when cultured in media containing 1 % soybean oil cake or feather meal. Furthermore, higher concentrations of the culture media were found to hinder the production of protease. Optimal protease synthesis on soybean oil cake and feather meal media was achieved after 4 days, using both the azocasein and casein methods. Semi-purification of the enzymatic extract obtained from Bacillus subtilis in feather meal and soybean oil cake resulted in a significant increase in azocaseinolytic and caseinolytic activities. Gel electrophoresis analysis revealed multiple bands in the fractions with the highest enzymatic activity in soybean oil cake, indicating the presence of various enzymes with varying molecular sizes. These findings highlight the potential of utilizing low-value agro-industrial by-products as efficient culture media for the sustainable and economically viable production of proteolytic enzymes with promising applications in various industries.
Collapse
Affiliation(s)
- Alisson Sisa
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Cristina Sotomayor
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Lucía Buitrón
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Mauricio Mosquera
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| |
Collapse
|
5
|
Adetunji AI, Olaniran AO. Biocatalytic Profiling of Free and Immobilized Partially Purified Alkaline Protease from an Autochthonous Bacillus aryabhattai Ab15-ES. REACTIONS 2023. [DOI: 10.3390/reactions4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Partially purified alkaline protease produced by an indigenous bacterial strain, Bacillus aryabhattai Ab15-ES, was insolubilized in alginate beads using an entrapment technique. Maximum entrapped enzyme activities of 68.76% and 71.06% were recorded at optimum conditions of 2% (w/v) sodium alginate and 0.3 M calcium chloride. Biochemical profiling of free and immobilized proteases was investigated by determining their activity and stability as well as kinetic properties. Both enzyme preparations exhibited maximum activity at the optimum pH and temperature of 8.0 and 50 °C, respectively. However, in comparison to the free enzyme, the immobilized protease showed improved pH stability at 8.0–9.0 and thermal stability at 40–50 °C. In addition, the entrapped protease exhibited a higher Vmax and increased affinity to the substrate (1.65-fold) than the soluble enzyme. The immobilized protease was found to be more stable than the free enzyme, retaining 80.88% and 38.37% of its initial activity when stored at 4 °C and 25 °C, respectively, for 30 d. After repeated use seven times, the protease entrapped in alginate beads maintained 32.93% of its original activity. These findings suggest the efficacy and sustainability of the developed immobilized catalytic system for various biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
- Department of Biological Sciences, Summit University, Offa 250101, Nigeria
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9031, South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
6
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
7
|
Mahakhan P, Apiso P, Srisunthorn K, Vichitphan K, Vichitphan S, Punyauppa-path S, Sawaengkaew J. Alkaline Protease Production from Bacillus gibsonii 6BS15-4 Using Dairy Effluent and Its Characterization as a Laundry Detergent Additive. J Microbiol Biotechnol 2023; 33:195-202. [PMID: 36697226 PMCID: PMC9998202 DOI: 10.4014/jmb.2210.10007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023]
Abstract
Protease is a widely used enzyme particularly in the detergent industry. In this research, we aimed to isolate alkaline protease-producing bacteria for characterization as a laundry detergent additive. The screening of alkaline protease production was investigated on basal medium agar plus 1% skim milk at pH 11, with incubation at 30°C. The highest alkaline protease-producing bacterium was 6BS15-4 strain, identified as Bacillus gibsonii by 16S rRNA gene sequencing. While the optimum pH was 12.0, the strain was stable at pH range 7.0-12.0 when incubated at 45°C for 60 min. The alkaline protease produced by B. gibsonii 6BS15-4 using dairy effluent was characterized. The optimum temperature was 60°C and the enzyme was stable at 55°C when incubated at pH 11.0 for 60 min. Metal ions K+, Mg2+, Cu2+, Na+, and Zn2+ exhibited a slightly stimulatory effect on enzyme activity. The enzyme retained over 80% of its activity in the presence of Ca2+, Ba2+, and Mn2+. Thiol reagent and ethylenediaminetetraacetic acid did not inhibit the enzyme activity, whereas phenylmethylsulfonyl fluoride significantly inhibited the protease activity. The alkaline protease from B. gibsonii 6BS15-4 demonstrated efficiency in blood stain removal and could therefore be used as a detergent additive, with potential for various other industrial applications.
Collapse
Affiliation(s)
- Polson Mahakhan
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patapee Apiso
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kannika Srisunthorn
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanit Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Fermentation Research Center for Value-Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukanda Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Fermentation Research Center for Value-Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukrita Punyauppa-path
- Department of Mathematics and Science, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan Surin Campus, Surin 32000, Thailand
| | - Jutaporn Sawaengkaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Fermentation Research Center for Value-Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Homaei A, Izadpanah F. Purification and characterization of a robust thermostable protease isolated from
Bacillus subtilis
strain
HR02
as an extremozyme. J Appl Microbiol 2022; 133:2779-2789. [DOI: 10.1111/jam.15725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology University of Hormozgan Bandar Abbas Iran
| | - Fatemeh Izadpanah
- Department of Marine Biology, Faculty of Marine Science and Technology University of Hormozgan Bandar Abbas Iran
| |
Collapse
|
9
|
Sharma S, Kumar S, Kaur R, Kaur R. Multipotential Alkaline Protease From a Novel Pyxidicoccus sp. 252: Ecofriendly Replacement to Various Chemical Processes. Front Microbiol 2021; 12:722719. [PMID: 34707581 PMCID: PMC8542989 DOI: 10.3389/fmicb.2021.722719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
A newly isolated alkaline protease-producing myxobacterium was isolated from soil. The strain was identified as Pyxidicoccus sp. S252 on the basis of 16S rRNA sequence analysis. The extracellular alkaline proteases produced by isolate S252 (PyCP) was optimally active in the pH range of 11.0–12.0 and temperature range of 40–50°C The zymogram of PyCP showed six caseinolytic protease bands. The proteases were stable in the pH range of 8.0–10.0 and temperature range of 40–50°C. The activity of PyCP was enhanced in the presence of Na+, Mg2+, Cu2+, Tween-20, and hydrogen peroxide (H2O2) (hydrogen peroxide), whereas in Triton X-100, glycerol, ethylenediaminetetraacetic acid (EDTA), and Co2+, it was stable. PyCP showed a potential in various applications. The addition of PyCP in the commercial detergent enhanced the wash performance of the detergent by efficiently removing the stains of tomato ketchup and coffee. PyCP efficiently hydrolyzed the gelatin layer on X-ray film to release the embedded silver. PyCP also showed potent dehairing of goat skin and also efficiently deproteinized sea shell waste indicating its application in chitin extraction. Thus, the results of the present study indicate that Pyxidicoccus sp. S252 proteases have the potential to be used as an ecofriendly replacement of chemicals in several industrial processes.
Collapse
Affiliation(s)
- Sonia Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Shiv Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Ramandeep Kaur
- Department Cum National Centre for Human Genome Studies and Research, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Baykara SG, Sürmeli Y, Şanlı-Mohamed G. Purification and Biochemical Characterization of a Novel Thermostable Serine Protease from Geobacillus sp. GS53. Appl Biochem Biotechnol 2021; 193:1574-1584. [PMID: 33507494 DOI: 10.1007/s12010-021-03512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022]
Abstract
Proteases account for approximately 60% of the enzyme market in the world, and they are used in various industrial applications including the detergent industry. In this study, production and characterization of a novel serine protease of thermophilic Geobacillus sp. GS53 from Balçova geothermal region, İzmir, Turkey, were performed. The thermostable protease was purified through ammonium sulfate precipitation and anion-exchange chromatography. The results showed that the protease had 137.8 U mg-1 of specific activity and optimally worked at 55 oC and pH 8. It was also active in a broad pH (4-10) and temperature (25-75 °C) ranges. The protease was highly stable at 85 °C and demonstrated relative stability at pH 4, 7, and 10. Also, the enzyme had high stability against organic solvents and surfactants; enzyme relative activity did not decrease below 81% upon preincubation for 10 min. Ca2+, Cu2+, and Zn2+ ions slightly induced protease activity. The protease was highly specific to casein, skim milk, Hammerstein casein, and BSA substrates. These results revealed that the protease might have a potential effect in a variety of industrial fields, especially the detergent industry, because of its high thermostability and stability to surfactants.
Collapse
Affiliation(s)
- Seden Güracar Baykara
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430, İzmir, Turkey
| | - Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430, İzmir, Turkey.,Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430, İzmir, Turkey. .,Department of Chemistry, İzmir Institute of Technology, 35430, İzmir, Turkey.
| |
Collapse
|
11
|
Biochemical Characterization and Functional Analysis of Heat Stable High Potential Protease of Bacillus amyloliquefaciens Strain HM48 from Soils of Dachigam National Park in Kashmir Himalaya. Biomolecules 2021; 11:biom11010117. [PMID: 33477596 PMCID: PMC7831320 DOI: 10.3390/biom11010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
A novel temperature stable alkaline protease yielding bacteria was isolated from the soils of Dachigam National Park, which is known to be inhabited by a wide variety of endemic plant and animal species of Western Himalaya. This high-potential protease producing isolate was characterized and identified as Bacillus amyloliquefaciens strain HM48 by morphological, Gram’s staining and biochemical techniques followed by molecular characterization using 16S rRNA approach. The extracellular protease of B. amyloliquefaciens HM48 was purified by precipitating with ammonium sulfate (80%), followed by dialysis and Gel filtration chromatography increasing its purity by 5.8-fold. The SDS–PAGE analysis of the purified enzyme confirmed a molecular weight of about ≈25 kDa. The enzyme displayed exceptional activity in a broad temperature range (10–90 °C) at pH 8.0, retaining its maximum at 70 °C, being the highest reported for this proteolytic Bacillus sp., with KM and Vmax of 11.71 mg/mL and 357.14 µmol/mL/min, respectively. The enzyme exhibited remarkable activity and stability against various metal ions, surfactants, oxidizing agent (H2O2), organic solvents and displayed outstanding compatibility with widely used detergents. This protease showed effective wash performance by exemplifying complete blood and egg-yolk stains removal at 70 °C and efficiently disintegrated chicken feathers making it of vital importance for laundry purpose and waste management. For functional analysis, protease gene amplification of strain HM48 yielded a nucleotide sequence of about 700 bp, which, when checked against the available sequences in NCBI, displayed similarity with subtilisin-like serine protease of B. amyloliquefaciens. The structure of this protease and its highest-priority substrate β-casein was generated through protein modeling. These protein models were validated through futuristic algorithms following which protein–protein (protease from HM48 and β-casein) docking was performed. The interaction profile of these proteins in the docked state with each other was also generated, shedding light on their finer details. Such attributes make this thermally stable protease novel and suitable for high-temperature industrial and environmental applications.
Collapse
|
12
|
Avcı A, Demir S, Akçay FA. Production, properties and some applications of protease from alkaliphilic Bacillus sp. EBTA6. Prep Biochem Biotechnol 2020; 51:803-810. [PMID: 33345694 DOI: 10.1080/10826068.2020.1858429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Extracellular protease production by a novel strain, Bacillus sp. EBTA6, has been optimized by using central composite design of response surface methodology and properties and industrial applications of crude enzyme have been investigated. Three independent variables (temperature, pH and yeast extract concentration) chosen in the experimental design were significant terms and reduced cubic model fit with the design at p < 0.0001 level. The recommended temperature, pH and yeast extract concentration were 30 °C, 8, and 15 g/L, respectively. Crude enzyme displayed activity over a wide pH and temperature ranges having the optimum at 50-60 °C and pH 8. It was quite stable at high pH values and at 50 °C. Amongst the metal ions (Mg+, Cu2+, Ca2+, Zn2+, K2+, and Sn2+), Ca2+ enhanced the activity and the others either decreased or did not change it. The enzyme activity was reduced by phenyl-methyl-sulfonyl fluoride (PMSF), and ethylene diamine tetra acetic acid (EDTA). The results revealed that the protease was serine alkaline type. Tween 20 and Tween 80 did not inhibit the enzyme, however, sodium dodecyl sulfate (SDS), reduced it by 39%. It completely removed blood stain in 20 min and coagulated milk in the presence of CaCl2.
Collapse
Affiliation(s)
- Ayşe Avcı
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| | - Selin Demir
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| | - Fikriye Alev Akçay
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| |
Collapse
|
13
|
Identification of a Novel Thermostable Alkaline Protease from Bacillus megaterium-TK1 for the Detergent and Leather Industry. BIOLOGY 2020; 9:biology9120472. [PMID: 33339223 PMCID: PMC7765983 DOI: 10.3390/biology9120472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
Simple Summary In the current investigation, we describe the characteristic features of a novel Bacillus megaterium bacterium-derived protease with excellent thermostable enzyme activity under stringent alkaline conditions. The protease is highly compatible with various detergents and thus appears to be an eco-friendly additive for a variety of industrial applications. Abstract An increased need by the green industry for enzymes that can be exploited for eco-friendly industrial applications led us to isolate and identify a unique protease obtained from a proteolytic Bacillus megaterium-TK1 strain from a seawater source. The extracellular thermostable serine protease was processed by multiple chromatography steps. The isolated protease displayed a relative molecular weight (MW) of 33 kDa (confirmed by zymography), optimal enzyme performance at pH 8.0, and maximum enzyme performance at 70 °C with 100% substrate specificity towards casein. The proteolytic action was blocked by phenylmethylsulfonyl fluoride (PMSF), a serine hydrolase inactivator. Protease performance was augmented by several bivalent metal cations. The protease tolerance was studied under stringent conditions with different industrial dispersants and found to be stable with Surf Excel, Tide, or Rin detergents. Moreover, this protease could clean blood-stained fabrics and showed dehairing activity for cow skin with significantly reduced pollution loads. Our results suggest that this serine protease is a promising additive for various eco-friendly usages in both the detergent and leather industries.
Collapse
|
14
|
Marine microbial alkaline protease: An efficient and essential tool for various industrial applications. Int J Biol Macromol 2020; 161:1216-1229. [DOI: 10.1016/j.ijbiomac.2020.06.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
15
|
Bhatt HB, Singh SP. Cloning, Expression, and Structural Elucidation of a Biotechnologically Potential Alkaline Serine Protease From a Newly Isolated Haloalkaliphilic Bacillus lehensis JO-26. Front Microbiol 2020; 11:941. [PMID: 32582046 PMCID: PMC7283590 DOI: 10.3389/fmicb.2020.00941] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
An alkaline protease gene of Bacillus lehensis JO-26 from saline desert, Little Rann of Kutch, was cloned and expressed in Escherichia coli BL21 (DE3). A 1,014-bp ORF encoded 337 amino acids. The recombinant protease (APrBL) with Asp 97, His 127, and Ser 280 forming catalytic triad belongs to the subtilase S8 protease family. The gene was optimally expressed in soluble fraction with 0.2 mM isopropyl β-D-thiogalactopyranoside (IPTG), 2% (w/v) NaCl at 28°C. APrBL, a monomer with a molecular mass of 34.6 kDa was active over pH 8–11 and 30°C−70°C, optimally at pH 10 and 50°C. The enzyme was highly thermostable and retained 73% of the residual activity at 80°C up to 3 h. It was significantly stimulated by sodium dodecyl sulfate (SDS), Ca2+, chloroform, toluene, n-butanol, and benzene while completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and Hg2+. The serine nature of the protease was confirmed by its strong inhibition by PMSF. The APrBL gene was phylogenetically close to alkaline elastase YaB (P20724) and was distinct from the well-known commercial proteases subtilisin Carlsberg (CAB56500) and subtilisin BPN′ (P00782). The structural elucidation revealed 31.75% α-helices, 22.55% β-strands, and 45.70% coils. Although high glycine and fewer proline residues are a characteristic feature of the cold-adapted enzymes, the similar observation in thermally active APrBL suggests that this feature cannot be solely responsible for thermo/cold adaptation. The APrBL protease was highly effective as a detergent additive and in whey protein hydrolysis.
Collapse
Affiliation(s)
- Hitarth B Bhatt
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
16
|
Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101528] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Hammami A, Bayoudh A, Hadrich B, Abdelhedi O, Jridi M, Nasri M. Response‐surface methodology for the production and the purification of a new H
2
O
2
‐tolerant alkaline protease from
Bacillus invictae
AH1 strain. Biotechnol Prog 2020; 36:e2965. [DOI: 10.1002/btpr.2965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Amal Hammami
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Ahmed Bayoudh
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Bilel Hadrich
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of SfaxUniversity of Sfax Sfax Tunisia
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| | - Mourad Jridi
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
- Higher Institute of Biotechnology of BejaUniversity of Jendouba Beja Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and MicrobiologyEngineering National School of Sfax (ENIS), University of Sfax Sfax Tunisia
| |
Collapse
|
18
|
Nutschel C, Fulton A, Zimmermann O, Schwaneberg U, Jaeger KE, Gohlke H. Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for Bacillus subtilis Lipase A. J Chem Inf Model 2020; 60:1568-1584. [PMID: 31905288 DOI: 10.1021/acs.jcim.9b00954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Improving an enzyme's (thermo-)stability or tolerance against solvents and detergents is highly relevant in protein engineering and biotechnology. Recent developments have tended toward data-driven approaches, where available knowledge about the protein is used to identify substitution sites with high potential to yield protein variants with improved stability, and subsequently, substitutions are engineered by site-directed or site-saturation (SSM) mutagenesis. However, the development and validation of algorithms for data-driven approaches have been hampered by the lack of availability of large-scale data measured in a uniform way and being unbiased with respect to substitution types and locations. Here, we extend our knowledge on guidelines for protein engineering following a data-driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439 possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up to ninefold gain in precision over random classification.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Mechri S, Bouacem K, Amziane M, Dab A, Nateche F, Jaouadi B. Identification of a New Serine Alkaline Peptidase from the Moderately Halophilic Virgibacillus natechei sp. nov., Strain FarD T and its Application as Bioadditive for Peptide Synthesis and Laundry Detergent Formulations. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6470897. [PMID: 31886235 PMCID: PMC6914889 DOI: 10.1155/2019/6470897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
A new peptidase designated as SAPV produced from a moderately halophilic Virgibacillus natechei sp. nov., strain FarDT was investigated by purification to homogeneity followed by biochemical and molecular characterization purposes. Through optimization, it was determined that the optimum peptidase activity was 16,000 U/mL. It was achieved after 36 h incubation at 35°C in the optimized enzyme liquid medium (ELM) at pH 7.4 that contains only white shrimp shell by-product (60 g/L) as sole energy and carbon sources. The SAPV enzyme is a monomer protein with a molecular mass of 31 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography (HPLC) gel filtration chromatography. The sequence of its NH2-terminal amino-acid residues showed homology with those of Bacillus peptidases S8/S53 superfamily. The SAPV showed optimal activity at pH 9 and 60°C. Irreversible inhibition of enzyme activity by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine peptidases. Considering its interesting biochemical characterization, the sapV gene was cloned, sequenced, and heterologously overexpressed in the extracellular fraction of E. coli BL21(DE3)pLysS. The biochemical properties of the recombinant peptidase (rSAPV) were similar to those of the native one. The highest sequence identity value (97.66%) of SAPV was obtained with peptidase S8 from Virgibacillus massiliensis DSM 28587, with 9 amino-acid residues of difference. Interestingly, rSAPV showed an outstanding and high resistance to several organic solvents than SPVP from Aeribacillus pallidus VP3 and Thermolysin type X. Furthermore, rSAPV exhibited an excellent detergent stability and compatibility than Alcalase 2.4 L FG and Bioprotease N100L. Considering all these remarkable properties, rSAPV has attracted the interest of industrialists.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Meriam Amziane
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Ahlem Dab
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Farida Nateche
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
20
|
Ibrahim ASS, Elbadawi YB, El-Tayeb MA, Al-Maary KS, Maany DAF, Ibrahim SSS, Elagib AA. Alkaline serine protease from the new halotolerant alkaliphilic Salipaludibacillus agaradhaerens strain AK-R: purification and properties. 3 Biotech 2019; 9:391. [PMID: 31656729 DOI: 10.1007/s13205-019-1928-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/28/2019] [Indexed: 11/28/2022] Open
Abstract
Herein, we report the purification and characterization of an alkaline protease from the alkaliphilic Salipaludibacillus agaradhaerens (formerly Bacillus agaradhaerens) strain AK-R, which was previously isolated from Egyptian soda lakes. The purification procedures resulted in enzyme purification up to 13.3-fold, with a recovery yield of 16.3% and a specific activity of 3488 U/mg protein. AK-R protease was a monomeric protein with an estimated molecular weight of 33.0 kDa. The optimum pH and temperature for AK-R protease were pH 10 and 60 °C, respectively. The enzyme thermostability was significantly enhanced in the presence of CaCl2 by approximately 1.3-fold. Moreover, under optimal conditions, the K m and V max values of the enzyme were 2.63 mg/ml and 4166.7 U/mg, respectively. PMSF caused complete inhibition of the enzyme activity, suggesting that AK-R belongs to the serine protease family. In addition, the enzyme was completely inhibited by EDTA, revealing the requirement of metal ions for AK-R protease activity; hence, it can be classified as a metalloprotease. AK-R protease is a mostly thiol-independent enzyme, since thiol reductants such as β-mercaptoethanol and dithiothreitol had no effect on the enzyme activity. AK-R protease exhibited high stability in several organic solvents, including butanol, amyl alcohol, dimethyl ether, toluene, diethyl ether and methanol. Moreover, AK-R protease showed significant stability to a variety of surfactants and commercial detergents. The features and properties of AK-R alkaline protease are favourable and suggest its potential applications in various industries, particularly in the laundry detergent industry.
Collapse
Affiliation(s)
- Abdelnasser S S Ibrahim
- 1Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, El-Buhouth St, Dokki, Cairo, 12311 Egypt
- 2Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Yahya B Elbadawi
- 2Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mohamed A El-Tayeb
- 2Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Khalid S Al-Maary
- 2Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Dina Abdel Fattah Maany
- 1Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, El-Buhouth St, Dokki, Cairo, 12311 Egypt
| | - Shebl Salah S Ibrahim
- 3Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Atif A Elagib
- 4Tropical Medicine Research Institute, PO Box 1304, Khartoum, Sudan
- 5National Centre for Research, Khartoum, Sudan
| |
Collapse
|
21
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
22
|
Cucho H, López Y, Caldeira C, Valverde A, Ordóñez C, Soler C. Comparison of three different staining methods for the morphometric characterization of Alpaca (Vicugna pacos) sperm, using ISAS® CASA-Morph system. NOVA BIOLOGICA REPERTA 2019. [DOI: 10.29252/nbr.6.3.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Iqbalsyah TM, Malahayati, Atikah, Febriani. Purification and partial characterization of a thermo-halostable protease produced by Geobacillus sp. strain PLS A isolated from undersea fumaroles. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2019.1650489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Teuku M. Iqbalsyah
- Faculty of Mathematics and Natural Sciences, Chemistry Department, Biomolecules Application Research Group, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Malahayati
- Faculty of Mathematics and Natural Sciences, Chemistry Department, Biomolecules Application Research Group, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Atikah
- Faculty of Mathematics and Natural Sciences, Chemistry Department, Biomolecules Application Research Group, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Febriani
- Faculty of Mathematics and Natural Sciences, Chemistry Department, Biomolecules Application Research Group, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
24
|
Mechri S, Bouacem K, Jabeur F, Mohamed S, Addou NA, Dab A, Bouraoui A, Bouanane-Darenfed A, Bejar S, Hacène H, Baciou L, Lederer F, Jaouadi B. Purification and biochemical characterization of a novel thermostable and halotolerant subtilisin SAPN, a serine protease from Melghiribacillus thermohalophilus Nari2A T for chitin extraction from crab and shrimp shell by-products. Extremophiles 2019; 23:529-547. [PMID: 31236718 DOI: 10.1007/s00792-019-01105-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
The present study investigates the purification and biochemical characterization of a novel extracellular serine alkaline protease, subtilisin (called SAPN) from Melghiribacillus thermohalophilus Nari2AT. The highest yield of protease (395 IU/g) with white shrimp shell by-product (40 g/L) as a unique source of nutriments in the growth medium was achieved after 52 h at 55 °C. The monomeric enzyme of about 30 kDa was purified to homogeneity by ammonium sulfate fractionation, heat treatment, followed by sequential column chromatographies. The optimum pH and temperature values for subtilisin activity were pH 10 and 75 °C, respectively, and half lives of 9 and 5 h at 80 and 90 °C, respectively. The sequence of the 25 NH2-terminal residues pertaining of SAPN exhibited a high homology with those of Bacillus subtilisins. The inhibition by DFP and PMSF indicates that this enzyme belongs to the serine proteases family. SAPN was found to be effective in the deproteinization (DDP %) of blue swimming crab (Portunus segnis) and white shrimp (Metapenaeus monoceros) by-products, with a degree of 65 and 82%, respectively. The commercial and the two chitins obtained in this work showed a similar peak pattern in Fourier-Transform Infrared (FTIR) analysis, suggesting that SAPN is suitable for the bio-production of chitin from shell by-products.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Fadoua Jabeur
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Sara Mohamed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Nariman Ammara Addou
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Ahlam Dab
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Aicha Bouraoui
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hocine Hacène
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Laura Baciou
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Florence Lederer
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia. .,Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
25
|
Aguilar JGDS, Castro RJSD, Sato HH. ALKALINE PROTEASE PRODUCTION BY Bacillus licheniformis LBA 46 IN A BENCH REACTOR: EFFECT OF TEMPERATURE AND AGITATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Accumanno GM, Richards VA, Gunther NW, Hickey ME, Lee JL. Purification and characterization of the thermostable protease produced by Serratia grimesii isolated from channel catfish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2428-2437. [PMID: 30362163 DOI: 10.1002/jsfa.9451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Microbial spoilage of fishery products accounts for significant financial losses, yearly on a global scale. Psychrotrophic spoilage bacteria often secrete extracellular enzymes to break down surrounding fish tissue, rendering the product unsuitable for human consumption. For a better understanding of bacterial spoilage due to enzymatic digestion of fish products, proteases in Serratia grimesii isolated from North American catfish fillets (Ictalurus punctatus) were investigated. RESULTS Mass spectrometric evidence demonstrated that S. grimesii secretes two distinct extracellular proteases and one lipase. Protease secretion displayed broad thermostability in the 30-90 °C range. The major protease-secretion (O-1) was most active under alkaline conditions and utilized manganese as a co-factor. Organic solvents significantly disrupted the efficacy of S. grimesii extracellular enzymes and, in a series of bactericidal detergents, protease activity was highest when treated with Triton X-100. Ethylenediaminetetraacetic acid (EDTA) and phenylmethylsulfonyl fluoride (PMSF) significantly inhibited the enzyme activity, while protease was moderately stable under freeze-thaw and refrigerated storage. CONCLUSION The influence of fish spoilage-related enzymes, depending on various factors, is discussed in this paper. This study will provide new insight into enzymatic spoilage and its control, which can be exploited to enhance food safety and the shelf-life of fishery products worldwide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gina M Accumanno
- Department of Human Ecology, Food Science and Biotechnology Program, Food Microbiology Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | - Vanessa A Richards
- Department of Human Ecology, Food Science and Biotechnology Program, Food Microbiology Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | - Nereus W Gunther
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Molecular Characterization of Foodborne Pathogens Research Unit, Wyndmoor, PA, USA
| | - Michael E Hickey
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jung-Lim Lee
- Department of Human Ecology, Food Science and Biotechnology Program, Food Microbiology Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| |
Collapse
|
27
|
Abu-Khudir R, Salem MM, Allam NG, Ali EMM. Production, Partial Purification, and Biochemical Characterization of a Thermotolerant Alkaline Metallo-protease from Staphylococcus sciuri. Appl Biochem Biotechnol 2019; 189:87-102. [DOI: 10.1007/s12010-019-02983-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
|
28
|
Yakul K, Takenaka S, Nakamura K, Techapun C, Leksawasdi N, Seesuriyachan P, Watanabe M, Chaiyaso T. Characterization of thermostable alkaline protease from Bacillus halodurans SE5 and its application in degumming coupled with sericin hydrolysate production from yellow cocoon. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Mokashe N, Chaudhari B, Patil U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int J Biol Macromol 2018; 117:493-522. [DOI: 10.1016/j.ijbiomac.2018.05.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 09/30/2022]
|
30
|
Pongsetkul J, Benjakul S, Sumpavapol P, Vongkamjan K, Osako K. Bacillus subtilisK‐C3 isolated from Thai salted shrimp paste (Kapi): Its extracellular enzymes and use as a starter culture inKapiproduction. J Food Biochem 2018. [DOI: 10.1111/jfbc.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaksuma Pongsetkul
- Department of Food Technology Prince of Songkla University Songkhla Thailand
| | - Soottawat Benjakul
- Department of Food Technology Prince of Songkla University Songkhla Thailand
| | - Punnanee Sumpavapol
- Department of Food Technology Prince of Songkla University Songkhla Thailand
| | - Kitiya Vongkamjan
- Department of Food Technology Prince of Songkla University Songkhla Thailand
| | - Kazufumi Osako
- Department of Food Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| |
Collapse
|
31
|
Ramkumar A, Sivakumar N, Gujarathi AM, Victor R. Production of thermotolerant, detergent stable alkaline protease using the gut waste of Sardinella longiceps as a substrate: Optimization and characterization. Sci Rep 2018; 8:12442. [PMID: 30127443 PMCID: PMC6102305 DOI: 10.1038/s41598-018-30155-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022] Open
Abstract
The gut wastes of Sardinella longiceps were used as substrate for protease production. The gut waste has 61.6% proteins, 21.8% lipids, 8.5% carbohydrates on dry weight basis and trace elements. The significant factors of protease fermentation were screened by Plackett-Burman design. A protease activity of 68.56 U/ml was predicted at 46.31 °C, incubation time 71.11 h, inoculum 4.86% (v/v) and substrate concentration 2.66% (w/v), using response surface methodology. However, the validation experiment showed 73.52 U/ml activity. The artificial neural network was found as a better tool to predict the experimental results. The partially purified protease showed higher activity at pH 9 and 10 and retained 90% activity after 120 h at pH 9. It showed maximum activity at 50 °C and retained 88% residual activity until 90 min at 50 °C. Zn++ enhanced the protease activity by 40%. The protease retained an activity of 93, 103, 90 and 98% against urea, β-mercaptoethanol, SDS and tween 80 respectively. The alkaline protease was compatible with all the commercial detergents tested with the residual activity above 90%. The alkaline protease exhibited 22% higher activity on the tryptone soya substrate. The gut waste of S. longiceps is a worthy low cost substrate for the production of industrially important alkaline protease.
Collapse
Affiliation(s)
- Aishwarya Ramkumar
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Muscat, Oman
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Muscat, Oman.
| | - Ashish M Gujarathi
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Reginald Victor
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Muscat, Oman
| |
Collapse
|
32
|
Hakim A, Bhuiyan FR, Iqbal A, Emon TH, Ahmed J, Azad AK. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 2018; 4:e00646. [PMID: 30009270 PMCID: PMC6042311 DOI: 10.1016/j.heliyon.2018.e00646] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/02/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Alkaline proteases have applications in numerous industries. In this study, we have isolated and screened proteolytic bacteria from poultry wastes mixed soil and identified two bacterial isolates as Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 based on 16S rDNA sequencing. Maximum level of protease production was achieved after 24 h of fermentation in a basal medium. The optimal temperature, initial pH of the media and agitation for alkaline protease production by these two isolates were 30 °C, pH 9.0 and 120 rpm, respectively. The both bacterial isolates produced maximum level of protease with 3.0% organic municipal solid wastes (OMSW) as the sole source of carbon and nitrogen under previously optimized fermentation conditions. In comparison with the shake flask, protease production increased about 2.5-fold in the bioreactor with reduction in fermentation period. The partial purification of protease resulted in a final 45.67 and 34.86-fold purified protease with a specific activity of 8335.34 and 9918.91 U/mg protein and a typical yield of 9.75 and 9.41% from B. subtilis and E. indicum, respectively. The optimum temperature and pH of the partially purified protease from the both sources was 40 °C and pH 9.0, respectively. Protease from the both isolates was stable at pH 7.0-12.0 and at temperatures up to 50 °C. The effects of protease inhibitors indicated that the protease from B. subtilis might be serine and cysteine type and from E. indicum might be cysteine type. Mg2+, K+ and Ca2+ stimulated but Zn2+, Hg2+, Co2+ and Fe3+ strongly inhibited the protease activity. The partially purified protease from B. subtilis substantially dehaired cow skin and decomposed gelatinous compound from X-ray film. Our study revealed that OMSW can be used as raw material for production of bacterial extracellular protease and alkaline protease from B. subtilis might be potential for industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
33
|
de Sena AR, Campos Leite TC, Evaristo da Silva Nascimento TC, Silva ACD, Souza CS, Vaz AFDM, Moreira KA, de Assis SA. Kinetic, thermodynamic parameters and in vitro digestion of tannase from Aspergillus tamarii URM 7115. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1452201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amanda Reges de Sena
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | - Tonny Cley Campos Leite
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | | | - Anna Carolina da Silva
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Catiane S. Souza
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Keila Aparecida Moreira
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Sandra Aparecida de Assis
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
34
|
Genome mining for peptidases in heat-tolerant and mesophilic fungi and putative adaptations for thermostability. BMC Genomics 2018; 19:152. [PMID: 29463214 PMCID: PMC5819190 DOI: 10.1186/s12864-018-4549-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peptidases (EC 3.4) consist of a large group of hydrolytic enzymes that catalyze the hydrolysis of proteins accounting for approximately 65% of the total worldwide enzyme production. Peptidases from thermophilic fungi have adaptations to high temperature that makes them adequate for biotechnological application. In the present study, we profiled the genomes of heat-tolerant fungi and phylogenetically related mesophilic species for genes encoding for peptidases and their putative adaptations for thermostability. RESULTS We generated an extensive catalogue of these enzymes ranging from 241 to 820 peptidase genes in the genomes of 23 fungi. Thermophilic species presented the smallest number of peptidases encoding genes in relation to mesophilic species, and the peptidases families with a greater number of genes were the most affected. We observed differences in peptidases in thermophilic species in comparison to mesophilic counterparts, at (i) the genome level: a great reduction in the number of peptidases encoding genes that harbored a higher number of copies; (ii) in the primary protein structure: shifts in proportion of single or groups of amino acids; and (iii) in the three-dimensional structure: reduction in the number of internal cavities. Similar results were reported for extremely thermophilic proteins, but here we show for the first time that several changes also occurred on the moderate thermophilic enzymes of fungi. In regards to the amino acids composition, peptidases from thermophilic species in relation to the mesophilic ones, contained a larger proportion of Ala, Glu, Gly, Pro, Arg and Val residues and a lower number of Cys, His, Ile, Lys, Met, Asn, Gln, Ser, Thr and Trp residues (P < 0.05). Moreover, we observed an increase in the proportion of hydrophobic and charged amino acids and a decrease in polar amino acids. CONCLUSIONS Although thermophilic fungi present less genes encoding for peptidases, these have adaptations that could play a role in thermal resistance from genome to protein structure level.
Collapse
|
35
|
Barzkar N, Homaei A, Hemmati R, Patel S. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 2018; 22:335-346. [DOI: 10.1007/s00792-018-1009-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
36
|
Lopes LMDM, Costa Batista LH, Gouveia MJ, Leite TCC, de Mello MRF, de Assis SA, de Sena AR. Kinetic and thermodynamic parameters, and partial characterization of the crude extract of tannase produced by Saccharomyces cerevisiae CCMB 520. Nat Prod Res 2017; 32:1068-1075. [PMID: 28931328 DOI: 10.1080/14786419.2017.1380010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tannase can be used in different industrial sectors such as in food (juices and wine) and pharmaceutical production (trimethoprim) because it catalyses the hydrolysis of hydrolysable tannins. The aim of the current study is to assess the tannase found in the crude extract of Saccharomyces cerevisiae CCMB 520, and to set its catalytic and thermodynamic properties. The enzyme was optimally active at pH 6.0 and temperature 30 °C. Tannase was activated by Na+, Ca2+, K+ at 5 × 10-3 mol/L. The half-life at 30 °C was 3465.7 min. The activation energy was 40.32 kJ/mol. The Gibbs free energy, enthalpy and entropy at 30 °C were 85.40, 48.10 and -0.12 kJ/mol K, respectively. Our results suggest that the tannase found in the crude extract of S. cerevisiae is an attractive enzyme for industrial applications, such as for beverage manufacturing and gallic acid production, due its catalytic and thermodynamic properties (heat-stable and resistant to metal ions).
Collapse
Affiliation(s)
- Lúzia Morgana de Melo Lopes
- a Microbiology Laboratory, Federal Education , Science and Technology Institute of Pernambuco , Barreiros , Brazil
| | | | - Marcos Juliano Gouveia
- a Microbiology Laboratory, Federal Education , Science and Technology Institute of Pernambuco , Barreiros , Brazil
| | - Tonny Cley Campos Leite
- a Microbiology Laboratory, Federal Education , Science and Technology Institute of Pernambuco , Barreiros , Brazil
| | | | - Sandra Aparecida de Assis
- b Enzymology Laboratory, Department of Health , State University of Feira de Santana , Feira de Santana , Brazil
| | - Amanda Reges de Sena
- a Microbiology Laboratory, Federal Education , Science and Technology Institute of Pernambuco , Barreiros , Brazil
| |
Collapse
|
37
|
Contesini FJ, Melo RRD, Sato HH. An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 2017; 38:321-334. [DOI: 10.1080/07388551.2017.1354354] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabiano Jares Contesini
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ricardo Rodrigues de Melo
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Hélia Harumi Sato
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
38
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Purification and characterization of SDS stable protease from Bacillus safensis strain CK. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Mechri S, Ben Elhoul Berrouina M, Omrane Benmrad M, Zaraî Jaouadi N, Rekik H, Moujehed E, Chebbi A, Sayadi S, Chamkha M, Bejar S, Jaouadi B. Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest. Int J Biol Macromol 2017; 94:221-232. [DOI: 10.1016/j.ijbiomac.2016.09.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
|
41
|
Maruthiah T, Somanath B, Jasmin JV, Immanuel G, Palavesam A. Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization. 3 Biotech 2016; 6:157. [PMID: 28330229 PMCID: PMC4961627 DOI: 10.1007/s13205-016-0474-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022] Open
Abstract
The quantum of marine fish wastes produced by fish processing industries has necessitated to search new methods for its disposal. Hence, this study is focused on production and purification of halophilic organic solvent tolerant protease (HOSP) from marine Alcaligenes faecalis APCMST-MKW6 using marine shell wastes as substrate. The candidate bacterium was isolated from the marine sediment of Manakudi coast and identified as A. faecalis APCMST-MKW6. The purified protease showed 16.39-fold purity, 70.34 U/mg specific activity with 21.67 % yield. The molecular weight of the purified alkaline protease was 49 kDa. This purified protease registered maximum activity at pH 9 and it was stable between pH 8–9 after 1.30 h of incubation. The optimum temperature registered was 60 °C and it was stable between 50 and 60 °C even after 1.30 h of incubation. This enzyme also showed maximum activity at 20 % NaCl concentration. Further, manganese chloride, magnesium chloride, calcium chloride and barium chloride influenced this enzyme activity remarkably and it was also found to be enhanced by many of the tested surfactants and solvents. The candidate bacterium effectively deproteinized the shrimp shell waste compared to the other tested crustaceans shell wastes and also attained maximum antioxidant activity.
Collapse
Affiliation(s)
- Thirumalai Maruthiah
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, 629 502, Tamilnadu, India
| | - Beena Somanath
- Department of Zoology, Rani Anna Government College for Women, Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamilnadu, India
| | | | - Grasian Immanuel
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, 629 502, Tamilnadu, India
| | - Arunachalam Palavesam
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamilnadu, India.
| |
Collapse
|
42
|
Patil U, Mokashe N, Chaudhari A. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization. Prep Biochem Biotechnol 2016; 46:56-64. [PMID: 25356983 DOI: 10.1080/10826068.2014.979205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.
Collapse
Affiliation(s)
- Ulhas Patil
- a Department of Microbiology , R. C. Patel A. C. S. College , Shirpur , India
| | - Narendra Mokashe
- a Department of Microbiology , R. C. Patel A. C. S. College , Shirpur , India
| | - Ambalal Chaudhari
- b School of Life Sciences , North Maharashtra University , Jalgaon , India
| |
Collapse
|
43
|
Lima RN, Porto ALM. Recent Advances in Marine Enzymes for Biotechnological Processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 78:153-92. [PMID: 27452170 DOI: 10.1016/bs.afnr.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds.
Collapse
Affiliation(s)
- R N Lima
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - A L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.
| |
Collapse
|
44
|
Homaei A, Lavajoo F, Sariri R. Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. Int J Biol Macromol 2016; 88:542-52. [DOI: 10.1016/j.ijbiomac.2016.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/09/2016] [Accepted: 04/10/2016] [Indexed: 10/22/2022]
|
45
|
Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chem 2016; 202:110-5. [DOI: 10.1016/j.foodchem.2016.01.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
|
46
|
Purification and Characterization of a New Thermostable, Haloalkaline, Solvent Stable, and Detergent Compatible Serine Protease from Geobacillus toebii Strain LBT 77. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9178962. [PMID: 27069928 PMCID: PMC4812217 DOI: 10.1155/2016/9178962] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022]
Abstract
A new thermostable, haloalkaline, solvent stable SDS-induced serine protease was purified and characterized from a thermophilic Geobacillus toebii LBT 77 newly isolated from a Tunisian hot spring. This study reveals the potential of the protease from Geobacillus toebii LBT 77 as an additive to detergent with spectacular proprieties described for the first time. The protease was purified to homogeneity by ammonium sulfate precipitation followed by Sephadex G-75 and DEAE-Cellulose chromatography. It was a monomeric enzyme with molecular weight of 30 kDa. The optimum pH, temperature, and NaCl for maximum protease activity were 13.0, 95°C, and 30%, respectively. Activity was stimulated by Ca(2+), Mg(2+), DTNB, β-mercaptoethanol, and SDS. The protease was extremely stable even at pH 13.25, 90°C, and 30% NaCl and in the presence of hydrophilic, hydrophobic solvents at high concentrations. The high compatibility with ionic, nonionic, and commercial detergents confirms the utility as an additive to cleaning products. Kinetic and thermodynamic characterization of protease revealed K m = 1 mg mL(-1), V max = 217.5 U mL(-1), K cat/K m = 99 mg mL(-1) S(-1), E a = 51.5 kJ mol(-1), and ΔG (⁎) = 56.5 kJ mol(-1).
Collapse
|
47
|
Anandharaj M, Sivasankari B, Siddharthan N, Rani RP, Sivakumar S. Production, Purification, and Biochemical Characterization of Thermostable Metallo-Protease from Novel Bacillus alkalitelluris TWI3 Isolated from Tannery Waste. Appl Biochem Biotechnol 2016; 178:1666-86. [PMID: 26749296 DOI: 10.1007/s12010-015-1974-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 11/26/2022]
Abstract
Protease enzymes in tannery industries have enormous applications. Seeking a potential candidate for efficient protease production has emerged in recent years. In our study, we sought to isolate proteolytic bacteria from tannery waste dumping site in Tamilnadu, India. Novel proteolytic Bacillus alkalitelluris TWI3 was isolated and tested for protease production. Maximum protease production was achieved using lactose and skim milk as a carbon and nitrogen source, respectively, and optimum growth temperature was found to be 40 °C at pH 8. Protease enzyme was purified using ammonium sulfate precipitation method and anion exchange chromatography. Diethylaminoethanol (DEAE) column chromatography and Sephadex G-100 chromatography yielded an overall 4.92-fold and 7.19-fold purification, respectively. The 42.6-kDa TWI3 protease was characterized as alkaline metallo-protease and stable up to 60 °C and pH 10. Ca(2+), Mn(2+), and Mg(2+) ions activated the protease, while Hg(2+), Cu(2+), Zn(2+), and Fe(2+) greatly inhibited it. Ethylenediaminetetraacetic acid (EDTA) inhibited TWI3 protease and was activated by Ca(2+), which confirmed that TWI3 protease is a metallo-protease. Moreover, this protease is capable of dehairing goat skin and also removed several cloth stains, which makes it more suitable for various biotechnological applications.
Collapse
Affiliation(s)
- Marimuthu Anandharaj
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Balayogan Sivasankari
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India.
| | - Nagarajan Siddharthan
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
| | - Rizwana Parveen Rani
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
| | - Subramaniyan Sivakumar
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| |
Collapse
|
48
|
Laishram S, Pennathur G. Purification and Characterization of a Membrane-Unbound Highly Thermostable Metalloprotease from Aeromonas Caviae. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1849-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Extracellular serine proteases by Acremonium sp. L1-4B isolated from Antarctica: Overproduction using cactus pear extract with response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 2015; 19:961-71. [PMID: 26159877 DOI: 10.1007/s00792-015-0771-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.
Collapse
|