1
|
Liu L, Sakai K, Tanaka T, Kusumoto KI. Subcomponents in humic acid structure contribute to the differential responses of Aspergillus oryzae strains to humic acid. J GEN APPL MICROBIOL 2024; 69:260-269. [PMID: 37468259 DOI: 10.2323/jgam.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Humic acid (HA) is a complex natural organic macromolecule, can be decomposed to low-molecular compounds by some soil fungi and then influences the growth of fungi. Aspergillus oryzae is a fungus domesticated from its ancestor, which was supposed to live in soil. Group 3 strains of A. oryzae hold fewer aflatoxin-biosynthetic genes than group 1 strains and may differently response to HA because of the deletion of some genes along with the domestication. However, effect of HA on growth of A. oryzae group 1 and group 3 strains remains unclear. In this study, four strains of A. oryzae in group 1 and four in group 3 were point inoculated on equivalent medium (pH 7.3) with two commercially available HAs. The growth of RIB40 was the most stimulated among group 1 strains and that of RIB143 was the most inhibited among group 3 strains. To identify the basis of these differences, we examined the possible effects of HA subcomponents including polyphenol and minerals on the growth of RIB40 and RIB143. Polyphenol represented by gallic acid (GA), a partial structure common with model HA, and mineral ions including Al 3+ , Ca 2+ , Ti 4+ , Mn 2+ , Sr 2+ , and Ba2+ contributed to stimulating the growth of RIB40, whereas these components generally did not affect the growth of RIB143. Thus, our findings indicate that the sub-compositions of HAs, including GA and several minerals, were the main factors driving the different responses of RIB40 and RIB143 to HAs.
Collapse
Affiliation(s)
- Liyun Liu
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Kanae Sakai
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Takumi Tanaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ken-Ichi Kusumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
2
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Jin FJ, Hu S, Wang BT, Jin L. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. Front Microbiol 2021; 12:644404. [PMID: 33708187 PMCID: PMC7940364 DOI: 10.3389/fmicb.2021.644404] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
The filamentous fungus Aspergillus oryzae is an important strain in the traditional fermentation and food processing industries and is often used in the production of soy sauce, soybean paste, and liquor-making. In addition, A. oryzae has a strong capacity to secrete large amounts of hydrolytic enzymes; therefore, it has also been used in the enzyme industry as a cell factory for the production of numerous native and heterologous enzymes. However, the production and secretion of foreign proteins by A. oryzae are often limited by numerous bottlenecks that occur during transcription, translation, protein folding, translocation, degradation, transport, secretion, etc. The existence of these problems makes it difficult to achieve the desired target in the production of foreign proteins by A. oryzae. In recent years, with the decipherment of the whole genome sequence, basic research and genetic engineering technologies related to the production and utilization of A. oryzae have been well developed, such as the improvement of homologous recombination efficiency, application of selectable marker genes, development of large chromosome deletion technology, utilization of hyphal fusion techniques, and application of CRISPR/Cas9 genome editing systems. The development and establishment of these genetic engineering technologies provided a great deal of technical support for the industrial production and application of A. oryzae. This paper reviews the advances in basic research and genetic engineering technologies of the fermentation strain A. oryzae mentioned above to open up more effective ways and research space for the breeding of A. oryzae production strains in the future.
Collapse
Affiliation(s)
- Feng-Jie Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shuang Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Bao-Teng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Long Jin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Murthy PS, Palakshappa SH, Padela J, Kusumoto KI. Amelioration of cocoa organoleptics using A.oryzae cysteine proteases. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Modulation of coffee flavor precursors by Aspergillus oryzae serine carboxypeptidases. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Screening and evaluation of filamentous fungi potential for protease production in swine plasma and red blood cells-based media: qualitative and quantitative methods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Snyman C, Theron LW, Divol B. Understanding the regulation of extracellular protease gene expression in fungi: a key step towards their biotechnological applications. Appl Microbiol Biotechnol 2019; 103:5517-5532. [PMID: 31129742 DOI: 10.1007/s00253-019-09902-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
The secretion of proteases by certain species of yeast and filamentous fungi is of importance not only for their biological function and survival, but also for their biotechnological application to various processes in the food, beverage, and bioprocessing industries. A key step towards understanding the role that these organisms play in their environment, and how their protease-secreting ability may be optimally utilised through industrial applications, involves an evaluation of those factors which influence protease production. The objective of this review is to provide an overview of the findings from investigations directed at elucidating the regulatory mechanisms underlying extracellular protease secretion in yeast and filamentous fungi, and the environmental stimuli that elicit these responses. The influence of nitrogen-, carbon-, and sulphur-containing compounds, as well as proteins, temperature, and pH, on extracellular protease regulation, which is frequently exerted at the transcriptional level, is discussed in particular depth. Protease-secreting organisms of biotechnological interest are also presented in this context, in an effort to explore the areas of industrial significance that could possibly benefit from such knowledge. In this way, the establishment of a platform of existing knowledge regarding fungal protease regulation is attempted, with the particular goal of aiding in the practical application of these organisms to processes that require secretion of this enzyme.
Collapse
Affiliation(s)
- C Snyman
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - L W Theron
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
8
|
|
9
|
Ao XL, Yu X, Wu DT, Li C, Zhang T, Liu SL, Chen SJ, He L, Zhou K, Zou LK. Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express 2018; 8:96. [PMID: 29896640 PMCID: PMC5997607 DOI: 10.1186/s13568-018-0611-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/12/2018] [Indexed: 11/10/2022] Open
Abstract
The strain Y1, with a notably high production of neutral protease, was isolated from naturally fermented broad beans and subsequently identified as Aspergillus oryzae, through the analysis of its morphology characteristics and 18S rDNA sequence. Naturally fermented broad beans are the main raw material in Sichuan broad-bean sauce. The neutral protease from Aspergillus oryzae Y1 was purified using ammonium sulphate precipitation and DEAE-Sepharose Fast Flow chromatography, which resulted in a 10.0-fold increase in the specific activity (2264.3 U/mg) and a recovery rate of 21%. The estimated molecular mass of the purified protease was approximately 45 kDa. The optimal pH and temperature of the purified protease were 7.0 and 55 °C, respectively. The heat resistance of the purified protease was significantly higher than the commercial protease. The effect of metal ions on the activity of the purified protease approximated that of commercial neutral protease. Furthermore, the maximum hydrolysis rate (Vmax) and apparent Michaelis-Menten constant (Km) values of the purified protease were 256.4103 μg/mL min and 20.0769 mg/mL, respectively. The purified protease had a higher affinity for the substrate than the commercial neutral protease. All the results suggest that this neutral protease exhibits the potential for application in industry due to its good resistance to high temperatures and wide range of acids and bases.
Collapse
Affiliation(s)
- Xiao-lin Ao
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Xi Yu
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Ding-tao Wu
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Chao Li
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Tong Zhang
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Shu-liang Liu
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Shu-juan Chen
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Li He
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Kang Zhou
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| | - Li-kou Zou
- Sichuan Agricultural University, Xinkang Road 46, Yaan, 625014 Sichuan China
| |
Collapse
|
10
|
Amorim GM, Oliveira AC, Gutarra ML, Godoy MG, Freire DM. Solid-state fermentation as a tool for methylxanthine reduction and simultaneous xylanase production in cocoa meal. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Bustos Vázquez G, Pérez-Rodríguez N, Salgado JM, Oliveira RPDS, Domínguez JM. Optimization of Salts Supplementation on Xylitol Production by Debaryomyces hansenii Using a Synthetic Medium or Corncob Hemicellulosic Hydrolyzates and Further Scaled Up. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guadalupe Bustos Vázquez
- Department of Chemical
Engineering, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
- Laboratory of Agro-food
Biotechnology, CITI (University of Vigo)-Tecnópole, Technological Park of Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Departamento
de Biotecnología, Unidad Académica Multidisciplinaria
Mante, Universidad Autónoma de Tamaulipas, Blvd. E.C. Glez, 1201, col. Jardín, 89840 Ciudad Mante, Tamaulipas, México
| | - Noelia Pérez-Rodríguez
- Department of Chemical
Engineering, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
- Laboratory of Agro-food
Biotechnology, CITI (University of Vigo)-Tecnópole, Technological Park of Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José Manuel Salgado
- Department of Chemical
Engineering, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
- Laboratory of Agro-food
Biotechnology, CITI (University of Vigo)-Tecnópole, Technological Park of Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- CEB-Centre
of Biological Engineering, University of Minho, Campus de Gualtar, 4710−057 Braga, Portugal
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology,
Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes 580, Bl 16, 05508-900, São Paulo, Brazil
| | - José Manuel Domínguez
- Department of Chemical
Engineering, Faculty of Sciences, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
- Laboratory of Agro-food
Biotechnology, CITI (University of Vigo)-Tecnópole, Technological Park of Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
12
|
Bharathiraja S, Suriya J, Krishnan M, Manivasagan P, Kim SK. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 80:125-148. [PMID: 28215322 DOI: 10.1016/bs.afnr.2016.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually.
Collapse
Affiliation(s)
- S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, India
| | - J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - M Krishnan
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | - S-K Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|