1
|
Łozińska N, Maldonado-Valderrama J, Del Castillo-Santaella T, Zhou Y, Martysiak-Żurowska D, Lu Y, Jungnickel C. Bile conjugation and its effect on in vitro lipolysis of emulsions. Food Res Int 2024; 184:114255. [PMID: 38609233 DOI: 10.1016/j.foodres.2024.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Bile Salts (BS) are responsible for stimulating lipid digestion in our organism. Gut microbiota are responsible for the deconjugation process of primary conjugated to secondary unconjugated BS. We use two structurally distinct BS and characterize the rate of lipolysis as a compound parameter. A static in-vitro digestion model as well as meta-analysis of literature data has been performed to determine the most influential factors affecting the lipid digestion process. The results demonstrate that lipolysis of emulsions using conjugated BS (NaTC, FFA = 60.0 %, CMC in SIF = 5.58 mM, MSR of linoleic acid = 0.21, rate of adsorption = -0.057 mN/m.s) enhances the release of FFA compared to deconjugated BS (NaDC, FFA = 49.5 %, CMC in SIF = 2.49 mM, MSR of linoleic acid = 0.16 rate of adsorption = -0.064 mN/m.s). These results indicate that conjugation plays an important role in controlling the rate of lipolysis in our organism which can be in turn, tuned by the microflora composition of our gut, ultimately controlling the rate of deconjugation of the BS.
Collapse
Affiliation(s)
- Natalia Łozińska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk 80-233, Poland.
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, Faculty of Sciences, University of Granada, Campus de Fuentenueva sn, 18071 Granada, Spain.
| | - Teresa Del Castillo-Santaella
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja sn, 18071 Granada, Spain.
| | - Yanija Zhou
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk 80-233, Poland.
| | - Dorota Martysiak-Żurowska
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Gdańsk, Poland.
| | - Yuanqi Lu
- School of Chemistry and Chemical Engineering, Dezhou University, 566 Daxue W Rd, Shandong Sheng 253034, China.
| | - Christian Jungnickel
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk 80-233, Poland.
| |
Collapse
|
2
|
Lv D, Chen F, Yin L, Zhang P, Rashid MT, Yu J. Wheat bran arabinoxylan-soybean protein isolate emulsion-filled gels as a β-carotene delivery carrier: Effect of polysaccharide content on textural and rheological properties. Int J Biol Macromol 2023; 253:126465. [PMID: 37619689 DOI: 10.1016/j.ijbiomac.2023.126465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
This study aimed to investigate the effects of different wheat bran arabinoxylan (WBAX) concentrations (1, 2, 3, and 4 wt%) on the structural and physicochemical properties of WBAX-soybean protein isolate (SPI) emulsion-filled gels (EFGs) prepared using laccase and heat treatment. The properties of the various gels as well as their microstructure, rheology, and in vitro digestion behaviors were investigated. Results showed that WBAX-SPI EFGs with a 3 wt% WBAX concentration had a smooth and uniform appearance, high water holding capacity (98.5 ± 0.2 %), and enhanced mechanical properties. Rheological experiments suggested that a stronger and closer gel network was formed at 3 wt% WBAX concentration. Fourier transform infrared spectroscopy showed that laccase and heat treatment not only catalyzed the intramolecular crosslinking of WBAX and SPI, respectively, but also promoted the interaction between WBAX and SPI. Confocal laser scanning microscopy revealed that the WBAX gel network was interspersed within the SPI network. The interactions contributing to the gelation analysis revealed that chemical (disulfide bond) and physical (hydrogen bond and hydrophobic) interactions promoted the formation of denser EFGs. Furthermore, the WBAX-SPI EFGs provided a β-carotene bioaccessibility of 21.8 ± 0.6 %. Therefore, our study suggests that WBAX-SPI EFGs hold promising potential for industrial applications in the delivery of β-carotene.
Collapse
Affiliation(s)
- Dingyang Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lijun Yin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Penglong Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Muhammad Tayyab Rashid
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jingyan Yu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
3
|
Chen SY, Kokalari I, Parnell SR, Smith GN, Zeng BH, Way TF, Chuang FS, Rwei AY. Structure Property Relationship of Micellar Waterborne Poly(Urethane-Urea): Tunable Mechanical Properties and Controlled Release Profiles with Amphiphilic Triblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37433143 PMCID: PMC10373496 DOI: 10.1021/acs.langmuir.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Waterborne polyurethane (WPU) has attracted significant interest as a promising alternative to solvent-based polyurethane (SPU) due to its positive impact on safety and sustainability. However, significant limitations of WPU, such as its weaker mechanical strength, limit its ability to replace SPU. Triblock amphiphilic diols are promising materials to enhance the performance of WPU due to their well-defined hydrophobic-hydrophilic structures. Yet, our understanding of the relationship between the hydrophobic-hydrophilic arrangements of triblock amphiphilic diols and the physical properties of WPU remains limited. In this study, we show that by controlling the micellar structure of WPU in aqueous solution via the introduction of triblock amphiphilic diols, the postcuring efficiency and the resulting mechanical strength of WPU can be significantly enhanced. Small-angle neutron scattering confirmed the microstructure and spatial distribution of hydrophilic and hydrophobic segments in the engineered WPU micelles. In addition, we show that the control of the WPU micellar structure through triblock amphiphilic diols renders WPU attractive in the applications of controlled release, such as drug delivery. Here, curcumin was used as a model hydrophobic drug, and the drug release behavior from WPU-micellar-based drug delivery systems was characterized. It was found that curcumin-loaded WPU drug delivery systems were highly biocompatible and exhibited antibacterial properties in vitro. Furthermore, the sustained release profile of the drug was found to be dependent on the structure of the triblock amphiphilic diols, suggesting the possibility of controlling the drug release profile via the selection of triblock amphiphilic diols. This work shows that by shedding light on the structure-property relationship of triblock amphiphilic diol-containing WPU micelles, we may enhance the applicability of WPU systems and move closer to realizing their promising potential in real-life applications.
Collapse
Affiliation(s)
- Shu-Yi Chen
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, 10608 Taipei, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, 10608 Taipei, Taiwan
| | - Ida Kokalari
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Steven R Parnell
- Department of Radiation Science and Technology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | | | - Bing-Hong Zeng
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, 10608 Taipei, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, 10608 Taipei, Taiwan
| | - Tun-Fun Way
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, 10608 Taipei, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, 10608 Taipei, Taiwan
| | - Fu-Sheng Chuang
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, 10608 Taipei, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, 10608 Taipei, Taiwan
- Department of Fashion and Design, Lee-Ming Institute of Technology, No. 22, Sec. 3, Tai-Lin Rd., Taishan Dist., New Taipei City 243, Taiwan
| | - Alina Y Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Kavya M, Calister MW, Jayamurthy P, Nisha P. Red Palm Oil Pickering emulsion with pectin yields improved
in‐vitro
beta carotene bioaccessibility and oil stability: Physico‐chemical characterization and shelf stability studies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohan Kavya
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad ‐ 201002 India
| | - Makebe Wingang Calister
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Ecole Nationale Supérieure des Sciences Agro‐Industrielles (ENSAI) Université de Ngaoundéré Cameroon
| | - P. Jayamurthy
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad ‐ 201002 India
| | - P. Nisha
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad ‐ 201002 India
| |
Collapse
|
5
|
Yang J, Wan L, Duan X, Wang H, Yang Z, Liu F, Xu X, Pan S. Potential low-calorie model that inhibits free fatty acid release and helps curcumin deliver in vitro: Ca 2+-induced emulsion gels from low methyl-esterified pectin with the presence of erythritol. Int J Biol Macromol 2022; 200:449-457. [PMID: 35063483 DOI: 10.1016/j.ijbiomac.2022.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Our previous study showed that pectin de-esterified by high hydrostatic pressure assisted enzymatic method (HHP-pectin) had better Ca2+-induced gel performance and more stable emulsion than those from conventional enzymatic and alkaline methods. In this study, Ca2+-induced emulsion gels were further prepared by HHP-pectin in the presence of erythritol, and their texture properties, moisture distribution, the release of free fatty acids (FFAs) and curcumin were investigated. Results showed that gel strength, gel elasticity, and water cut-off capacity of the prepared emulsion gels significantly increased with Ca2+ concentration increasing. Compared with emulsions, HHP-pectin emulsion gels can significantly decrease FFAs and curcumin release in vitro digestion, especially for samples with better texture properties (higher Ca2+ concentration). This study indicated that Ca2+-induced HHP-pectin emulsion gels prepared with erythritol may provide a new choice for low-calorie foods preparing, and may become a potential alternative model that inhibiting FFAs release and helping fat-soluble nutrients (curcumin) deliver.
Collapse
Affiliation(s)
- Jinyan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xingke Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongdi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhixuan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Marze S. Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches. Annu Rev Food Sci Technol 2022; 13:263-286. [DOI: 10.1146/annurev-food-052720-093515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sébastien Marze
- INRAE, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
7
|
Lv D, Zhang P, Chen F, Yin L. Effects of emulsion concentration on the physicochemical properties of wheat bran arabinoxylan-soy protein isolate emulsion-filled gels used as β-carotene carriers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Xu C, Cao L, Bilal M, Cao C, Zhao P, Zhang H, Huang Q. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohydr Polym 2021; 262:117933. [DOI: 10.1016/j.carbpol.2021.117933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
|
9
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|