1
|
Yu Y, Jiang X, Lu X, Cai R, Shan Y, Tang M, Wang Q, Song Y, Gao F. Effect of microwave treatment and water-bath heating treatment on the performance of glutenin from Tiger nut seed meal: Insights into changes in structural characteristics, functional properties, and in vitro gastrointestinal digestibility. Food Chem X 2024; 23:101741. [PMID: 39253015 PMCID: PMC11381614 DOI: 10.1016/j.fochx.2024.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, the structural characteristics, functional properties, and in vitro gastrointestinal digestibility of glutenin from Tiger nut seed meal (TNSMG) treated by microwave (140-700 W, 20-60 s) and water-bath heating (40-100 °C, 10-30 min) were investigated. Analysis of the surface hydrophobicity, intrinsic fluorescence spectroscopy and Fourier transform infrared spectroscopy indicated that both microwave and water-bath heating treatments caused structure changes of TNSMG. The results showed an increase in the exposure of sulfhydryl groups and the content of β-sheet, coupled with a decrease in the content of α-helix and β-turn. These structural changes contributed to the improved solubility, foamability, emulsification properties, and digestibility of TNSMG under proper thermal treatment conditions. TNSMG exhibited the best solubility (68.48%) and foamability (85.56%) after water-bath heating treatment for 20 min at 80 °C. Furthermore, TNSMG showed the best emulsification property (9.61 m2/g) and digestibility (78.58%) when treated by microwave treatment at 560 W for 40 s.
Collapse
Affiliation(s)
- Yali Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xinyu Jiang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaoyu Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Rongcan Cai
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yuer Shan
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Minglong Tang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Quan Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ye Song
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, Jilin, China
| | - Feng Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| |
Collapse
|
2
|
Jiang X, Gao F, Ma Y, Huo N, Guo Y, Yu Y. Protein from tiger nut meal extracted by deep eutectic solvent and alkali-soluble acid precipitation: A comparative study on structure, function, and nutrition. Food Chem 2024; 452:139608. [PMID: 38754171 DOI: 10.1016/j.foodchem.2024.139608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Protein from tiger nut meal (TNP) performance high nutritional value. This study optimized the extraction parameters for TNP (DES-TNP) using deep eutectic solvent, with HBD: HBA = 5:1, Liquid: Solid = 11:1, and the moisture content was 15 %. A comprehensive comparison was conducted with the protein extracted using alkali-soluble acid precipitation (ASAE-TNP). DES-TNP demonstrated significantly higher purity (76.21 ± 2.59 %) than ASAE-TNP (67.48 ± 1.11 %). Density functional theory confirmed the successful synthesis of DES and its strong interaction with TNP. Moreover, DES-TNP and ASAE-TNP were different in structure (microscopic, secondary, and tertiary) and molecular weight distribution. The discrepancy contributed to the different functional properties, DES-TNP exhibiting better solubility, emulsification and foaming properties at pH13 compared to ASAE-TNP. For nutritional properties, DES-TNP and ASAE-TNP exhibited similar amino acid composition and digestibility, but the total amino acid content of DES-TNP was higher. This study presented a novel method for the extraction and comprehensive utilization of TNP.
Collapse
Affiliation(s)
- Xinyu Jiang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Feng Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Yongliang Ma
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Ning Huo
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Yujie Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Yali Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
3
|
Wang Y, Tao L, Wang Z, Wang Y, Lin X, Dai J, Shi C, Dai T, Sheng J, Tian Y. Effect of succinylation-assisted glycosylation on the structural characteristics, emulsifying, and gel properties of walnut glutenin. Food Chem 2024; 446:138856. [PMID: 38430765 DOI: 10.1016/j.foodchem.2024.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
In this study, we examined the effects of various sodium alginate (ALG) concentrations (0.2%-0.8%) on the functional and physicochemical characteristics of succinylated walnut glutenin (GLU-SA). The results showed that acylation decreased the particle size and zeta potential of walnut glutenin (GLU) by 122- and 0.27-fold, respectively. In addition, the protein structure unfolded, providing conditions for glycosylation. After GLU-SA was combined with ALG, the surface hydrophobicity decreased and the net negative charge and disulfide bond content increased. The protein structure was analyzed by FTIR, Endogenous fluorescence spectroscopy, and SEM, and ALG prompted GLU-SA cross-linking to form a stable three-dimensional network structure. The results indicated that dual modification improved the functional properties of the complex, especially its potential protein gel and emulsifying properties. This research provide theoretical support and a technical reference for expanding the application of GLU in the processing of protein and oil products.
Collapse
Affiliation(s)
- Yuanli Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyue Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Puer University, Puer 665000, China.
| |
Collapse
|
4
|
Hadidi M, Tan C, Assadpour E, Jafari SM. Oilseed meal proteins: From novel extraction methods to nanocarriers of bioactive compounds. Food Chem 2024; 438:137971. [PMID: 37979261 DOI: 10.1016/j.foodchem.2023.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The global demand for animal proteins is predicted to increase twofold by 2050. This has led to growing environmental and health apprehensions, thereby prompting the appraisal of alternative protein sources. Oilseed meals present a promising alternative due to their abundance in global production and inherent dietary protein content. The alkaline extraction remains the preferred technique for protein extraction from oilseed meals in commercial processes. However, the combination of innovative techniques has proven to be more effective in the recovery and functional modification of oilseed meal proteins (OMPs), resulting in improved protein quality and reduced allergenicity and environmental hazards. This manuscript explores the extraction of valuable proteins from sustainable sources, specifically by-products from the oil processing industry, using emerging technologies. Chemical structure, nutritional value, and functional properties of the main OMPs are evaluated with a particular focus on their potential application as nanocarriers for bioactive compounds.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
Qin N, Chen C, Zhang N, Song L, Li Y, Guo L, Liu R, Zhang W. Bitter Almond Albumin ACE-Inhibitory Peptides: Purification, Screening, and Characterization In Silico, Action Mechanisms, Antihypertensive Effect In Vivo, and Stability. Molecules 2023; 28:6002. [PMID: 37630253 PMCID: PMC10458118 DOI: 10.3390/molecules28166002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Almond expeller is an undeveloped reservoir of bioactive peptides. In the current study, a zinc ion ligand Arg-Pro-Pro-Ser-Glu-Asp-Glu-Asp-Gln-Glu (RPPSEDEDQE) offering a noncompetitive inhibitory effect on ACE (IC50: 205.50 μmol·L-1) was identified from almond albumin hydrolysates via papain and thermolysin hydrolysis, subsequent chromatographic separation, and UPLC-Q-TOF-MS/MS analysis. Molecular docking simulated the binding modes of RPPSEDEDQE to ACE and showed the formation of hydrogen bonds between RPPSEDEDQE and seven active residues of ACE. Moreover, RPPSEDEDQE could bind to fifteen active sites of ACE by hydrophobic interactions, and link with the His387 and zinc ions of the zinc tetrahedral coordination. Ultraviolet wavelength scanning and Fourier-transformed infrared spectroscopy analysis revealed that RPPSEDEDQE can provide multiple binding sites for zinc ions. However, RPPSEDEDQE cannot bind with any central pocket of ACE, which was evidenced by an inhibition kinetics experiment. Additionally, the zinc-chelating capacity and inhibiting ability against ACE of RPPSEDEDQE were both not significantly reduced by the hydrolysis of gastrointestinal enzymes. A moderate to high dose of RPPSEDEDQE (100-150 mg·kg bw-1) significantly reduced the systolic and diastolic blood pressure of spontaneous hypertensive rats, but chelation with zinc ions decreased its antihypertensive efficiency. These results indicate that bitter almond albumin peptides may be used for lowering blood pressure.
Collapse
Affiliation(s)
- Nan Qin
- College of Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (C.C.); (N.Z.); (L.S.); (Y.L.); (L.G.); (R.L.); (W.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Shi T, Cao J, Cao J, Zhu F, Cao F, Su E. Almond (Amygdalus communis L.) kernel protein: A review on the extraction, functional properties and nutritional value. Food Res Int 2023; 167:112721. [PMID: 37087278 DOI: 10.1016/j.foodres.2023.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Almond (Amygdalus communis L.) kernel, a source of nutrients in many traditional diets, is being used more frequently as a nutritious snack and component. It is well known that almond kernels are a protein-rich food. Compared to the amino acid profile recommended by FAO, almond kernel protein is an ideal protein with perfect balance of amino acids. It also has a variety of better functional properties such as solubility, emulsifying ability, oil absorption capacity and foaming ability. pH and ion strength have significant influences on these functional properties. Furthermore, almond kernel protein is easily digested and absorbed by the human body. So almond kernel protein can be used as a high-quality protein resource. This review describes the techniques for extracting almond kernel protein, as well as its functional properties, nutritional worth, and applications. The purpose of this review is to provide ideas for the effective use of almond kernel protein and the creation of related products.
Collapse
Affiliation(s)
- Tingting Shi
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China; Bai Ma Future Food Research Institute, Nanjing 211225, China.
| |
Collapse
|
8
|
How do pH and temperature influence extraction yield, physicochemical, functional, and rheological characteristics of brewer spent grain protein concentrates? FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Sorita GD, Favaro SP, Ambrosi A, Di Luccio M. Aqueous extraction processing: An innovative and sustainable approach for recovery of unconventional oils. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Zhang J, Ye Z. Pentapeptide-Zinc Chelate from Sweet Almond Expeller Amandin Hydrolysates: Structural and Physicochemical Characteristics, Stability and Zinc Transport Ability In Vitro. Molecules 2022; 27:molecules27227936. [PMID: 36432037 PMCID: PMC9692753 DOI: 10.3390/molecules27227936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
To promote the application of almond expellers, sweet almond expeller globulin (amandin) was extracted for the preparation of bioactive peptides. After dual enzymatic hydrolysis, Sephadex G-15 gel isolation, reverse-phase high-performance liquid chromatography purification and ESI-MS/MS analysis, two novel peptides Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (1164.45 Da) and Leu-Asp-Arg-Leu-Glu (644.77 Da) were identified in sweet almond expeller amandin hydrolysates. Leu-Asp-Arg-Leu-Glu (LDRLE) of excellent zinc-chelating capacity (24.73 mg/g) was selected for preparation of peptide-zinc chelate. Structural analysis revealed that zinc ions were mainly bonded to amino group and carboxyl group of LDRLE. Potential toxicity and some physicochemical properties of LDRLE and Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (VDLVAEVPRGL) were predicted in silico. The results demonstrated that both LDRLE and VDLVAEVPRGL were not toxic. Additionally, zinc solubility of LDRLE-zinc chelate was much higher than that of zinc sulphate and zinc gluconate at pH 6.0−10.0 and against gastrointestinal digestion at 37 °C (p < 0.05). However, incubation at 100 °C for 20−60 min significantly reduced zinc-solubility of LDRLE-zinc chelate. Moreover, the chelate showed higher zinc transport ability in vitro than zinc sulphate and zinc gluconate (p < 0.05). Therefore, peptides isolated from sweet almond expeller amandin have potential applications as ingredient of zinc supplements.
Collapse
|
11
|
Yang J, Duan Y, Geng F, Cheng C, Wang L, Ye J, Zhang H, Peng D, Deng Q. Ultrasonic-assisted pH shift-induced interfacial remodeling for enhancing the emulsifying and foaming properties of perilla protein isolate. ULTRASONICS SONOCHEMISTRY 2022; 89:106108. [PMID: 35933969 PMCID: PMC9364021 DOI: 10.1016/j.ultsonch.2022.106108] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 05/07/2023]
Abstract
In order to expand the applications of plant protein in food formulations, enhancement of its functionalities is meaningful. Herein, the effects of ultrasonic (20 KHz, 400 W, 20 min)-assisted pH shift (pH 10 and 12) treatment on the structure, interfacial behaviors, as well as the emulsifying and foaming properties of perilla protein isolate (PPI) were investigated. Results showed that the solubility of PPI treated by ultrasonic-assisted pH shift (named UPPI-10/12) exceeded 90 %, which was at least 2 and 1.4 times that of untreated PPI and ultrasound-based PPI. Meanwhile, UPPI-10/12 possessed higher foamability (increasing by at least 1.2 times) and good emulsifying stability. Ultrasonic-assisted pH shift treatment decomposed large PPI aggregates into tiny particles, evident from the dynamic light scattering (DLS) and atomic force microscopy results. Besides, this approach induced a decrease in α-helix of PPI and an increase in β-sheet, which might result in the exposure of the hydrophobic group on the structural surface of PPI, thus leading to the increase of surface hydrophobicity. The smaller size and higher hydrophobicity endowed UPPI-10/12 faster adsorption rate, tighter interfacial structure, and higher elastic modulus at the air- and oil-water interfaces, evident from the cryo-SEM and interfacial dilatational rheological results. Thus, the emulsifying and foaming properties could evidently enhance. This study demonstrated that ultrasonic-assisted pH shift technique was a simple approach to effectively improve the functional performance of PPI.
Collapse
Affiliation(s)
- Jing Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chen Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Lei Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Jieting Ye
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dengfeng Peng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| |
Collapse
|
12
|
Scaling up the Two-Stage Countercurrent Extraction of Oil and Protein from Green Coffee Beans: Impact of Proteolysis on Extractability, Protein Functionality, and Oil Recovery. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02831-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractGreen coffee processing has been hindered by low oil extraction yields from mechanical pressing and the need of using flammable and hazardous solvents for defatting the protein-rich cake before subsequent protein extraction. To replace the use of flammable solvents and enable the simultaneous extraction of lipids and proteins from green coffee beans at reduced water usage, a multistage countercurrent extraction process was scaled up from 0.05 to 1.14 kg and evaluated regarding protein and oil extractability, physicochemical and functional properties of the extracted protein, and oil recovery. Enzymatic extraction increased protein extractability by ~13% while achieving similar oil extractability when not using enzymes (55%). Proteolysis resulted in the release of smaller proteins with reduced surface hydrophobicity and higher solubility at acidic pH (3.0–5.0). The physicochemical changes observed due to proteolysis resulted in the formation of emulsions with reduced resistance against enzymatic and chemical demulsification strategies, enhancing the recovery of the extracted oil (48.6–51.0%). Proteolysis did not alter the high in vitro digestibility of green coffee proteins (up to 99%) or their emulsifying properties at most pH values evaluated. However, proteolysis did reduce the foaming properties of the hydrolysates compared with larger molecular weight proteins. These findings revealed the impact of extraction conditions on the extractability and structural modifications altering the functionality of green coffee proteins and the synergistic impact of extraction and demulsification strategies on the recovery of the extracted oil, paving the way for the development of structure–function processes to effectively produce green coffee proteins with desired functionality.
Collapse
|
13
|
Structural, Physicochemical and Functional Properties of Protein Extracted from De-Oiled Field Muskmelon ( Cucumis melo L. var. agrestis Naud.) Seed Cake. Foods 2022; 11:foods11121684. [PMID: 35741881 PMCID: PMC9222928 DOI: 10.3390/foods11121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
For oil plants, the oil extraction method is a crucial factor in influencing the functional characteristics of the protein. However, reports of protein functionality as affected by the oil extraction process are scarce. In this study, field muskmelon seed (FMS) protein was extracted by Soxhlet extraction method (SE), organic solvent extraction method (OSE), aqueous extraction method (AE), and pressing extraction method (PE), and its structure, amino acid profile, physicochemical properties, and functionality were determined. Molecular weight distribution was similar for all FMS proteins, whereas protein aggregates contents were most excellent for SE and OSE. FMS protein comprised predominantly glutamic acid, leucine, aspartic acid, arginine, and proline. Total amino acids content was highest for SE. Differences in functionality between four FMS proteins for different oil extraction methods were vast. PE had the highest value of solubility, and AE exhibited the lowest. AE had the greatest water and oil holding capacity. PE presented better foaming and emulsion capacities than other samples. This study demonstrated that the extraction oil method could impact the protein’s physicochemical and associated functional characteristics. High-quality plant oil and protein could be simultaneously obtained by modulating the oil extraction method in future research.
Collapse
|
14
|
Diasa FF, de Moura Bell JM. Understanding the impact of enzyme-assisted aqueous extraction on the structural, physicochemical, and functional properties of protein extracts from full-fat almond flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Whey Protein Isolate Nanofibers Prepared by Subcritical Water Stabilized High Internal Phase Pickering Emulsion to Deliver Curcumin. Foods 2022; 11:foods11111625. [PMID: 35681375 PMCID: PMC9179974 DOI: 10.3390/foods11111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to design a Pickering emulsion (PE) stabilized by whey protein isolate nanofibers (WPINs) prepared with subcritical water (SW) to encapsulate and prevent curcumin (Cur) degradation. Cur-loaded WPINs–SW stabilized PE (WPINs–SW–PE) and hydrothermally prepared WPINs stabilized PE (WPINs–H–PE) were characterized using the particle size, zeta potential, Congo Red, CD, and TEM. The results indicated that WPINs–SW–PE and WPINs–H–PE showed regular spherical shapes with average lengths of 26.88 ± 1.11 μm and 175.99 ± 2.31 μm, and zeta potential values were −38.00 ± 1.00 mV and −34.60 ± 2.03 mV, respectively. The encapsulation efficiencies of WPINs–SW–PE and WPINs–H–PE for Cur were 96.72 ± 1.05% and 94.07 ± 2.35%. The bio-accessibility of Cur of WPINs–SW–PE and WPINs–H–PE were 57.52 ± 1.24% and 21.94 ± 2.09%. In addition, WPINs–SW–PE had a better loading effect and antioxidant activities compared with WPINs–H–PE. SW could be a potential processing method to prepare a PE, laying the foundation for the subsequent production of functional foods.
Collapse
|
16
|
Dias FFG, Taha AY, Bell JMLNDM. Effects of enzymatic extraction on the simultaneous extraction of oil and protein from full-fat almond flour, insoluble microstructure, emulsion stability and functionality. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Abstract
Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.
Collapse
|
18
|
Microbial Peptidase in Food Processing: Current State of the Art and Future Trends. Catal Letters 2022. [DOI: 10.1007/s10562-022-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Huang YP, Dias FFG, Leite Nobrega de Moura Bell JM, Barile D. A complete workflow for discovering small bioactive peptides in foods by LC-MS/MS: A case study on almonds. Food Chem 2022; 369:130834. [PMID: 34482238 DOI: 10.1016/j.foodchem.2021.130834] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 02/09/2023]
Abstract
Identification of bioactive peptides is an increasingly important target for food chemists, particularly in consideration of the widespread application of proteolytic enzymes in food processing. Because the characterization of small peptides by LC-MS/MS is challenging, we optimized a dimethyl labeling technique to facilitate small peptide identification, using almond proteins as a model. The method was validated by comparing the MS/MS spectra of standards and almond-derived peptides in their nonderivatized and derivatized forms. Signal enhancement of a1 ions was proved to effectively aid in the full-length sequencing of small peptides. We further validated this method using two industrially-relevant protein-rich extracts from almond flour: 1737 medium-sized peptides (5-39 amino acids) and 843 small peptides (2-4 amino acids) were identified. The use of an online bioactive peptide database, complemented by the existing literature, allowed the discovery of 208 small bioactive peptides, whereas for medium-sized peptides, only one was reported being bioactive.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Fernanda Furlan Goncalves Dias
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Juliana Maria Leite Nobrega de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
20
|
Optimization of ethanol-assisted aqueous oil extraction from Cicadatra querula. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Extraction Methods of Oils and Phytochemicals from Seeds and Their Environmental and Economic Impacts. Processes (Basel) 2021. [DOI: 10.3390/pr9101839] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over recent years, the food industry has striven to reduce waste, mostly because of rising awareness of the detrimental environmental impacts of food waste. While the edible oils market (mostly represented by soybean oil) is forecasted to reach 632 million tons by 2022, there is increasing interest to produce non-soybean, plant-based oils including, but not limited to, coconut, flaxseed and hemp seed. Expeller pressing and organic solvent extractions are common methods for oil extraction in the food industry. However, these two methods come with some concerns, such as lower yields for expeller pressing and environmental concerns for organic solvents. Meanwhile, supercritical CO2 and enzyme-assisted extractions are recognized as green alternatives, but their practicality and economic feasibility are questioned. Finding the right balance between oil extraction and phytochemical yields and environmental and economic impacts is challenging. This review explores the advantages and disadvantages of various extraction methods from an economic, environmental and practical standpoint. The novelty of this work is how it emphasizes the valorization of seed by-products, as well as the discussion on life cycle, environmental and techno-economic analyses of oil extraction methods.
Collapse
|
22
|
Devnani B, Ong L, Kentish S, Gras SL. Structure and functionality of almond proteins as a function of pH. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Souza Almeida F, Furlan Goncalves Dias F, Kawazoe Sato AC, Leite Nobrega de Moura Bell JM. From solvent extraction to the concurrent extraction of lipids and proteins from green coffee: An eco-friendly approach to improve process feasibility. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Revalorization of Almond By-Products for the Design of Novel Functional Foods: An Updated Review. Foods 2021; 10:foods10081823. [PMID: 34441599 PMCID: PMC8391475 DOI: 10.3390/foods10081823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
The search for waste minimization and the valorization of by-products are key to good management and improved sustainability in the food industry. The great production of almonds, based on their high nutritional value as food, especially almond kernels, generates tons of waste yearly. The remaining parts (skin, shell, hulls, etc.) are still little explored, even though they have been used as fuel by burning or as livestock feed. The interest in these by-products has been increasing, as they possess beneficial properties, caused by the presence of different bioactive compounds, and can be used as promising sources of new ingredients for the food, cosmetic and pharmaceutical industry. Additionally, the use of almond by-products is being increasingly applied for the fortification of already-existing food products, but there are some limitations, including the presence of allergens and mycotoxins that harden their applicability. This review focuses on the extraction technologies applied to the valorization of almond by-products for the development of new value-added products that would contribute to the reduction of environmental impact and an improvement in the sustainability and competitiveness of the almond industry.
Collapse
|
25
|
Zhao Q, Wang L, Hong X, Liu Y, Li J. Structural and functional properties of perilla protein isolate extracted from oilseed residues and its utilization in Pickering emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106412] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Yang K, Xu TR, Fu YH, Cai M, Xia QL, Guan RF, Zou XG, Sun PL. Effects of ultrasonic pre-treatment on physicochemical properties of proteins extracted from cold-pressed sesame cake. Food Res Int 2021; 139:109907. [PMID: 33509475 DOI: 10.1016/j.foodres.2020.109907] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Sesame is an oil crop with high nutritional value. Protein is one of the main ingredients of sesame, however research on protein of cold-pressed sesame cake is limited. This study aimed to investigate the effects of ultrasonic pre-treatment (UPT) on physicochemical properties of proteins (yield, solubility, amino acid composition, surface properties, structural and thermal stability) extracted from the cold-pressed sesame cake, after removing lignans by ultrasonic-assisted extraction. By comparison, the extraction yield of protein was significantly (p < 0.05) increased from 22.24% (without UPT) to 25.95% (with UPT), while the purity (54.08% without UPT, 55.43% with UPT), total amount of essential amino acids (22.48% without UPT, 23.10% with UPT) and non-essential amino acids (37.48% without UPT, 36.54% with UPT) were not significantly influenced. Besides, UPT slightly reduced the solubility, foaming capacity and stability (FC and FS) of protein. In addition, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal stability (TG) analysis demonstrated that UPT could disorder and loose protein molecular structure, resulting in the change of morphology, secondary structure and thermal stability. In conclusion, this study provides a way for the separation and future application of sesame cake protein. UPT is a good option to remove the lignans from sesame cake proteins.
Collapse
Affiliation(s)
- Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Tian-Rui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Yan-Hong Fu
- Hangzhou Hengmei Food Technology Co., Ltd., Hangzhou 311113, PR China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Qi-Le Xia
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Rong-Fa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China.
| | - Pei-Long Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| |
Collapse
|
27
|
Characterization and Demulsification of the Oil-Rich Emulsion from the Aqueous Extraction Process of Almond Flour. Processes (Basel) 2020. [DOI: 10.3390/pr8101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aqueous extraction process (AEP) allows the concurrent extraction of oil and protein from almond flour without the use of harsh solvents. However, the majority of the oil extracted in the AEP is present in an emulsion that needs to be demulsified for subsequent industrial utilization. The effects of scaling-up the AEP of almond flour from 0.7 to 7 L and the efficiency of enzymatic and chemical approaches to demulsify the cream were evaluated. The AEP was carried out at pH 9.0, solids-to-liquid ratio of 1:10, and constant stirring of 120 rpm at 50 °C. Oil extraction yields of 61.9% and protein extraction yields of 66.6% were achieved. At optimum conditions, enzymatic and chemical demulsification strategies led to a sevenfold increase (from 8 to 66%) in the oil recovery compared with the control. However, enzymatic demulsification resulted in significant changes in the physicochemical properties of the cream protein and faster demulsification (29% reduction in the incubation time and a small reduction in the demulsification temperature from 55 to 50 °C) compared with the chemical approach. Reduced cream stability after enzymatic demulsification could be attributed to the hydrolysis of the amandin α-unit and reduced protein hydrophobicity. Moreover, the fatty acid composition of the AEP oil obtained from both demulsification strategies was similar to the hexane extracted oil.
Collapse
|