1
|
Hinojosa-Avila CR, García-Gamboa R, Chedraui-Urrea JJT, García-Cayuela T. Exploring the potential of probiotic-enriched beer: Microorganisms, fermentation strategies, sensory attributes, and health implications. Food Res Int 2024; 175:113717. [PMID: 38129037 DOI: 10.1016/j.foodres.2023.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Probiotic-enriched beers have emerged as an innovative solution for delivering beneficial microorganisms, particularly appealing to consumers seeking non-dairy options. However, navigating the complex beer environment presents challenges in effectively cultivating specific probiotic strains. This review aims to promote innovation and distinctiveness within the brewing industry by providing insights into current research on the integration of probiotic microorganisms into beer production, thereby creating a functional beverage. The review explores the effects of probiotic incorporation on the functional, technological, and sensory attributes of beer, distinguishing contributions from bacterial and yeast, as well as potential health benefits. Probiotic microorganisms encounter hurdles during beer production, including ethanol, hops, CO2 levels, pH, oxygen, and nutrients. Ethanol tolerance mechanisms vary among bacteria and yeasts, with specific lactic acid bacteria showing resistance to hop compounds. Hops, crucial for beer categorization, exert a timing-dependent impact on probiotics-early isomerization impedes growth, while late additions yield non-isomerized antibacterial properties. Effective probiotic integration necessitates precise post-fermentation addition stages to ensure viability and flavor. The sensory impact and consumer reception of probiotic-enriched beers require further exploration. Probiotics must endure storage conditions to qualify as functional beer, while limited research investigates health advantages, urging enhanced production techniques, sensory optimization, and clinical validation.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Ricardo García-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Oliveira SRM, Campos LL, Amaral MNS, Galotti B, Ricci MF, Vital KD, Souza RO, Uetanabaro APT, Junqueira MS, Silva AM, Fernandes SOA, Cardoso VN, Nicoli JR, Martins FS. Evaluation of a Functional Craft Wheat Beer Fermented with Saccharomyces cerevisiae UFMG A-905 to treat Salmonella Typhimurium infection in mice. Probiotics Antimicrob Proteins 2023; 15:1180-1192. [PMID: 35907169 DOI: 10.1007/s12602-022-09973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Functional foods containing probiotics are generally administered as dairy products. Non-dairy beverages are another possibility, but probiotic functionality must be confirmed in such vehicles. In the present study, a craft wheat beer brewed with the probiotic yeast Saccharomyces cerevisiae UFMG A-905 (905) was evaluated in a murine model of Salmonella Typhimurium infection. Unfiltered or filtered beer brewed with 905, a commercial wheat beer used as a negative control, or saline were administered orally to mice before and during oral S. Typhimurium challenge. High fecal levels of yeast were only counted in mice treated with the unfiltered 905 beer, which also had reduced mortality and body weight loss due to S. Typhimurium infection. Increased levels of intestinal IgA, translocation to liver and spleen, liver and intestinal lesions, pro-inflammatory cytokines in liver and ileum, and hepatic and intestinal myeloperoxidase and eosinophilic peroxidase activities were observed in animals infected with S. Typhimurium. All these parameters were reduced by the treatment with unfiltered 905 beer. In conclusion, the results show that a craft wheat beer brewed with S. cerevisiae UFMG A-905 maintained the probiotic properties of this yeast when administered orally to mice challenged with S. Typhimurium.
Collapse
Affiliation(s)
- Samantha R M Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Lara L Campos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Maisa N S Amaral
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Bruno Galotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Mayra F Ricci
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ramon O Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Mateus S Junqueira
- Departamento de Engenharia de Alimentos, Universidade Federal de São João del Rei, Sete Lagoas, MG, Brazil
| | - Andreia M Silva
- Departamento de Engenharia de Alimentos, Universidade Federal de São João del Rei, Sete Lagoas, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil.
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 31270-901, Brazil
| |
Collapse
|
3
|
Vergara SC, Leiva MJ, Mestre MV, Vazquez F, Nally MC, Maturano YP. Non-saccharomyces yeast probiotics: revealing relevance and potential. FEMS Yeast Res 2023; 23:foad041. [PMID: 37777839 DOI: 10.1093/femsyr/foad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.
Collapse
Affiliation(s)
- Silvia Cristina Vergara
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María José Leiva
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
4
|
Roldán-López D, Muñiz-Calvo S, Daroqui N, Knez M, Guillamón JM, Pérez-Torrado R. The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 2022; 64:3059-3074. [PMID: 36222026 DOI: 10.1080/10408398.2022.2129584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food consumption of healthier products has become an essential trend in the food sector. This is also the case in beer, a biochemical process of transformation performed by yeast cells. More and more studies proclaim the need to reduce ethanol content in alcoholic drinks, certainly the most important health issue of beer consumption. In this review we gather key health issues related to beer consumption and the last advances regarding the use of yeast to attenuate those health problems. Furthermore, we have included the latest findings about the general positive impact of yeast in health as a consequence of its ability to biotransform polyphenolic compounds present in the wort, producing healthy compounds as hydroxytyrosol or melatonin, and its ability to perform as a probiotic driver. Besides, a group of population with chronic diseases as diabetes or celiac disease could take advantage of low carbohydrate or gluten-free beers, respectively. The role of yeast in beer production has been traditionally associated to its fermentative power. But here we have found a change in this dogma in the last years toward yeasts being a main driver to enhance healthy aspects of beer. The key findings are discussed and possible future directions are proposed.
Collapse
Affiliation(s)
- David Roldán-López
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Sara Muñiz-Calvo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Noemi Daroqui
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Masa Knez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Jose Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
5
|
Bouchez A, De Vuyst L. Acetic Acid Bacteria in Sour Beer Production: Friend or Foe? Front Microbiol 2022; 13:957167. [PMID: 35992674 PMCID: PMC9386357 DOI: 10.3389/fmicb.2022.957167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Beer is the result of a multistep brewing process, including a fermentation step using in general one specific yeast strain. Bacterial presence during beer production (or presence in the beer itself) is considered as bad, since bacteria cause spoilage, produce off-flavors, and/or turbidity. Although most problems in the past related to lack of hygiene and/or cleaning, bacteria do still cause problems nowadays. Despite this negative imago, certain bacteria play an irreplaceable role during fermentation and/or maturation of more unique, funky, and especially refreshing sour beers. The term sour beers or sours is not restricted to one definition but covers a wide variety of beers produced via different techniques. This review proposes an uncluttered sour beer classification scheme, which includes all sour beer production techniques and pays special attention to the functional role of acetic acid bacteria. Whereas their oxidation of ethanol and lactate into acetic acid and acetoin usually spoils beer, including sour beers, organoleptically, a controlled growth leads to a desirable acidic flavor in sour beers, such as lambic-style, lambic-based, and red-brown acidic ales.
Collapse
|
6
|
The Novel Strain of Gluconobacter oxydans H32 Isolated from Kombucha as a Proposition of a Starter Culture for Sour Ale Craft Beer Production. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acetic acid bacteria (AAB) has found applications in food technology, including beverages and vinegar. Generally, AAB shows several beneficial properties and has technological usefulness. Properly selected and tested strains of this group of bacteria may constitute a new and interesting solution among starter cultures for functional food. Therefore, the study aimed to develop a sour beer technology, based on the novel strain Gluconobacter oxydans H32. The microbiological, physical-chemical (HPLC method), and sensory (QDP method) quality were determined during 6 months of storage of dark and light beer samples. The AAB count at the beginning of storage was approximately 8 log CFU mL−1, and 6 log CFU mL−1 after 6 months of storage. As a result of the metabolic activity, acetic acid, gluconic acid, and ascorbic acid were detected in the samples. The light beer had a significantly better sensory quality, especially sample BPGL with the addition of G. oxydans H32 starter culture. It was found that it is possible to develop a functional beer with the novel strain Gluconobacter oxydans H32. These Sour Ale craft beers were not only a good source of H32 strain but also its pro-health metabolites.
Collapse
|
7
|
A Natural Technology for Vacuum-Packaged Cooked Sausage Preservation with Potentially Postbiotic-Containing Preservative. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, a potentially postbiotic-containing preservative (PPCP) was produced in an axenic fermentation system with Lacticaseibacillus paracasei DTA 83 as a natural technology alternative for vacuum-packaged cooked sausage preservation. Cooked sausage-related microorganisms were obtained during the induced spoiling process in packages by pair incubation of sausages at different temperatures. The turbidity method was used to determine the microbiota susceptibility to PPCP. A controlled in situ design was performed by adding PPCP on the surface or to the mass of the sausages. Sodium lactate FCC85, which was used according to the manufacturer’s recommendation, was included in the design for comparison. The results revealed that PPCP was as efficient as FCC85, which indicates PPCP as a promising alternative to the use of natural technologies to preserve and develop functional cooked sausages. Moreover, a strategy to use preservatives in vacuum-packaged cooked sausages was presented: the concentration needed to achieve the total inhibition of the microbiota determined by an in vitro trial should be respected when adding PPCP on the sausages’ surface. When adding PPCP to the mass of the sausages, the concentration that showed a partial inhibition in vitro can also be applied in situ.
Collapse
|
8
|
Abstract
Nutritionally enhanced probioticated whole pineapple juice (WPJ, comprising juice of pineapple pulp and peel) beverages were produced by fermentation of WPJ with the probiotic bacterium Lactobacillus plantarum WU-P19. The 12 h fermented juice contained between 2.1 × 109 and 3.7 × 109 live cells of the probiotic per milliliter, depending on the beverage formulation. The beverage had a pH of around 4.1 and a lactic acid content of ~12.8 g L−1. It had a total sugar (glucose, sucrose, fructose, maltose) content of ~100.2 g L−1. During fermentation, some of the initial glucose and fructose were consumed by the probiotic, but sucrose and maltose were not consumed. The original WPJ was free of vitamin B12, but fermentation enhanced vitamin B12 content (~19.5 mg L−1). In addition, fermentation enhanced the concentrations of vitamins B2, B3, and B6, but the bacterium consumed some of the vitamin B1 originally present. From a nutritional perspective, the final probioticated beverage was a good source of vitamin B12, vitamin C and vitamin B6. In addition, it contained nutritionally useful levels of vitamins B1, B2, and B3. The calorific value of the final beverage was 56.94 kcal per 100 mL. The product was stable during 21-day refrigerated (4 °C) storage.
Collapse
|
9
|
|
10
|
Silva LC, de Souza Lago H, Rocha MOT, de Oliveira VS, Laureano-Melo R, Stutz ETG, de Paula BP, Martins JFP, Luchese RH, Guerra AF, Rodrigues P. Craft Beers Fermented by Potential Probiotic Yeast or Lacticaseibacilli Strains Promote Antidepressant-Like Behavior in Swiss Webster Mice. Probiotics Antimicrob Proteins 2021; 13:698-708. [PMID: 33428182 DOI: 10.1007/s12602-020-09736-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2020] [Indexed: 12/30/2022]
Abstract
This study aimed to produce a probiotic-containing functional wheat beer (PWB) by an axenic culture system with potential probiotic Saccharomyces cerevisiae var boulardii 17 and probiotic-containing functional sour beer (PSB) by a semi-separated co-cultivation system with potential probiotic Lacticaseibacillus paracasei DTA 81 and Saccharomyces cerevisiae S-04. Additionally, results obtained from in vivo behavioral tests with Swiss Webster mice treated with PWB or PSB were provided, which is scarce in the current literature. Although the use of S. boulardii to produce beers is not a novelty, this study demonstrated that S. boulardii 17 performance on sugar wort stills not completely elucidated; therefore, further studies should be considered before using the strain in industrial-scale production. Co-culture systems with lacticaseibacilli strain and S. cerevisiae have been reported in the literature for PSB production. However, lacticaseibacilli survivability in beer can be improved by semi-separated co-cultivation systems, highlighting the importance of growing lacticaseibacilli in the wort before yeast pitching. Besides, kettle hopping must be chosen as the method for hop addition to produce PSB. The dry-hopping method may prevent iso-alpha formation in the wort; however, a tendency to sediment can drag cells at the tank bottom and negatively affect L. paracasei DTA 81 viability. Despite stress factors from the matrices and the stressful conditions encountered during GI transit, potential probiotic S. boulardii 17 and potential probiotic L. paracasei DTA 81 withstood at sufficient doses to promote antidepressant effects in the mice group treated with PWB or PSB, respectively.
Collapse
Affiliation(s)
- Larissa Cardoso Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Heitor de Souza Lago
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, 27600 000, Brazil
| | - Márcia Oliveira Terra Rocha
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, 27600 000, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23.897 970, Brazil
| | - Roberto Laureano-Melo
- Centro Universitário de Barra Mansa (UBM), Barra Mansa, Rio de Janeiro, 27330-550, Brazil
| | | | - Breno Pereira de Paula
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, 27600 000, Brazil
| | - José Francisco Pereira Martins
- Department of Food Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23.897 970, Brazil
| | - Rosa Helena Luchese
- Department of Food Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23.897 970, Brazil
| | - André Fioravante Guerra
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, 27600 000, Brazil. .,Department of Food Engineering, Federal Center of Technological Education Celso Suckow da Fonseca, Valença, Rio de Janeiro, 27600 000, Brazil.
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| |
Collapse
|