1
|
Fernández-Rhodes M, Lorca C, Lisa J, Batalla I, Ramos-Miguel A, Gallart-Palau X, Serra A. New Origins of Yeast, Plant and Bacterial-Derived Extracellular Vesicles to Expand and Advance Compound Delivery. Int J Mol Sci 2024; 25:7151. [PMID: 39000260 PMCID: PMC11241179 DOI: 10.3390/ijms25137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.
Collapse
Affiliation(s)
- María Fernández-Rhodes
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Cristina Lorca
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Julia Lisa
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Iolanda Batalla
- Psychiatry Unit, Hospital Universitari Santa Maria, Medicine Department, Universitat de Lleida (UdL), 25198 Lleida, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 48940 Leioa, Spain
| | - Xavier Gallart-Palau
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| |
Collapse
|
2
|
Nien YC, Vanek A, Axtell MJ. Trans-Species Mobility of RNA Interference between Plants and Associated Organisms. PLANT & CELL PHYSIOLOGY 2024; 65:694-703. [PMID: 38288670 DOI: 10.1093/pcp/pcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 05/31/2024]
Abstract
Trans-species RNA interference (RNAi) occurs naturally when small RNAs (sRNAs) silence genes in species different from their origin. This phenomenon has been observed between plants and various organisms including fungi, animals and other plant species. Understanding the mechanisms used in natural cases of trans-species RNAi, such as sRNA processing and movement, will enable more effective development of crop protection methods using host-induced gene silencing (HIGS). Recent progress has been made in understanding the mechanisms of cell-to-cell and long-distance movement of sRNAs within individual plants. This increased understanding of endogenous plant sRNA movement may be translatable to trans-species sRNA movement. Here, we review diverse cases of natural trans-species RNAi focusing on current theories regarding intercellular and long-distance sRNA movement. We also touch on trans-species sRNA evolution, highlighting its research potential and its role in improving the efficacy of HIGS.
Collapse
Affiliation(s)
- Ya-Chi Nien
- Plant Biology Intercollege Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Allison Vanek
- Bioinformatics and Genomics Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Plant Biology Intercollege Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Nenciarini S, Amoriello R, Bacci G, Cerasuolo B, Di Paola M, Nardini P, Papini A, Ballerini C, Cavalieri D. Yeast strains isolated from fermented beverage produce extracellular vesicles with anti-inflammatory effects. Sci Rep 2024; 14:730. [PMID: 38184708 PMCID: PMC10771474 DOI: 10.1038/s41598-024-51370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayered particles, containing various biomolecules, including nucleic acids, lipids, and proteins, released by cells from all the domains of life and performing multiple communication functions. Evidence suggests that the interaction between host immune cells and fungal EVs induces modulation of the immune system. Most of the studies on fungal EVs have been conducted in the context of fungal infections; therefore, there is a knowledge gap in what concerns the production of EVs by yeasts in other contexts rather than infection and that may affect human health. In this work, we characterized EVs obtained by Saccharomyces cerevisiae and Pichia fermentans strains isolated from a fermented milk product with probiotic properties. The immunomodulation abilities of EVs produced by these strains have been studied in vitro through immune assays after internalization from human monocyte-derived dendritic cells. Results showed a significant reduction in antigen presentation activity of dendritic cells treated with the fermented milk EVs. The small RNA fraction of EVs contained mainly yeast mRNA sequences, with a few molecular functions enriched in strains of two different species isolated from the fermented milk. Our results suggest that one of the mechanisms behind the anti-inflammatory properties of probiotic foods could be mediated by the interactions of human immune cells with yeast EVs.
Collapse
Affiliation(s)
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | | | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
5
|
Wen HG, Zhao JH, Zhang BS, Gao F, Wu XM, Yan YS, Zhang J, Guo HS. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. NATURE PLANTS 2023; 9:1409-1418. [PMID: 37653339 DOI: 10.1038/s41477-023-01507-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Small RNA (sRNA)-mediated trans-kingdom RNA interference (RNAi) between host and pathogen has been demonstrated and utilized. However, interspecies RNAi in rhizospheric microorganisms remains elusive. In this study, we developed a microbe-induced gene silencing (MIGS) technology by using a rhizospheric beneficial fungus, Trichoderma harzianum, to exploit an RNAi engineering microbe and two soil-borne pathogenic fungi, Verticillium dahliae and Fusarium oxysporum, as RNAi recipients. We first detected the feasibility of MIGS in inducing GFP silencing in V. dahliae. Then by targeting a fungal essential gene, we further demonstrated the effectiveness of MIGS in inhibiting fungal growth and protecting dicotyledon cotton and monocotyledon rice plants against V. dahliae and F. oxysporum. We also showed steerable MIGS specificity based on a selected target sequence. Our data verify interspecies RNAi in rhizospheric fungi and the potential application of MIGS in crop protection. In addition, the in situ propagation of a rhizospheric beneficial microbe would be optimal in ensuring the stability and sustainability of sRNAs, avoiding the use of nanomaterials to carry chemically synthetic sRNAs. Our finding reveals that exploiting MIGS-based biofungicides would offer straightforward design and implementation, without the need of host genetic modification, in crop protection against phytopathogens.
Collapse
Affiliation(s)
- Han-Guang Wen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yong-Sheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Wang Z, Zeng J, Deng J, Hou X, Zhang J, Yan W, Cai Q. Pathogen-Derived Extracellular Vesicles: Emerging Mediators of Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:218-227. [PMID: 36574017 DOI: 10.1094/mpmi-08-22-0162-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles that deliver bioactive proteins, nucleic acids, lipids, and other small molecules from donor to recipient cells. They have attracted significant interest recently due to their important roles in regulating plant-microbe interaction. During microbial infection, plant EVs play a prominent role in defense by delivering small regulatory RNA into pathogens, resulting in the silencing of pathogen virulence genes. Pathogens also deliver small RNAs into plant cells to silence host immunity genes. Recent evidence indicates that microbial EVs may be involved in pathogenesis and host immunity modulation by transporting RNAs and other biomolecules. However, the biogenesis and function of microbial EVs in plant-microbe interaction remain ill-defined. In this review, we discuss various aspects of microbial EVs, with a particular focus on current methods for EV isolation, composition, biogenesis, and their roles in plant-microbe interaction. We also discussed the potential role of microbial EVs in cross-kingdom RNA trafficking from pathogens to plants, as it is a highly likely possibility to explore in the future. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiayue Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiliang Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Xiangjie Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiefu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Yan
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| |
Collapse
|
7
|
Mapuranga J, Chang J, Zhang L, Zhang N, Yang W. Fungal Secondary Metabolites and Small RNAs Enhance Pathogenicity during Plant-Fungal Pathogen Interactions. J Fungi (Basel) 2022; 9:4. [PMID: 36675825 PMCID: PMC9862911 DOI: 10.3390/jof9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal plant pathogens use proteinaceous effectors as well as newly identified secondary metabolites (SMs) and small non-coding RNA (sRNA) effectors to manipulate the host plant's defense system via diverse plant cell compartments, distinct organelles, and many host genes. However, most molecular studies of plant-fungal interactions have focused on secreted effector proteins without exploring the possibly equivalent functions performed by fungal (SMs) and sRNAs, which are collectively known as "non-proteinaceous effectors". Fungal SMs have been shown to be generated throughout the plant colonization process, particularly in the early biotrophic stages of infection. The fungal repertoire of non-proteinaceous effectors has been broadened by the discovery of fungal sRNAs that specifically target plant genes involved in resistance and defense responses. Many RNAs, particularly sRNAs involved in gene silencing, have been shown to transmit bidirectionally between fungal pathogens and their hosts. However, there are no clear functional approaches to study the role of these SM and sRNA effectors. Undoubtedly, fungal SM and sRNA effectors are now a treasured land to seek. Therefore, understanding the role of fungal SM and sRNA effectors may provide insights into the infection process and identification of the interacting host genes that are targeted by these effectors. This review discusses the role of fungal SMs and sRNAs during plant-fungal interactions. It will also focus on the translocation of sRNA effectors across kingdoms, the application of cross-kingdom RNA interference in managing plant diseases and the tools that can be used to predict and study these non-proteinaceous effectors.
Collapse
Affiliation(s)
| | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
8
|
Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J, Zhang W, Tan XL. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int J Mol Sci 2022; 23:ijms232416200. [PMID: 36555841 PMCID: PMC9785534 DOI: 10.3390/ijms232416200] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-pathogen interactions induce a signal transmission series that stimulates the plant's host defense system against pathogens and this, in turn, leads to disease resistance responses. Plant innate immunity mainly includes two lines of the defense system, called pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). There is extensive signal exchange and recognition in the process of triggering the plant immune signaling network. Plant messenger signaling molecules, such as calcium ions, reactive oxygen species, and nitric oxide, and plant hormone signaling molecules, such as salicylic acid, jasmonic acid, and ethylene, play key roles in inducing plant defense responses. In addition, heterotrimeric G proteins, the mitogen-activated protein kinase cascade, and non-coding RNAs (ncRNAs) play important roles in regulating disease resistance and the defense signal transduction network. This paper summarizes the status and progress in plant disease resistance and disease resistance signal transduction pathway research in recent years; discusses the complexities of, and interactions among, defense signal pathways; and forecasts future research prospects to provide new ideas for the prevention and control of plant diseases.
Collapse
|
9
|
Schlemmer T, Lischka R, Wegner L, Ehlers K, Biedenkopf D, Koch A. Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum. Fungal Biol Biotechnol 2022; 9:14. [PMID: 35836276 PMCID: PMC9284790 DOI: 10.1186/s40694-022-00143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/14/2022] [Indexed: 11/11/2022] Open
Abstract
Numerous reports have shown that incorporating a double-stranded RNA (dsRNA)-expressing transgene into plants or applying dsRNA by spraying it onto their leaves successfully protects them against invading pathogens exploiting the mechanism of RNA interference (RNAi). How dsRNAs or siRNAs are transferred between donor host cells and recipient fungal cells is largely unknown. It is speculated that plant extracellular vesicles (EVs) function as RNA shuttles between plants and their pathogens. Recently, we found that EVs isolated from host-induced gene silencing (HIGS) or spray-induced gene silencing (SIGS) plants contained dsRNA-derived siRNAs. In this study, we evaluated whether isolated EVs from dsRNA-sprayed barley (Hordeum vulgare) plants affected the growth of the phytopathogenic ascomycete Fusarium graminearum. Encouraged by our previous finding that dropping barley-derived EVs on F. graminearum cultures caused fungal stress phenotypes, we conducted an in vitro growth experiment in microtiter plates where we co-cultivated F. graminearum with plant EVs isolated from dsRNA-sprayed barley leaves. We observed that co-cultivation of F. graminearum macroconidia with barley EVs did not affect fungal growth. Furthermore, plant EVs containing SIGS-derived siRNA appeared not to affect F. graminearum growth and showed no gene silencing activity on F. graminearum CYP51 genes. Based on our findings, we concluded that either the amount of SIGS-derived siRNA was insufficient to induce target gene silencing in F. graminearum, indicating that the role of EVs in SIGS is minor, or that F. graminearum uptake of plant EVs from liquid cultures was inefficient or impossible.
Collapse
Affiliation(s)
- Timo Schlemmer
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.,Institute of Phytomedicine, University of Hohenheim, Otto-Sander-Strasse 5, 70599, Stuttgart, Germany
| | - Richard Lischka
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Linus Wegner
- Intitute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292, Giessen, Germany
| | - Katrin Ehlers
- Intitute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292, Giessen, Germany
| | - Dagmar Biedenkopf
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Aline Koch
- Institute of Phytomedicine, University of Hohenheim, Otto-Sander-Strasse 5, 70599, Stuttgart, Germany.
| |
Collapse
|
10
|
Kwon S, Rupp O, Brachmann A, Blum CF, Kraege A, Goesmann A, Feldbrügge M. mRNA Inventory of Extracellular Vesicles from Ustilago maydis. J Fungi (Basel) 2021; 7:jof7070562. [PMID: 34356940 PMCID: PMC8306574 DOI: 10.3390/jof7070562] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) can transfer diverse RNA cargo for intercellular communication. EV-associated RNAs have been found in diverse fungi and were proposed to be relevant for pathogenesis in animal hosts. In plant-pathogen interactions, small RNAs are exchanged in a cross-kingdom RNAi warfare and EVs were considered to be a delivery mechanism. To extend the search for EV-associated molecules involved in plant-pathogen communication, we have characterised the repertoire of EV-associated mRNAs secreted by the maize smut pathogen, Ustilago maydis. For this initial survey, we examined EV-enriched fractions from axenic filamentous cultures that mimic infectious hyphae. EV-associated RNAs were resistant to degradation by RNases and the presence of intact mRNAs was evident. The set of mRNAs enriched inside EVs relative to the fungal cells are functionally distinct from those that are depleted from EVs. mRNAs encoding metabolic enzymes are particularly enriched. Intriguingly, mRNAs of some known effectors and other proteins linked to virulence were also found in EVs. Furthermore, several mRNAs enriched in EVs are also upregulated during infection, suggesting that EV-associated mRNAs may participate in plant-pathogen interactions.
Collapse
Affiliation(s)
- Seomun Kwon
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (A.K.)
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Giessen, Germany; (O.R.); (A.G.)
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany;
| | - Christopher Frederik Blum
- Institute for Mathematical Modelling of Biological Systems, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Anton Kraege
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (A.K.)
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Giessen, Germany; (O.R.); (A.G.)
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (A.K.)
- Correspondence: ; Tel.: +49-211-81-14720
| |
Collapse
|
11
|
Exosome/Liposome-like Nanoparticles: New Carriers for CRISPR Genome Editing in Plants. Int J Mol Sci 2021; 22:ijms22147456. [PMID: 34299081 PMCID: PMC8304373 DOI: 10.3390/ijms22147456] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Rapid developments in the field of plant genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems necessitate more detailed consideration of the delivery of the CRISPR system into plants. Successful and safe editing of plant genomes is partly based on efficient delivery of the CRISPR system. Along with the use of plasmids and viral vectors as cargo material for genome editing, non-viral vectors have also been considered for delivery purposes. These non-viral vectors can be made of a variety of materials, including inorganic nanoparticles, carbon nanotubes, liposomes, and protein- and peptide-based nanoparticles, as well as nanoscale polymeric materials. They have a decreased immune response, an advantage over viral vectors, and offer additional flexibility in their design, allowing them to be functionalized and targeted to specific sites in a biological system with low cytotoxicity. This review is dedicated to describing the delivery methods of CRISPR system into plants with emphasis on the use of non-viral vectors.
Collapse
|
12
|
Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 2021; 22:483-504. [PMID: 33837370 PMCID: PMC9346928 DOI: 10.1038/s41580-021-00356-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA.
- Janelia Research Campus of the HHMI, Ashburn, VA, USA.
| | - Evelina Tutucci
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Song L, Fang Y, Chen L, Wang J, Chen X. Role of non-coding RNAs in plant immunity. PLANT COMMUNICATIONS 2021; 2:100180. [PMID: 34027394 PMCID: PMC8132121 DOI: 10.1016/j.xplc.2021.100180] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| |
Collapse
|
14
|
Herold I, Zolti A, Garduño-Rosales M, Wang Z, López-Giráldez F, Mouriño-Pérez RR, Townsend JP, Ulitsky I, Yarden O. The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:672696. [PMID: 37744127 PMCID: PMC10512220 DOI: 10.3389/ffunb.2021.672696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 09/26/2023]
Abstract
The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 "core" mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway-evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avihai Zolti
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis, Department of Genetics, Yale University, New Haven, CT, United States
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
15
|
Munhoz da Rocha IF, Amatuzzi RF, Lucena ACR, Faoro H, Alves LR. Cross-Kingdom Extracellular Vesicles EV-RNA Communication as a Mechanism for Host-Pathogen Interaction. Front Cell Infect Microbiol 2020; 10:593160. [PMID: 33312966 PMCID: PMC7708329 DOI: 10.3389/fcimb.2020.593160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
The extracellular vesicle (EVs) traffic has been highlighted as a very important pathway of cellular communication. EVs are produced by prokaryotes and eukaryotes organisms and can carry molecules to help maintain homeostasis, responding to general disbalance, infections, and allowing rapid modulation of the immune system. In the context of infection, EVs from both the host and the pathogen have been identified as playing roles in the recruitment of immunological molecules that can lead to the resolution of the infection or the host’s defeat. Bacterial vesicles RNA cargo play roles in the host cell by regulating gene expression and modulating immune response. In fungi the RNA molecules present in EVs are diverse and participate in communication between the host and pathogenic fungi. Little is known about how cross-kingdom sRNA trafficking occurs, although in recent years, there has been an increase in studies that relate EV participation in sRNA delivery. This review aims to elucidate and update the reader concerning the role of extracellular vesicles, with emphasis in the RNA content. We describe the EVs during infection from the host point-of-view, as well as the bacteria and fungi pathogens producing EVs that help the establishment of the disease.
Collapse
Affiliation(s)
| | - Rafaela Ferreira Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Aline Castro Rodrigues Lucena
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| |
Collapse
|
16
|
Rizzo J, Rodrigues ML, Janbon G. Extracellular Vesicles in Fungi: Past, Present, and Future Perspectives. Front Cell Infect Microbiol 2020; 10:346. [PMID: 32760680 PMCID: PMC7373726 DOI: 10.3389/fcimb.2020.00346] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered much interest in the cell biology and biomedical research fields. Many studies have reported the existence of EVs in all types of living cells, including in fifteen different fungal genera. EVs play diverse biological roles, from the regulation of physiological events and response to specific environmental conditions to the mediation of highly complex interkingdom communications. This review will provide a historical perspective on EVs produced by fungi and an overview of the recent discoveries in the field. We will also review the current knowledge about EV biogenesis and cargo, their role in cell-to-cell interactions, and methods of EV analysis. Finally, we will discuss the perspectives of EVs as vehicles for the delivery of biologically active molecules.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| |
Collapse
|