1
|
Borowik P, Tkaczyk M, Pluta P, Okorski A, Stocki M, Tarakowski R, Oszako T. Distinguishing between Wheat Grains Infested by Four Fusarium Species by Measuring with a Low-Cost Electronic Nose. SENSORS (BASEL, SWITZERLAND) 2024; 24:4312. [PMID: 39001090 PMCID: PMC11244303 DOI: 10.3390/s24134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
An electronic device based on the detection of volatile substances was developed in response to the need to distinguish between fungal infestations in food and was applied to wheat grains. The most common pathogens belong to the fungi of the genus Fusarium: F. avenaceum, F. langsethiae, F. poae, and F. sporotrichioides. The electronic nose prototype is a low-cost device based on commercially available TGS series sensors from Figaro Corp. Two types of gas sensors that respond to the perturbation are used to collect signals useful for discriminating between the samples under study. First, an electronic nose detects the transient response of the sensors to a change in operating conditions from clean air to the presence of the gas being measured. A simple gas chamber was used to create a sudden change in gas composition near the sensors. An inexpensive pneumatic system consisting of a pump and a carbon filter was used to supply the system with clean air. It was also used to clean the sensors between measurement cycles. The second function of the electronic nose is to detect the response of the sensor to temperature disturbances of the sensor heater in the presence of the gas to be measured. It has been shown that features extracted from the transient response of the sensor to perturbations by modulating the temperature of the sensor heater resulted in better classification performance than when the machine learning model was built from features extracted from the response of the sensor in the gas adsorption phase. By combining features from both phases of the sensor response, a further improvement in classification performance was achieved. The E-nose enabled the differentiation of F. poae from the other fungal species tested with excellent performance. The overall classification rate using the Support Vector Machine model reached 70 per cent between the four fungal categories tested.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, Ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, Ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| | - Przemysław Pluta
- Forestry Students’ Scientific Association, Forest Department, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland;
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Marcin Stocki
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Ul. Wiejska 45E, 15-351 Białystok, Poland;
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, Ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, Ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| |
Collapse
|
2
|
Borowik P, Dyshko V, Tkaczyk M, Okorski A, Polak-Śliwińska M, Tarakowski R, Stocki M, Stocka N, Oszako T. Analysis of Wheat Grain Infection by Fusarium Mycotoxin-Producing Fungi Using an Electronic Nose, GC-MS, and qPCR. SENSORS (BASEL, SWITZERLAND) 2024; 24:326. [PMID: 38257418 PMCID: PMC10820217 DOI: 10.3390/s24020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Fusarium graminearum and F. culmorum are considered some of the most dangerous pathogens of plant diseases. They are also considerably dangerous to humans as they contaminate stored grain, causing a reduction in yield and deterioration in grain quality by producing mycotoxins. Detecting Fusarium fungi is possible using various diagnostic methods. In the manuscript, qPCR tests were used to determine the level of wheat grain spoilage by estimating the amount of DNA present. High-performance liquid chromatography was performed to determine the concentration of DON and ZEA mycotoxins produced by the fungi. GC-MS analysis was used to identify volatile organic components produced by two studied species of Fusarium. A custom-made, low-cost, electronic nose was used for measurements of three categories of samples, and Random Forests machine learning models were trained for classification between healthy and infected samples. A detection performance with recall in the range of 88-94%, precision in the range of 90-96%, and accuracy in the range of 85-93% was achieved for various models. Two methods of data collection during electronic nose measurements were tested and compared: sensor response to immersion in the odor and response to sensor temperature modulation. An improvement in the detection performance was achieved when the temperature modulation profile with short rectangular steps of heater voltage change was applied.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine;
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 5, 10-727 Olsztyn, Poland;
| | - Magdalena Polak-Śliwińska
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Heweliusza 6, 10-719 Olsztyn, Poland
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland;
| | - Marcin Stocki
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland; (M.S.); (N.S.)
| | - Natalia Stocka
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland; (M.S.); (N.S.)
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (M.T.); (T.O.)
| |
Collapse
|
3
|
Ferreira I, Dias T, Mouazen AM, Cruz C. Using Science and Technology to Unveil The Hidden Delicacy Terfezia arenaria, a Desert Truffle. Foods 2023; 12:3527. [PMID: 37835181 PMCID: PMC10572273 DOI: 10.3390/foods12193527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Terfezia arenaria is a desert truffle native to the Mediterranean Basin region, highly appreciated for its nutritional and aromatic properties. Despite the increasing interest in this desert truffle, T. arenaria is not listed as an edible truffle authorized for trade in the European Union. Therefore, our objective was to showcase T. arenaria's nutritional and chemical composition and volatile profile. The nutritional analysis showed that T. arenaria is a good source of carbohydrates (67%), proteins (14%), and dietary fibre (10%), resulting in a Nutri-Score A. The truffle's volatile profile was dominated by eight-carbon volatile compounds, with 1-octen-3-ol being the most abundant (64%), and 29 compounds were reported for the first time for T. arenaria. T. arenaria's nutritional and chemical compositions were similar to those of four commercial mushroom and truffle species, while the aromatic profile was not. An electronic nose corroborated that T. arenaria's aromatic profile differs from that of the other four tested mushroom and truffle species. Our data showed that T. arenaria is a valuable food resource with a unique aroma and an analogous composition to meat, which makes it an ideal source for plant-based meat products. Our findings could help promote a sustainable future exploitation of T. arenaria and ensure the quality and authenticity of this delicacy.
Collapse
Affiliation(s)
- Inês Ferreira
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisboa, Portugal; (I.F.); (C.C.)
| | - Teresa Dias
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisboa, Portugal; (I.F.); (C.C.)
| | - Abdul M. Mouazen
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Cristina Cruz
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisboa, Portugal; (I.F.); (C.C.)
| |
Collapse
|
4
|
Meléndez F, Sánchez R, Fernández JÁ, Belacortu Y, Bermúdez F, Arroyo P, Martín-Vertedor D, Lozano J. Design of a Multisensory Device for Tomato Volatile Compound Detection Based on a Mixed Metal Oxide-Electrochemical Sensor Array and Optical Reader. MICROMACHINES 2023; 14:1761. [PMID: 37763924 PMCID: PMC10537342 DOI: 10.3390/mi14091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Insufficient control of tomato ripening before harvesting and infection by fungal pests produce large economic losses in world tomato production. Aroma is an indicative parameter of the state of maturity and quality of the tomato. This study aimed to design an electronic system (TOMATO-NOSE) consisting of an array of 12 electrochemical sensors, commercial metal oxide semiconductor sensors, an optical camera for a lateral flow reader, and a smartphone application for device control and data storage. The system was used with tomatoes in different states of ripeness and health, as well as tomatoes infected with Botrytis cinerea. The results obtained through principal component analysis of the olfactory pattern of tomatoes and the reader images show that TOMATO-NOSE is a good tool for the farmer to control tomato ripeness before harvesting and for the early detection of Botrytis cinerea.
Collapse
Affiliation(s)
- Félix Meléndez
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
- Alianza Nanotecnología Diagnóstica ASJ S.L. (ANT), 28703 San Sebastián de los Reyes, Spain; (Y.B.); (F.B.)
| | - Ramiro Sánchez
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06006 Badajoz, Spain; (R.S.); (D.M.-V.)
| | - Juan Álvaro Fernández
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
| | - Yaiza Belacortu
- Alianza Nanotecnología Diagnóstica ASJ S.L. (ANT), 28703 San Sebastián de los Reyes, Spain; (Y.B.); (F.B.)
| | - Francisco Bermúdez
- Alianza Nanotecnología Diagnóstica ASJ S.L. (ANT), 28703 San Sebastián de los Reyes, Spain; (Y.B.); (F.B.)
| | - Patricia Arroyo
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
| | - Daniel Martín-Vertedor
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06006 Badajoz, Spain; (R.S.); (D.M.-V.)
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
| |
Collapse
|
5
|
Yin L, Jayan H, Cai J, El-Seedi HR, Guo Z, Zou X. Spoilage Monitoring and Early Warning for Apples in Storage Using Gas Sensors and Chemometrics. Foods 2023; 12:2968. [PMID: 37569237 PMCID: PMC10419230 DOI: 10.3390/foods12152968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
In the process of storage and cold chain logistics, apples are prone to physical bumps or microbial infection, which easily leads to spoilage in the micro-environment, resulting in widespread infection and serious post-harvest economic losses. Thus, development of methods for monitoring apple spoilage and providing early warning of spoilage has become the focus for post-harvest loss reduction. Thus, in this study, a spoilage monitoring and early warning system was developed by measuring volatile component production during apple spoilage combined with chemometric analysis. An apple spoilage monitoring prototype was designed to include a gas monitoring array capable of measuring volatile organic compounds, such as CO2, O2 and C2H4, integrated with the temperature and humidity sensor. The sensor information from a simulated apple warehouse was obtained by the prototype, and a multi-factor fusion early warning model of apple spoilage was established based on various modeling methods. Simulated annealing-partial least squares (SA-PLS) was the optimal model with the correlation coefficient of prediction set (Rp) and root mean square error of prediction (RMSEP) of 0.936 and 0.828, respectively. The real-time evaluation of the spoilage was successfully obtained by loading an optimal monitoring and warning model into the microcontroller. An apple remote monitoring and early warning platform was built to visualize the apple warehouse's sensors data and spoilage level. The results demonstrated that the prototype based on characteristic gas sensor array could effectively monitor and warn apple spoilage.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.J.); (J.C.); (X.Z.)
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.J.); (J.C.); (X.Z.)
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.J.); (J.C.); (X.Z.)
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biology Medical Center, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.J.); (J.C.); (X.Z.)
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.J.); (J.C.); (X.Z.)
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Lee SH, Kim HY. Effect of Seawater Curing Agent on the Flavor Profile of Dry-Cured Bacon Determined by Sensory Evaluation, Electronic Nose, and Fatty Composition Analysis. Foods 2023; 12:foods12101974. [PMID: 37238794 DOI: 10.3390/foods12101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this study was to check the applicability of seawater as a natural curing agent by analyzing the difference it causes in the flavor of dry-aged bacon. Pork belly was cured for seven days, and dried and aged for twenty-one days. The curing methods included the following: wet curing with salt in water, dry curing with sea salt, brine curing with brine solution, and bittern curing with bittern solution. The seawater-treated groups showed a lower volatile basic nitrogen value than the sea-salt-treated groups (p < 0.05); dry curing showed a higher thiobarbituric acid reactive substance value than other treatments (p < 0.05). Methyl- and butane- volatile compounds and polyunsaturated fatty acids such as g-linolenic and eicosapentaenoic were the highest in the bittern-cured group, lending it superior results compared to those of the control and other treatments in sensory flavor analyses (cheesy and milky). Therefore, bittern is considered to have significant potential as a food-curing agent.
Collapse
Affiliation(s)
- Sol-Hee Lee
- Department of Animal Resources Science, Kongju National University, Yesan-Gun 32439, ChungNam-Do, Republic of Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan-Gun 32439, ChungNam-Do, Republic of Korea
| |
Collapse
|
7
|
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins (Basel) 2023; 15:146. [PMID: 36828460 PMCID: PMC9958648 DOI: 10.3390/toxins15020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxin risk in the feed supply chain poses a concern to animal and human health, economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points. Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed for an efficient mycotoxin management. This review provides an overview of the use of the electronic nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better understanding of the needs of the feed industry for a safety and quality management of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be designed for each specific application. Robust and suitable e-nose method and advancements in signal processing algorithms must be validated for specific needs.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| |
Collapse
|
8
|
Borowik P, Grzywacz T, Tarakowski R, Tkaczyk M, Ślusarski S, Dyshko V, Oszako T. Development of a Low-Cost Electronic Nose with an Open Sensor Chamber: Application to Detection of Ciboria batschiana. SENSORS (BASEL, SWITZERLAND) 2023; 23:627. [PMID: 36679425 PMCID: PMC9866758 DOI: 10.3390/s23020627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In the construction of electronic nose devices, two groups of measurement setups could be distinguished when we take into account the design of electronic nose chambers. The simpler one consists of placing the sensors directly in the environment of the measured gas, which has an important advantage, in that the composition of the gas is not changed as the gas is not diluted. However, that has an important drawback in that it is difficult to clean sensors between measurement cycles. The second, more advanced construction, contains a pneumatic system transporting the gas inside a specially designed sensor chamber. A new design of an electronic nose gas sensor chamber is proposed, which consists of a sensor chamber with a sliding chamber shutter, equipped with a simple pneumatic system for cleaning the air. The proposal combines the advantages of both approaches to the sensor chamber designs. The sensors can be effectively cleared by the flow of clean air, while the measurements are performed in the open state when the sensors are directly exposed to the measured gas. Airflow simulations were performed to confirm the efficiency of clean air transport used for sensors' cleaning. The demonstrated electronic nose applies eight Figaro Co. MOS TGS series sensors, in which a transient response caused by a change of the exposition to measured gas, and change of heater voltage, was collected. The new electronic nose was tested as applied to the differentiation between the samples of Ciboria batschiana fungi, which is one of the most harmful pathogens of stored acorns. The samples with various coverage, thus various concentrations of the studied odor, were measured. The tested device demonstrated low noise and a good level of repetition of the measurements, with stable results during several hours of repetitive measurements during an experiment lasting five consecutive days. The obtained data allowed complete differentiation between healthy and infected samples.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Tomasz Grzywacz
- Institute of Theory of Electrical Engineering, Measurement and Information Systems, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland
| | - Sławomir Ślusarski
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland
| | - Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland
| |
Collapse
|
9
|
Avian C, Mahali MI, Putro NAS, Prakosa SW, Leu JS. Fx-Net and PureNet: Convolutional Neural Network architecture for discrimination of Chronic Obstructive Pulmonary Disease from smokers and healthy subjects through electronic nose signals. Comput Biol Med 2022; 148:105913. [PMID: 35940164 DOI: 10.1016/j.compbiomed.2022.105913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/28/2022] [Accepted: 07/23/2022] [Indexed: 11/03/2022]
Abstract
As one of the most reliable and significant indicators, Chronic Obstructive Pulmonary Disease (COPD) becomes a robust predictor of lung cancer early detection, the world's leading cause of cancer death. One of the methods is to analyze the Volatile Organic Compounds (VOCs) in exhaled breath using electronic noses (E-noses), which have become emerging tools for analyzing breath because of their potential and promising technology for diagnosing. However, the signal processing of the E-Nose sensor becomes vital in exposing information about the subject condition, which most researchers strive to accomplish. We proposed a Convolutional Neural Network (CNN) architecture to classify COPD in smokers and non-smokers, healthy subjects, and smokers from E-Nose signals to contribute to this field. Two models were constructed following E-Nose signal processing state-of-the-arts. One was by combined feature extraction and classifier, and the second was by CNN, which directly processed the raw signal. In addition, various feature extraction and classifier (Machine Learning and CNN) used in prior research were investigated. Using 3K and 5K Fold cross-validation results demonstrated that our proposed models outperformed in Kernel Principal Component Analysis (KPCA) with Fx-ConvNet and Pure-ConvNet. They all reached maximum F1-Score with zero standard deviation values indicating a consistent result. Further experiments also showed that KPCA contributed to the increasing performance of some classifiers with average F1-Score 0.933 and 0.068 as standard deviation values.
Collapse
Affiliation(s)
- Cries Avian
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Muhammad Izzuddin Mahali
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan; Department of Electronics and Informatics Engineering, Faculty of Engineering, Universitas Negeri Yogyakarta, Indonesia
| | - Nur Achmad Sulistyo Putro
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan; Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
| | - Setya Widyawan Prakosa
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Jenq-Shiou Leu
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
10
|
Sánchez R, Fernández A, Martín-Tornero E, Meléndez F, Lozano J, Martín-Vertedor D. Application of Digital Olfaction for Table Olive Industry. SENSORS (BASEL, SWITZERLAND) 2022; 22:5702. [PMID: 35957258 PMCID: PMC9370875 DOI: 10.3390/s22155702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The International Olive Council (IOC) established that olives must be free of odors, off-flavors, and absent of abnormal ongoing alterations or fermentations. The use of electronic devices could help when classifying defects in a fast, non-destructive, cheap, and environmentally friendly way. For all of that, table olives were evaluated according to IOC regulation in order to classify the defect predominant perceiving (DPP) of the table olives and their intensity. Abnormal fermentation defects of Spanish-style table olives were assessed previously by an IOC-validated tasting panel. 'Zapateria', 'Putrid', and 'Butyric' were the defects found at different concentrations. Different volatile compounds were identified by gas chromatography in altered table olives. The same samples were measured with an electronic nose device (E-nose). E-nose data combined with chemometrics algorithms, such as PCA and PLS-DA, were able to successfully discriminate between healthy and non-healthy table olives, being this last one also separated between the first and second categories. Volatile compounds obtained with gas chromatography could be related to the E-nose measuring and sensory analysis, being capable of matching the different defects with their correspondents' volatile compounds.
Collapse
Affiliation(s)
- Ramiro Sánchez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Fernández
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | | | - Félix Meléndez
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.L.)
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.L.)
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06071 Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06071 Badajoz, Spain
| |
Collapse
|
11
|
Sánchez R, Pérez-Nevado F, Montero-Fernández I, Lozano J, Meléndez F, Martín-Vertedor D. Application of Electronic Nose to Discriminate Species of Mold Strains in Synthetic Brines. Front Microbiol 2022; 13:897178. [PMID: 35602089 PMCID: PMC9120861 DOI: 10.3389/fmicb.2022.897178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
The chemical composition of the brine for Spanish-style table olives plays a crucial role during the fermentation process. Traditional laboratory analysis requires a high consumption of reagents, highly qualified personnel, sophisticated equipment, long analysis times, and large amounts of samples. Analysis carried out using an electronic nose (E-nose) offers an alternative, non-destructive technique and is useful in determining alterations in brines caused by microorganisms. In the present research, nine mold strains isolated from spoiled olives were inoculated in synthetic brines to determine the effect of microbial development on sensory quality, volatile profile, and the capacity of E-nose to discriminate altered brines from the healthy ones. The brines inoculated with the mold strains presented negative attributes related to aromas of mold, wood, leather, rancidity and, organic solvents among others. The highest intensity of defect was presented by the brines inoculated with the strains Galactomyces geotricum (G.G.2); three Penicillium expansum (P.E.3, P.E.4, and P.E.20); one Penicillium glabrum (P.G.19); three Aspergillus flavus (A.F.9, A.F.18, and A.F.21); and one Fusarium solani (F.S.11). A total of 19 volatile compounds were identified by gas chromatography. Sensory analysis allowed us to classify the synthetic brines based on the degree of alteration produced by the mold strains used. Also, the E-nose data were able to discriminate the inoculated brines regardless of the intensity of the defect. These results demonstrate the capacity of the E-nose to discriminate alterations in brines produced by molds, thereby making it a useful tool to be applied during the elaboration process to detect early alterations in table olive fermentation.
Collapse
Affiliation(s)
- Ramiro Sánchez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Badajoz, Spain
| | - Francisco Pérez-Nevado
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Badajoz, Spain
- *Correspondence: Francisco Pérez-Nevado,
| | - Ismael Montero-Fernández
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, University of Extremadura, Badajoz, Spain
| | - Jesús Lozano
- Research Institute of Agricultural Resources (INURA), Badajoz, Spain
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
| | - Félix Meléndez
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX, Junta of Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Badajoz, Spain
| |
Collapse
|
12
|
A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy. Toxins (Basel) 2022; 14:toxins14050323. [PMID: 35622570 PMCID: PMC9146547 DOI: 10.3390/toxins14050323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Mycotoxins should be monitored in order to properly evaluate corn silage safety quality. In the present study, corn silage samples (n = 115) were collected in a survey, characterized for concentrations of mycotoxins, and scanned by a NIR spectrometer. Random Forest classification models for NIR calibration were developed by applying different cut-offs to classify samples for concentration (i.e., μg/kg dry matter) or count (i.e., n) of (i) total detectable mycotoxins; (ii) regulated and emerging Fusarium toxins; (iii) emerging Fusarium toxins; (iv) Fumonisins and their metabolites; and (v) Penicillium toxins. An over- and under-sampling re-balancing technique was applied and performed 100 times. The best predictive model for total sum and count (i.e., accuracy mean ± standard deviation) was obtained by applying cut-offs of 10,000 µg/kg DM (i.e., 96.0 ± 2.7%) or 34 (i.e., 97.1 ± 1.8%), respectively. Regulated and emerging Fusarium mycotoxins achieved accuracies slightly less than 90%. For the Penicillium mycotoxin contamination category, an accuracy of 95.1 ± 2.8% was obtained by using a cut-off limit of 350 µg/kg DM as a total sum or 98.6 ± 1.3% for a cut-off limit of five as mycotoxin count. In conclusion, this work was a preliminary study to discriminate corn silage for high or low mycotoxin contamination by using NIR spectroscopy.
Collapse
|
13
|
New Detection Method for Fungal Infection in Silver Fir Seeds. FORESTS 2022. [DOI: 10.3390/f13030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Silver fir trees have cycles of low and high seed production, and thus it is necessary to collect seeds in high production years to save them for low production years to ensure the continuity of nursery production. Tree seeds can be stored loosely in piles or containers, but they need to be checked for viability before planting. The objective of this study was to find a quick and inexpensive method to determine the suitability of seed lots for planting. The working hypothesis was that an electronic nose device could be used to detect odors from fungi or from decomposing organic material, and thus aid in determination of whether seeds could be sown or discarded. To affirm and supplement results from the electronic nose, we used gas chromatography–mass spectrometry (GC-MS) to detect volatile secondary metabolites such as limonene and cadienes, which were found at the highest concentrations in both, infected and uninfected seeds. Uninfected seeds contained exceptionally high concentrations of pinene, which are known to be involved in plant resistance responses. Statistically higher levels of terpineol were found in infected seeds than in uninfected seeds. A prototype of our electronic nose partially discriminated between healthy and spoiled seeds, and between green and white fungal colonies grown on incubated seeds. These preliminary observations were encouraging and we plan to develop a practical device that will be useful for forestry and horticulture.
Collapse
|
14
|
Abu-Khalaf N, Masoud W. Electronic Nose for Differentiation and Quantification of Yeast Species in White Fresh Soft Cheese. Appl Bionics Biomech 2022; 2022:8472661. [PMID: 35082918 PMCID: PMC8786551 DOI: 10.1155/2022/8472661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Detection of food spoilage with simple and fast methods is an important issue in food security and safety. The present study is mainly aimed at identifying and quantifying four yeast species in white fresh soft cheese using an electronic nose (EN). The yeast species Pichia anomala, Pichia kluyveri, Hanseniaspora uvarum, and Debaryomyces hansenii were used. Six concentrations of each yeast species (100, 200, 400, 600, 800, and 1000 cells/g cheese) were inoculated in 100 g of fresh soft cheese and incubated for 48 h at 25°C. The EN was used to identify and quantify different yeast species in cheese samples. It was found that EN was able to discriminate between four yeast species using principal component analysis (PCA). Moreover, EN was able to quantify in good precision three (Pichia anomala, Pichia kluyveri, and Debaryomyces hansenii) of the four tested yeasts presented in cheese samples using partial least squares (PLS) models. It seems that EN is a reliable tool that can be used as a fast technique to identify and quantify cheese spoilage in the cheese industry.
Collapse
Affiliation(s)
- Nawaf Abu-Khalaf
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie (PTUK), P.O. Box 7, Jaffa Street, Tulkarm, State of Palestine
| | - Wafa Masoud
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie (PTUK), P.O. Box 7, Jaffa Street, Tulkarm, State of Palestine
| |
Collapse
|
15
|
Cerimi K, Jäckel U, Meyer V, Daher U, Reinert J, Klar S. In Vitro Systems for Toxicity Evaluation of Microbial Volatile Organic Compounds on Humans: Current Status and Trends. J Fungi (Basel) 2022; 8:75. [PMID: 35050015 PMCID: PMC8780961 DOI: 10.3390/jof8010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.
Collapse
Affiliation(s)
- Kustrim Cerimi
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Udo Jäckel
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Ugarit Daher
- BIH Center for Regenerative Therapies (BCRT), BIH Stem Cell Core Facility, Berlin Institute of Health, Charité—Universitätsmedizin, 13353 Berlin, Germany;
| | - Jessica Reinert
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| | - Stefanie Klar
- Unit 4.7 Biological Agents, Federal Institute for Occupational Safety and Health, Nöldnerstraße 40–42, 10317 Berlin, Germany; (U.J.); (J.R.); (S.K.)
| |
Collapse
|
16
|
Liu H, Wu R, Guo Q, Hua Z, Wu Y. Electronic Nose Based on Temperature Modulation of MOS Sensors for Recognition of Excessive Methanol in Liquors. ACS OMEGA 2021; 6:30598-30606. [PMID: 34805688 PMCID: PMC8600621 DOI: 10.1021/acsomega.1c04350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/27/2021] [Indexed: 05/08/2023]
Abstract
An electronic nose based on metal oxide semiconductor (MOS) sensors has been used to identify liquors with excessive methanol. The technique for a square wave temperature modulated MOS sensor was applied to generate the response patterns and a back-propagation neural network was used for pattern recognition. The parameters of temperature modulation were optimized according to the difference in response features of target gases (methanol and ethanol). Liquors with excessive methanol were qualitatively and quantitatively identified by the neural network. The results showed that our electronic nose system could well identify the liquors with excessive methanol with more than 92% accuracy. This electronic nose based on temperature modulation is a promising portable adjunct to other available techniques for quality assurance of liquors and other alcoholic beverages.
Collapse
Affiliation(s)
- Huabin Liu
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruijie Wu
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qianyu Guo
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhongqiu Hua
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yi Wu
- Tianjin Key Laboratory of
Electronic Materials and Devices, School of Electronic and Information
Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
17
|
Borowik P, Adamowicz L, Tarakowski R, Wacławik P, Oszako T, Ślusarski S, Tkaczyk M. Development of a Low-Cost Electronic Nose for Detection of Pathogenic Fungi and Applying It to Fusarium oxysporum and Rhizoctonia solani. SENSORS (BASEL, SWITZERLAND) 2021; 21:5868. [PMID: 34502763 PMCID: PMC8433741 DOI: 10.3390/s21175868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Electronic noses can be applied as a rapid, cost-effective option for several applications. This paper presents the results of measurements of samples of two pathogenic fungi, Fusarium oxysporum and Rhizoctonia solani, performed using two constructions of a low-cost electronic nose. The first electronic nose used six non-specific Figaro Inc. metal oxide gas sensors. The second one used ten sensors from only two models (TGS 2602 and TGS 2603) operating at different heater voltages. Sets of features describing the shapes of the measurement curves of the sensors' responses when exposed to the odours were extracted. Machine learning classification models using the logistic regression method were created. We demonstrated the possibility of applying the low-cost electronic nose data to differentiate between the two studied species of fungi with acceptable accuracy. Improved classification performance could be obtained, mainly for measurements using TGS 2603 sensors operating at different voltage conditions.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Leszek Adamowicz
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Przemysław Wacławik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (T.O.); (S.Ś.); (M.T.)
| | - Sławomir Ślusarski
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (T.O.); (S.Ś.); (M.T.)
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (T.O.); (S.Ś.); (M.T.)
| |
Collapse
|
18
|
Optimization of Classification Prediction Performances of an Instrumental Odour Monitoring System by Using Temperature Correction Approach. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Odour emissions generated by industrial and environmental protection plants are often a cause of nuisances and consequent conflicts in exposed populations. Their control is a key action to avoid complaints. Among the odour measurement techniques, the sensory-instrumental method with the application of Instrumental Odour Monitoring Systems (IOMSs) currently represents an effective solution to allow a continuous classification and quantification of odours in real time, combining the advantages of conventional analytical and sensorial techniques. However, some aspects still need to be improved. The study presents and discusses the investigation and optimization of the operational phases of an advanced IOMS, applied for monitoring of environmental odours, with the aim of increasing their performances and reliability of the measures. Accuracy rates of over 98% were reached in terms of classification performances. The implementation of automatic correction systems for the resistance values of the measurement sensors, by considering the influence of the temperature, has been proven to be a solution to further improve the reliability of IOMS. The proposed approach was based on the application of corrective coefficients experimentally determined by analyzing the correlation between resistance values and operating conditions. The paper provides useful information for the implementation of real-time management activities by using a tailor-made software, able to increase and enlarge the IOMS fields of application.
Collapse
|