1
|
Visagie JL, Aruwajoye GS, van der Sluis R. Pharmacokinetics of aspirin: evaluating shortcomings in the literature. Expert Opin Drug Metab Toxicol 2024:1-14. [PMID: 39092921 DOI: 10.1080/17425255.2024.2386368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Aspirin is known for its therapeutic benefits in preventing strokes and relieving pain. However, it is toxic to some individuals, and the biological mechanisms causing toxicity are unknown. Limited literature is available on the role of glycine conjugation as the principal pathway in aspirin detoxification. Previous studies have quantified this two-step enzyme reaction as a singular enzymatic process. Consequently, the individual contributions of these enzymes to the kinetics remain unclear. AREAS COVERED This review summarized the available information on the pharmacokinetics and detoxification of aspirin by the glycine conjugation pathway. Literature searches were conducted using Google Scholar and the academic journal databases accessible through the North-West University Library. Furthermore, the factors affecting interindividual variation in aspirin metabolism and what is known regarding aspirin toxicity were discussed. EXPERT OPINION The greatest drawback in understanding the pharmacokinetics of aspirin is the limited information available on the substrate preference of the xenobiotic ligase (ACSM) responsible for activating salicylate to salicyl-CoA. Furthermore, previous pharmacokinetic studies did not consider the contribution of other substrates from the diet or genetic variants, to the detoxification rate of glycine conjugation. Impaired glycine conjugation might contribute to adverse health effects seen in Reye's syndrome and cancer.
Collapse
Affiliation(s)
- Jacobus Lukas Visagie
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Boysen G, Rusyn I, Chiu WA, Wright FA. Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice. Regul Toxicol Pharmacol 2022; 132:105171. [DOI: 10.1016/j.yrtph.2022.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
3
|
Darney K, Lautz LS, Béchaux C, Wiecek W, Testai E, Amzal B, Dorne JLCM. Human variability in polymorphic CYP2D6 metabolism: Implications for the risk assessment of chemicals in food and emerging designer drugs. ENVIRONMENT INTERNATIONAL 2021; 156:106760. [PMID: 34256299 DOI: 10.1016/j.envint.2021.106760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The major human cytochrome P450 CYP2D6 isoform enzyme plays important roles in the liver and in the brain with regards to xenobiotic metabolism. Xenobiotics as CYP2D6 substrates include a whole range of pharmaceuticals, pesticides and plant alkaloids to cite but a few. In addition, a number of endogenous compounds have been shown to be substrates of CYP2D6 including trace amines in the brain such as tyramine and 5-methoxytryptamine as well as anandamide and progesterone. Because of the polymorphic nature of CYP2D6, considerable inter-phenotypic and inter-ethnic differences in the pharmaco/toxicokinetics (PK/TK) and metabolism of CYP2D6 substrates exist with potential consequences on the pharmacology and toxicity of chemicals. Here, large extensive literature searches have been performed to collect PK data from published human studies for a wide range of pharmaceutical probe substrates and investigate human variability in CYP2D6 metabolism. The computed kinetic parameters resulted in the largest open source database, quantifying inter-phenotypic differences for the kinetics of CYP2D6 probe substrates in Caucasian and Asian populations, to date. The database is available in supplementary material (CYPD6 DB) and EFSA knowledge junction (DOI to added). Subsequently, meta-analyses using a hierarchical Bayesian model for markers of chronic oral exposure (oral clearance, area under the plasma concentration time curve) and acute oral exposure (maximum plasma concentration (Cmax) provided estimates of inter-phenotypic differences and CYP2D6-related uncertainty factors (UFs) for chemical risk assessment in Caucasian and Asian populations classified as ultra-rapid (UM), extensive (EMs), intermediate (IMs) and poor metabolisers (PMs). The model allowed the integration of inter-individual (i.e. inter-phenotypic and inter-ethnic), inter-compound and inter-study variability together with uncertainty in each PK parameter. Key findings include 1. Higher frequencies of PMs in Caucasian populations compared to Asian populations (>8% vs 1-2%) for which EM and IM were the most frequent phenotype. 2. Large inter-phenotypic differences in PK parameters for Caucasian EMs (coefficients of variation (CV) > 50%) compared with Caucasian PMs and Asian EMs and IMs (i.e CV < 40%). 3. Inter-phenotypic PK differences between EMs and PMs in Caucasian populations increase with the quantitative contribution of CYP2D6 for the metabolism (fm) for a range of substrates (fmCYP2D6 range: 20-95% of dose) (range: 1-54) to a much larger extent than those for Asian populations (range: 1-4). 4. Exponential meta-regressions between FmCYP2D6 in EMs and inter-phenotypic differences were also shown to differ between Caucasian and Asian populations as well as CYP2D6-related UFs. Finally, implications of these results for the risk assessment of food chemicals and emerging designer drugs of public health concern, as CYP2D6 substrates, are highlighted and include the integration of in vitro metabolism data and CYP2D6-variability distributions for the development of quantitative in vitro in vivo extrapolation models.
Collapse
Affiliation(s)
- K Darney
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - L S Lautz
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - C Béchaux
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - W Wiecek
- Certara UK Ltd, Audrey House, 5th Floor, 16-20 Ely Place, London EC1N 6SN, United Kingdom
| | - E Testai
- Istituto Superior di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - B Amzal
- Quinten Health, 75017 Paris, France
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno,1A, 43126 Parma, Italy.
| |
Collapse
|
4
|
OpenCYP: An open source database exploring human variability in activities and frequencies of polymophisms for major cytochrome P-450 isoforms across world populations. Toxicol Lett 2021; 350:267-282. [PMID: 34352333 DOI: 10.1016/j.toxlet.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
The open source database "OpenCYP database" has been developed based on the results of extensive literature searches from the peer-reviewed literature. OpenCYP provides data on human variability on baseline of activities and polymophism frequencies for selected cytochrome P-450 isoforms (CYP1A2, CYP2A6, CYP2D6, CYP3A4/3A5 and CYP3A7) in healthy adult populations from world populations. CYP enzymatic activities were generally expressed as the metabolic ratio (MR) between an unchanged probe drug and its metabolite(s) in urine or plasma measured in healthy adults. Data on other age groups were very limited and fragmented, constituting an important data gap. Quantitative comparisons were often hampered by the different experimental conditions used. However, variability was quite limited for CYP1A2, using caffeine as a probe substrate, with a symmetrical distribution of metabolic activity values. For CYP3A4, human variability was dependent on the probe substrate itself with low variability when data considering the dextromethorphan/demethilathed metabolite MR were used and large variability when the urinary 6β-hydroxycortisol/cortisol ratio was used. The largest variability in CYP activity was shown for CYP2D6 activity, after oral dosing of dextromethorphan, for which genetic polymorphisms are well characterised and constitute a significant source of variability. It is foreseen that the OpenCYP database can contribute to promising tools to support the further development of QIVIVE and PBK models for human risk assessment of chemicals particularly when combined with information on isoform-specific content in cells using proteomic approaches.
Collapse
|
5
|
Quignot N, Więcek W, Lautz L, Dorne JL, Amzal B. Inter-phenotypic differences in CYP2C9 and CYP2C19 metabolism: Bayesian meta-regression of human population variability in kinetics and application in chemical risk assessment. Toxicol Lett 2020; 337:111-120. [PMID: 33232775 DOI: 10.1016/j.toxlet.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Quantifying variability in pharmacokinetics (PK) and toxicokinetics (TK) provides a science-based approach to refine uncertainty factors (UFs) for chemical risk assessment. In this context, genetic polymorphisms in cytochromes P450 (CYPs) drive inter-phenotypic differences and may result in reduction or increase in metabolism of drugs or other xenobiotics. Here, an extensive literature search was performed to identify PK data for probe substrates of the human polymorphic isoforms CYP2C9 and CYP2C19. Relevant data from 158 publications were extracted for markers of chronic exposure (clearance and area under the plasma concentration-time curve) and analysed using a Bayesian meta-regression model. Enzyme function (EF), driven by inter-phenotypic differences across a range of allozymes present in extensive and poor metabolisers (EMs and PMs), and fraction metabolised (Fm), were identified as exhibiting the highest impact on the metabolism. The Bayesian meta-regression model provided good predictions for such inter-phenotypic differences. Integration of population distributions for inter-phenotypic differences and estimates for EF and Fm allowed the derivation of CYP2C9- and CYP2C19-related UFs which ranged from 2.7 to 12.7, and were above the default factor for human variability in TK (3.16) for PMs and major substrates (Fm >60%). These results provide population distributions and pathway-related UFs as conservative in silico options to integrate variability in CYP2C9 and CYP2C19 metabolism using in vitro kinetic evidence and in the absence of human data. The future development of quantitative extrapolation models is discussed with particular attention to integrating human in vitro and in vivo PK or TK data with pathway-related variability for chemical risk assessment.
Collapse
Affiliation(s)
| | | | - Leonie Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-Lou Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | | |
Collapse
|
6
|
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment. Food Chem Toxicol 2020; 140:111305. [DOI: 10.1016/j.fct.2020.111305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
7
|
Darney K, Testai E, Buratti FM, Di Consiglio E, Kasteel EE, Kramer N, Turco L, Vichi S, Roudot AC, Dorne JL, Béchaux C. Inter-ethnic differences in CYP3A4 metabolism: A Bayesian meta-analysis for the refinement of uncertainty factors in chemical risk assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Wiecek W, Dorne JL, Quignot N, Bechaux C, Amzal B. A generic Bayesian hierarchical model for the meta-analysis of human population variability in kinetics and its applications in chemical risk assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Quignot N, Wiecek W, Amzal B, Dorne JL. The Yin–Yang of CYP3A4: a Bayesian meta-analysis to quantify inhibition and induction of CYP3A4 metabolism in humans and refine uncertainty factors for mixture risk assessment. Arch Toxicol 2018; 93:107-119. [DOI: 10.1007/s00204-018-2325-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
|
10
|
O'Hara K. Pharmacokinetic changes with growth and development between birth and adulthood. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2017. [DOI: 10.1002/jppr.1373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kate O'Hara
- Pharmacy Department; Canberra Hospital and Health Service; Canberra Australia
| |
Collapse
|
11
|
Zu K, Pizzurro DM, Lewandowski TA, Goodman JE. Pharmacokinetic data reduce uncertainty in the acceptable daily intake for benzoic acid and its salts. Regul Toxicol Pharmacol 2017; 89:83-94. [PMID: 28720346 DOI: 10.1016/j.yrtph.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023]
Abstract
The current acceptable daily intake (ADI) for benzoic acid and its salts as food additives is 0-5 mg/kg body weight. This accounts for a total uncertainty factor (UF) of 100, which includes a default factor of 10 for interspecies differences. Based on pharmacokinetic data in rodents and humans, we derived a chemical-specific adjustment factor (CSAF) of 2 for the pharmacokinetic component of the interspecies UF. Additional analyses indicate that this CSAF is conservative and interspecies differences between rats and humans are likely closer to unity. Human clinical studies indicate that the pharmacokinetics of benzoic acid and its salts are similar in children and adults, and that there is a lack of adverse events in humans at doses comparable to the no observed adverse effect level (NOAEL) in rodents; this suggests that the pharmacokinetic UF for intraspecies variability, as well as the pharmacodynamic components of the UFs, may also be reduced, although we did not calculate to what degree. In conclusion, the total UF can be reduced to 50 (2 for interspecies differences in pharmacokinetics, 2.5 for interspecies differences in pharmacodynamics, and 10 for intraspecies variability), which would increase the ADI to 0-10 mg/kg body weight.
Collapse
Affiliation(s)
- K Zu
- Gradient, 20 University Road, Cambridge, MA, 02138, USA
| | - D M Pizzurro
- Gradient, 20 University Road, Cambridge, MA, 02138, USA
| | - T A Lewandowski
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA
| | - J E Goodman
- Gradient, 20 University Road, Cambridge, MA, 02138, USA.
| |
Collapse
|
12
|
Felter SP, Daston GP, Euling SY, Piersma AH, Tassinari MS. Assessment of health risks resulting from early-life exposures: Are current chemical toxicity testing protocols and risk assessment methods adequate? Crit Rev Toxicol 2015; 45:219-44. [PMID: 25687245 DOI: 10.3109/10408444.2014.993919] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Over the last couple of decades, the awareness of the potential health impacts associated with early-life exposures has increased. Global regulatory approaches to chemical risk assessment are intended to be protective for the diverse human population including all life stages. However, questions persist as to whether the current testing approaches and risk assessment methodologies are adequately protective for infants and children. Here, we review physiological and developmental differences that may result in differential sensitivity associated with early-life exposures. It is clear that sensitivity to chemical exposures during early-life can be similar, higher, or lower than that of adults, and can change quickly within a short developmental timeframe. Moreover, age-related exposure differences provide an important consideration for overall susceptibility. Differential sensitivity associated with a life stage can reflect the toxicokinetic handling of a xenobiotic exposure, the toxicodynamic response, or both. Each of these is illustrated with chemical-specific examples. The adequacy of current testing protocols, proposed new tools, and risk assessment methods for systemic noncancer endpoints are reviewed in light of the potential for differential risk to infants and young children.
Collapse
|
13
|
Huizer D, Huijbregts MA, van Rooij JG, Ragas AM. Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: The case of 2-propanol and acetone. Regul Toxicol Pharmacol 2014; 69:408-15. [DOI: 10.1016/j.yrtph.2014.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
14
|
Valcke M, Krishnan K. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants. J Appl Toxicol 2013; 34:227-40. [PMID: 24038072 DOI: 10.1002/jat.2919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
Abstract
A default uncertainty factor of 3.16 (√10) is applied to account for interindividual variability in toxicokinetics when performing non-cancer risk assessments. Using relevant human data for specific chemicals, as WHO/IPCS suggests, it is possible to evaluate, and replace when appropriate, this default factor by quantifying chemical-specific adjustment factors for interindividual variability in toxicokinetics (also referred to as the human kinetic adjustment factor, HKAF). The HKAF has been determined based on the distributions of pharmacokinetic parameters (e.g., half-life, area under the curve, maximum blood concentration) in relevant populations. This article focuses on the current state of knowledge of the use of physiologically based algorithms and models in characterizing the HKAF for environmental contaminants. The recent modeling efforts on the computation of HKAF as a function of the characteristics of the population, chemical and its mode of action (dose metrics), as well as exposure scenario of relevance to the assessment are reviewed here. The results of these studies, taken together, suggest the HKAF varies as a function of the sensitive subpopulation and dose metrics of interest, exposure conditions considered (route, duration, and intensity), metabolic pathways involved and theoretical model underlying its computation. The HKAF seldom exceeded the default value of 3.16, except in very young children (i.e., <≈ 3 months) and when the parent compound is the toxic moiety. Overall, from a public health perspective, the current state of knowledge generally suggest that the default uncertainty factor is sufficient to account for human variability in non-cancer risk assessments of environmental contaminants.
Collapse
Affiliation(s)
- Mathieu Valcke
- Département de santé environnementale et santé au travail, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec, Canada, H3C 3 J7; Institut national de santé publique du Québec, 190 Boul. Crémazie Est, Montréal, QC, Canada, H2P 1E2
| | | |
Collapse
|
15
|
Badenhorst CPS, van der Sluis R, Erasmus E, van Dijk AA. Glycine conjugation: importance in metabolism, the role of glycine N-acyltransferase, and factors that influence interindividual variation. Expert Opin Drug Metab Toxicol 2013; 9:1139-53. [PMID: 23650932 DOI: 10.1517/17425255.2013.796929] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glycine conjugation of mitochondrial acyl-CoAs, catalyzed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterized in detail. Here, we review the causes and possible consequences of interindividual variation in the glycine conjugation pathway. AREAS COVERED The authors review the importance of CoASH in metabolism, formation and toxicity of xenobiotic acyl-CoAs, and mechanisms for restoring levels of CoASH. They focus on GLYAT, glycine conjugation, how genetic variation in the GLYAT gene could influence glycine conjugation, and the emerging roles of glycine metabolism in cancer and musculoskeletal development. EXPERT OPINION The substrate selectivity of GLYAT and its variants needs to be further characterized, as organic acids can be toxic if the corresponding acyl-CoA is not a substrate for glycine conjugation. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability, and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development, and mitochondrial energy metabolism.
Collapse
|
16
|
Correlations between the selected parameters of the chemical structure of drugs and between-subject variability in area under the curve. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Huizer D, Oldenkamp R, Ragas AM, van Rooij JG, Huijbregts MA. Separating uncertainty and physiological variability in human PBPK modelling: The example of 2-propanol and its metabolite acetone. Toxicol Lett 2012; 214:154-65. [DOI: 10.1016/j.toxlet.2012.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
|
18
|
Valcke M, Krishnan K. An assessment of the impact of physico-chemical and biochemical characteristics on the human kinetic adjustment factor for systemic toxicants. Toxicology 2011; 286:36-47. [DOI: 10.1016/j.tox.2011.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022]
|
19
|
Dorne JLCM. Metabolism, variability and risk assessment. Toxicology 2009; 268:156-64. [PMID: 19932147 DOI: 10.1016/j.tox.2009.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 12/25/2022]
Abstract
For non-genotoxic carcinogens, "thresholded toxicants", Acceptable/Tolerable Daily Intakes (ADI/TDI) represent a level of exposure "without appreciable health risk" when consumed everyday or weekly for a lifetime and are derived by applying an uncertainty factor of a 100-fold to a no-observed-adverse-effect-levels (NOAEL) or to a benchmark dose. This UF allows for interspecies differences and human variability and has been subdivided to take into account toxicokinetics and toxicodynamics with even values of 10(0.5) (3.16) for the human aspect. Ultimately, such refinements allow for chemical-specific adjustment factors and physiologically based models to replace such uncertainty factors. Intermediate to chemical-specific adjustment factors are pathway-related uncertainty factors which have been derived for phase I, phase II metabolism and renal excretion. Pathway-related uncertainty factors are presented here as derived from the result of meta-analyses of toxicokinetic variability data in humans using therapeutic drugs metabolised by a single pathway in subgroups of the population. Pathway-related lognormal variability was derived for each metabolic route. The resulting pathway-related uncertainty factors showed that the current uncertainty factor for toxicokinetics (3.16) would not cover human variability for genetic polymorphism and age differences (neonates, children, the elderly). Latin hypercube (Monte Carlo) models have also been developed using quantitative metabolism data and pathway-related lognormal variability to predict toxicokinetics variability and uncertainty factors for compounds handled by several metabolic routes. For each compound, model results gave accurate predictions compared to published data and observed differences arose from data limitations, inconsistencies between published studies and assumptions during model design and sampling. Finally, under the 6(th) framework EU project NOMIRACLE (http://viso.jrc.it/nomiracle/), novel methods to improve the risk assessment of chemical mixtures were explored (1) harmonization of the use of uncertainty factors for human and ecological risk assessment using mechanistic descriptors (2) use of toxicokinetics interaction data to derive UFs for chemical mixtures. The use of toxicokinetics data in risk assessment are discussed together with future approaches including sound statistical approaches to optimise predictability of models and recombinant technology/toxicokinetics assays to identify metabolic routes for chemicals and screen mixtures of environmental health importance.
Collapse
Affiliation(s)
- J L C M Dorne
- University of Southampton, Clinical Pharmacology Group, Institute of Human Nutrition, School of Medicine, Southampton, UK.
| |
Collapse
|
20
|
|
21
|
Nong A, Krishnan K. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach. Regul Toxicol Pharmacol 2007; 48:93-101. [PMID: 17367907 DOI: 10.1016/j.yrtph.2007.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Indexed: 10/23/2022]
Abstract
The derivation of reference concentrations (RfCs) for systemically acting volatile organic chemicals (VOCs) uses a default factor of 10 to account for the interindividual variability in pharmacokinetics (PK) and pharmacodynamics (PD). The magnitude of the PK component of the interindividual variability factor (IVF; also referred to as human kinetic adjustment factor (HKAF)) has previously been estimated using Monte Carlo approaches and physiologically based pharmacokinetic (PBPK) models. Since the RfC derivation considers continuous lifetime human exposure to VOCs in the environment, algorithms to compute steady-state internal dose (SS-ID), such as steady-state arterial blood concentration (Ca) and the steady-state rate of amount metabolized (RAM), can be used to derive IVF-PKs. In this context, probability-bounds (P-bounds) approach is potentially useful for computing an interval of probability distribution of SS-ID from knowledge of population distribution of input parameters. The objective of this study was therefore to compute IVF-PK using the P-bounds approach along with an algorithm for SS-ID in an adult population exposed to VOCs. The existing steady-state algorithms, derived from PBPK models, were rewritten such that SS-ID could be related, without any interdependence, to the following input parameters: alveolar ventilation (Qp), hepatic blood flow (Ql), intrinsic clearance (CL(int)) and blood:air partition coefficient (Pb). The IVF-PK was calculated from the P-bounds of SS-ID corresponding to the 50th and 95th percentiles. Following either specification of probability distribution-free bounds (characterized by minimal, maximal, and mean values) or distribution-defined values (mean, standard deviation and shape of probability distribution where: Qp=lognormal, Ql=lognormal, CL(int)=lognormal and Pb=normal) in RAMAS Risk Calc software version 3.0 (Applied Biomathematics, Setauket, NY), the P-bound estimates of SS-ID for benzene, carbon tetrachloride, chloroform and methyl chloroform were obtained for low level exposures (1ppm). Using probability distribution-defined inputs, the IVF-PK for benzene, carbon tetrachloride, chloroform and methyl chloroform were, respectively, 1.18, 1.28, 1.24, and 1.18 (based on P-bounds for Ca), and 1.31, 1.58, 1.30, and 1.24 (based on P-bounds for RAM). A validation of the P-bounds computation was performed by comparing the results with those obtained using Monte Carlo simulation of the steady-state algorithms. In data-poor situations, when the statistical distributions for all input parameters were not known or available, the P-bounds approach allowed the estimation of IVF-PK. The use of P-bounds method along with steady-state algorithms, as done in this study for the first time, is a practical and scientifically sound way of computing IVF-PKs for systemically acting VOCs.
Collapse
Affiliation(s)
- Andy Nong
- Groupe deRecherche Interdisciplinaire en Santé and Groupe de Recherche en Toxicologie Humaine TOXHUM, Faculté de Médecine, Université de Montréal, Montreal, Que., Canada
| | | |
Collapse
|
22
|
Falk-Filipsson A, Hanberg A, Victorin K, Warholm M, Wallén M. Assessment factors--applications in health risk assessment of chemicals. ENVIRONMENTAL RESEARCH 2007; 104:108-27. [PMID: 17166493 DOI: 10.1016/j.envres.2006.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 10/03/2006] [Accepted: 10/17/2006] [Indexed: 05/13/2023]
Abstract
We review the scientific basis for default assessment factors used in risk assessment of nongenotoxic chemicals including the use of chemical- and pathways specific assessment factors, and extrapolation approaches relevant to species differences, age and gender. One main conclusion is that the conventionally used default factor of 100 does not cover all inter-species and inter-individual differences. We suggest that a species-specific default factor based on allometric scaling should be used for inter-species extrapolation (basal metabolic rate). Regarding toxicodynamic and remaining toxicokinetic differences we suggest that a percentile from a probabilistic distribution is chosen to derive the assessment factor. Based on the scarce information concerning the human-to-human variability it is more difficult to suggest a specific assessment factor. However, extra emphasis should be put on sensitive populations such as neonates and genetically sensitive subgroups, and also fetuses and children which may be particularly vulnerable during development and maturation. Factors that also need to be allowed for are possible gender differences in sensitivity, deficiencies in the databases, nature of the effect, duration of exposure, and route-to-route extrapolation. Since assessment factors are used to compensate for lack of knowledge we feel that it is prudent to adopt a "conservative" approach, erring on the side of protectiveness.
Collapse
|
23
|
Dorne JLCM. Human variability in hepatic and renal elimination: implications for risk assessment. J Appl Toxicol 2007; 27:411-20. [PMID: 17497760 DOI: 10.1002/jat.1255] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hepatic metabolism and renal excretion constitute the main routes of xenobiotic elimination in humans. Improving human risk assessment for threshold contaminants requires the incorporation of quantitative data related to their elimination (toxicokinetics) and potential toxic effects (toxicodynamics). This type of data provides a scientific basis to replace the standard uncertainty factor (UF = 10) allowing for the consideration of human variability in toxicokinetics and toxicodynamics. This review focuses on recent research efforts aiming to incorporate human variability in hepatic and renal elimination (toxicokinetics) into the risk assessment process. A therapeutic drug database was developed to quantify pathway-related variability in human phase I and phase II hepatic metabolism as well as renal excretion in subgroups of the population (healthy adults, neonates and the elderly), using data on compounds cleared primarily through each route (> 60% dose). For each subgroup of the population and elimination route, pathway-related UFs were then derived to cover 95-99% of each subgroup. Overall, the default toxicokinetic UFs would not cover neonates, the elderly for most elimination routes and any subgroup of the population for compounds metabolized via polymorphic isozymes (such as CYP2C19 and CYP2D6). These pathway-related UFs allow the incorporation of in vivo metabolism and toxicokinetic data in the risk assessment process and provide a flexible intermediate option between the default UF and chemical-specific adjustment factors (CSAFs) derived from physiologically based pharmacokinetic models. Implications of human variability in hepatic metabolism and renal excretion for chemical risk assessment are discussed.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
24
|
Dorne JLCM, Skinner L, Frampton GK, Spurgeon DJ, Ragas AMJ. Human and environmental risk assessment of pharmaceuticals: differences, similarities, lessons from toxicology. Anal Bioanal Chem 2006; 387:1259-68. [PMID: 17186225 DOI: 10.1007/s00216-006-0963-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/13/2006] [Accepted: 10/24/2006] [Indexed: 12/22/2022]
Abstract
The presence of human and veterinary pharmaceuticals in the environment has caused increasing concern due their effects on ecological receptors. Improving the risk assessment of these compounds necessitates a quantitative understanding of their metabolism and elimination in the target organism (toxicokinetics), particularly via the ubiquitous cytochrome P-450 (CYP) system and their mechanisms of toxicity (toxicodynamics). This review focuses on a number of pharmaceuticals and veterinary medicines of environmental concern, and the differences and similarities between ecological and human risk assessment. CYP metabolism is discussed with particular reference to its ubiquity in species of ecological relevance. The important issue of pharmaceutical mixtures is discussed to assess how emerging technologies such as ecotoxicogenomics may assist in moving towards a more mechanism-based environmental risk assessment of pharmaceuticals.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | | | | | | | |
Collapse
|
25
|
Barton HA, Pastoor TP, Baetcke K, Chambers JE, Diliberto J, Doerrer NG, Driver JH, Hastings CE, Iyengar S, Krieger R, Stahl B, Timchalk C. The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments. Crit Rev Toxicol 2006; 36:9-35. [PMID: 16708693 DOI: 10.1080/10408440500534362] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studies are scientifically appropriate and necessary without being redundant, and that tests emphasize toxicological endpoints and exposure durations that are relevant for risk assessment. Incorporation of pharmacokinetic studies describing absorption, distribution, metabolism, and excretion is an essential tool for improving the design and interpretation of toxicity studies and their application for safety assessment. A tiered approach is described in which basic pharmacokinetic studies, similar to those for pharmaceuticals, are conducted for regulatory submission. Subsequent tiers provide additional information in an iterative manner, depending on pharmacokinetic properties, toxicity study results, and the intended uses of the compound.
Collapse
Affiliation(s)
- Hugh A Barton
- U.S. Environmental Protection Agency, National Centerfor Computational Toxicology, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Edginton AN, Schmitt W, Voith B, Willmann S. A Mechanistic Approach for the Scaling of Clearance in Children. Clin Pharmacokinet 2006; 45:683-704. [PMID: 16802850 DOI: 10.2165/00003088-200645070-00004] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVE Clearance is an important pharmacokinetic concept for scaling dosage, understanding the risks of drug-drug interactions and environmental risk assessment in children. Accurate clearance scaling to children requires prior knowledge of adult clearance mechanisms and the age-dependence of physiological and enzymatic development. The objective of this research was to develop and evaluate ontogeny models that would provide an assessment of the age-dependence of clearance. METHODS Using in vitro data and/or in vivo clearance values for children for eight compounds that are eliminated primarily by one process, models for the ontogeny of renal clearance, cytochrome P450 (CYP) 3A4, CYP2E1, CYP1A2, uridine diphosphate glucuronosyltransferase (UGT) 2B7, UGT1A6, sulfonation and biliary clearance were developed. Resulting ontogeny models were evaluated using six compounds that demonstrated elimination via multiple pathways. The proportion of total clearance attributed to each clearance pathway in adults was delineated. Each pathway was individually scaled to the desired age, inclusive of protein-binding prediction, and summed to generate a total plasma clearance for the child under investigation. The paediatric age range included in the study was premature neonates to sub-adults. RESULTS There was excellent correlation between observed and predicted clearances for the model development (R2 = 0.979) and test sets (Q2 = 0.927). Clearance in premature neonates could also be well predicted (development R2 = 0.951; test Q2 = 0.899). CONCLUSION Paediatric clinical trial development could greatly benefit from clearance scaling, particularly in guiding dosing regimens. Furthermore, since the proportion of clearance via different elimination pathways is age-dependent, information could be gained on the developmental extent of drug-drug interactions.
Collapse
Affiliation(s)
- Andrea N Edginton
- Competence Center Systems Biology, Bayer Technology Services GmbH, Leverkusen, Germany.
| | | | | | | |
Collapse
|
27
|
Davidovic M, Milosevic DP. Are all dilemmas in gerontology being swept under the carpet of intra-individual variability? Med Hypotheses 2005; 66:432-6. [PMID: 16226393 DOI: 10.1016/j.mehy.2005.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/21/2005] [Accepted: 08/22/2005] [Indexed: 11/16/2022]
Abstract
It is considered that there are great differences among elderly individuals, because the intra-individual variability is great. The differences among specific individuals grow with their age, so when adults reach a very old age, it seems that there are great differences among them--some are able to do some work, the others are not so able-bodied, whereas among high school students there is usually little difference in their physical ability. The research that supports the above mentioned points, however, does not exist and this opinion came about as a result of deduction. The goal of this study is to examine the fluctuations in the elderly and prove that the genetic difference plays a bigger role than the variability, as the intra-individual (or the between-person) variability is present everywhere, not only in very old people.
Collapse
Affiliation(s)
- Mladen Davidovic
- Geriatric Clinic KBC Zvezdara, 1 Rifata Burdzevica 31, 11050 Beograd, Serbia and Montenegro.
| | | |
Collapse
|
28
|
Dorne JLCM, Renwick AG. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. Toxicol Sci 2005; 86:20-6. [PMID: 15800035 DOI: 10.1093/toxsci/kfi160] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The derivation of safe levels of exposure in humans for compounds that are assumed to cause threshold toxicity has relied on the application of a 100-fold uncertainty factor to a measure for the threshold, such as the no observed adverse effect level (NOAEL) or the benchmark dose (BMD). This 100-fold safety factor consists of the product of two 10-fold factors allowing for human variability and interspecies differences. The International Programme on Chemical Safety has suggested the subdivision of these 10-fold factors to allow for variability in toxicokinetics and toxicodynamics. This subdivision allows the replacement of the default uncertainty factors with a chemical-specific adjustment factor (CSAF) when suitable data are available. This short review describes potential options to refine safety factors used in risk assessment, with particular emphasis on pathway-related uncertainty factors associated with variability in kinetics. These pathway-related factors were derived from a database that quantified interspecies differences and human variability in phase I metabolism, phase II metabolism, and renal excretion. This approach allows metabolism and pharmacokinetic data in healthy adults and subgroups of the population to be incorporated in the risk-assessment process and constitutes an intermediate approach between simple default factors and chemical-specific adjustment factors.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | |
Collapse
|
29
|
Dorne JLCM, Walton K, Renwick AG. Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol 2005; 43:203-16. [PMID: 15621332 DOI: 10.1016/j.fct.2004.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 05/21/2004] [Indexed: 11/24/2022]
Abstract
This review provides an account of recent developments arising from a database that defined human variability in phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferases, glucuronidation, glycine conjugation, sulphation) and renal excretion. This database was used to derive pathway-related uncertainty factors for chemical risk assessment that allow for human variability in toxicokinetics. Probe substrates for each pathway of elimination were selected on the basis that oral absorption was >95% and that the metabolic route was the primary route of elimination of the compound (60-100% of a dose). Intravenous data were used for compounds for which absorption was variable. Human variability in kinetics was quantified for each compound from published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and other subgroups of the population using parameters relating to chronic exposure (metabolic and total clearances, area under the plasma concentration-time curve (AUC)) and acute exposure (Cmax) (data not presented here). The pathway-related uncertainty factors were calculated to cover 95%, 97.5% and 99% of the population of healthy adults and of each subgroup. Pathway-related uncertainty factors allow metabolism data to be incorporated into the derivation of health-based guidance values. They constitute an intermediate approach between the general kinetic default factors (3.16) and a chemical-specific adjustment factor. Applications of pathway-related uncertainty factors for chemical risk assessment and future refinements of the approach are discussed. A knowledge-based framework to predict human variability in kinetics for xenobiotics showing a threshold dose below which toxic effects are not observed, is proposed to move away from default assumptions.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, School of Medicine, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | |
Collapse
|
30
|
Renwick AG, Flynn A, Fletcher RJ, Müller DJG, Tuijtelaars S, Verhagen H. Risk-benefit analysis of micronutrients. Food Chem Toxicol 2004; 42:1903-22. [PMID: 15500928 DOI: 10.1016/j.fct.2004.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditionally, different approaches have been used to determine the recommended dietary allowances for micronutrients, above which there is a low risk of deficiency, and safe upper levels, below which there is a negligible risk of toxicity. The advice given to risk managers has been in the form of point estimates, such as the recommended dietary allowance (RDA) and the tolerable upper level (UL). In future, the gap between the two intake-response curves may become narrower, as more sensitive indicators of deficiency and toxicity are used, and as health benefits above the recommended daily allowance are taken into account. This paper reviews the traditional approaches and proposes a novel approach to compare beneficial and adverse effects across intake levels. This model can provide advice for risk managers in a form that will allow the risk of deficiency or the risk of not experiencing the benefit to be weighed against the risk of toxicity. The model extends the approach used to estimate recommended dietary allowances to make it applicable to both beneficial and adverse effects and to extend the intake-incidence data to provide a range of estimates that can be considered by the risk manager. The data-requirements of the model are the incidence of a response at one or more levels of intake, and a suitable coefficient of variation to represent the person-to-person variations within the human population. A coefficient of variation of 10% or 15% has been used for established recommended dietary allowances and a value of 15% is proposed as default for considerations of benefit. A coefficient of variation of 45% is proposed as default for considerations of toxicity, based on analyses of human variability in the fate and effects of therapeutic drugs. Using this approach risk managers, working closely with risk assessors, will be able to define ranges of intake based on a balance between the risks of deficiency (or lack of benefit) and toxicity.
Collapse
Affiliation(s)
- A G Renwick
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | |
Collapse
|
31
|
Dorne JLCM. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation. Fundam Clin Pharmacol 2004; 18:609-20. [PMID: 15548231 DOI: 10.1111/j.1472-8206.2004.00292.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Safety evaluation aims to assess the dose-response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is 'without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 10(0.5) (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors of up to 45 and 9 would allow for the variability observed in children for CYP2D6 and CYP2C19 metabolism, respectively. This review presents an overview on the history of uncertainty factors, the main conclusions drawn from the analysis of inter-individual differences in metabolism and pharmacokinetics, the development of pathway-related uncertainty factors and their use in chemical risk assessment.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton, SO16 7PX, UK.
| |
Collapse
|
32
|
Renwick AG. Establishing the upper end of the range of adequate and safe intakes for amino acids: a toxicologist's viewpoint. J Nutr 2004; 134:1617S-1624S; discussion 1630S-1632S, 1667S-1672S. [PMID: 15173440 DOI: 10.1093/jn/134.6.1617s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The safety assessment of high intake levels of individual amino acids cannot be based on data from nutritional studies with proteins. Routine toxicity tests designed to investigate a wide range of possible effects should be undertaken for hazard identification and characterization using studies selected to mirror the predicted pattern and duration of human exposure. The approach used to establish an acceptable daily intake level for additives and pesticides, based on defining a "no observed adverse effect" level in the experimental study and dividing by uncertainty factors that allow for species differences and human variability, has a long history of use for foreign compounds and would provide a suitable basis for determining health-based guidance values for single amino acids. The usual default uncertainty factors for toxicokinetics and toxicodynamics should be replaced by compound-specific values if suitable data are available. In addition, the usual uncertainty factors should be modified to more relevant default values based on species differences and human variability in the biodisposition of amino acids in general or of groups of metabolically interrelated amino acids. There would be no significant health concerns if the human intake levels were below a health-based guidance value developed using this approach. A population-distribution approach could be used to define the magnitude of any risk at intake levels above the guidance value.
Collapse
Affiliation(s)
- Andrew G Renwick
- Clinical Pharmacology Group, Allergy and Inflammatory Sciences Research Division, School of Medicine, University of Southampton, Southampton, UK SO16 7PX.
| |
Collapse
|