1
|
WANG Y, ZHAO K, LI L, SONG X, HE Y, DING N, LI L, WANG S, LIU Z. A review of the immune activity of chitooligosaccharides. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.97822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Li LI
- Chenland Nutritionals, United States
| | - Xuena SONG
- Qingdao Chenland Health Industry Group Co, China
| | - Yao HE
- Nanchang University, China
| | | | - Lijie LI
- Qingdao Engineering Vocational College, China
| | | | - Zimin LIU
- Chenland Nutritionals, United States
| |
Collapse
|
2
|
Salahuddin N, Awad S, Elfiky M. Vanillin-crosslinked chitosan/ZnO nanocomposites as a drug delivery system for 5-fluorouracil: study on the release behavior via mesoporous ZrO 2-Co 3O 4 nanoparticles modified sensor and antitumor activity. RSC Adv 2022; 12:21422-21439. [PMID: 35975070 PMCID: PMC9346502 DOI: 10.1039/d2ra02717h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM. Changing the weight% of ZnO NPs in the prepared NCs resulted in an improvement in their antibacterial activity against Gram-negative and Gram-positive bacteria strains compared with the unmodified CS, and the encapsulation efficiency of 5-fluorouracil (5-FU) was found to be in the range of 61.4–69.2%. Subsequently, the release of 5-FU was monitored utilizing the mesoporous ZrO2–Co3O4 NPs modified carbon paste sensor via the square-wave adsorptive anodic stripping voltammetry (SW-AdASV) technique. Also, the release mechanism of 5-FU from each NC was studied by applying the zero-order, first-order, Hixson–Crowell and Higuchi models to the experimental results. The cytotoxicity of prepared NCs and 5-FU-encapsulated NCs was evaluated against the HePG-2, MCF-7 and HCT-116 cancer cell lines, in addition to the WI-38 and WISH normal cell lines using the MTT assay. Notably, 5-FU/CV10 NC exhibited the highest antitumor activity towards all tested cancer cell lines and a moderate activity against WI-38 and WISH normal cell lines with IC50 values of 28.02 ± 2.5 and 31.65 ± 2.7 μg mL−1, respectively. The obtained nanocomposites exhibited suitable selectivity with minimum toxicity against normal cells. Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM.![]()
Collapse
Affiliation(s)
| | - Salem Awad
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| |
Collapse
|
3
|
Sutthasupha P, Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Jaruan O, Jaikumkao K, Muanprasat C, Pichyangkura R, Chatsudthipong V, Lungkaphin A. Chitosan oligosaccharide mitigates kidney injury in prediabetic rats by improving intestinal barrier and renal autophagy. Carbohydr Polym 2022; 288:119405. [PMID: 35450657 DOI: 10.1016/j.carbpol.2022.119405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Consumption of a high-fat diet (HFD) not only increases the risk of metabolic syndrome but also initiates kidney injury. Lipid accumulation-induced systemic low-grade inflammation is an upstream mechanism of kidney injury associated with prediabetes. Chitosan oligosaccharide (COS) provides potent anti-obesity effects through several mechanisms including fecal lipid excretion. In this study, we investigated the effects of COS on the prevention of obesity-related complications and its ability to confer renoprotection in a prediabetic model. Rats fed on a HFD developed obesity, glucose intolerance and kidney dysfunction. COS intervention successfully ameliorated these conditions (p < 0.05) by attenuating intestinal lipid absorption and the renal inflammation-autophagy-apoptosis axis. A novel anti-inflammatory effect of COS had been demonstrated by the strengthening of intestinal barrier integrity via calcium-sensing receptor (p < 0.05). The use of COS as a supplement may be useful in reducing prediabetic complications especially renal injury and the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Guan Z, Feng Q. Chitosan and Chitooligosaccharide: The Promising Non-Plant-Derived Prebiotics with Multiple Biological Activities. Int J Mol Sci 2022; 23:ijms23126761. [PMID: 35743209 PMCID: PMC9223384 DOI: 10.3390/ijms23126761] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Biodegradable chitin is the second-most abundant natural polysaccharide, widely existing in the exoskeletons of crabs, shrimps, insects, and the cell walls of fungi. Chitosan and chitooligosaccharide (COS, also named chitosan oligosaccharide) are the two most important deacetylated derivatives of chitin. Compared with chitin, chitosan and COS not only have more satisfactory physicochemical properties but also exhibit additional biological activities, which cause them to be widely applied in the fields of food, medicine, and agriculture. Additionally, due to their significant ability to improve gut microbiota, chitosan and COS are deemed prospective prebiotics. Here, we introduced the production, physicochemical properties, applications, and pharmacokinetic characteristics of chitosan and COS. Furthermore, we summarized the latest research on their antioxidant, anti-inflammatory, and antimicrobial activities. Research progress on the prebiotic functions of chitosan and COS is particularly reviewed. We creatively analyzed and discussed the mechanisms and correlations underlying these activities of chitosan and COS and their physicochemical properties. Our work enriched people's understanding of these non-plant-derived prebiotics. Based on this review, the future directions of research on chitosan and COS are explored. Collectively, optimizing the production technology of chitin derivatives and enriching understanding of their biological functions will shed more light on their capability to improve human health.
Collapse
Affiliation(s)
- Zhiwei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- School of Life Science, Qilu Normal University, Jinan 250200, China
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266347, China
- Correspondence:
| |
Collapse
|
5
|
Iqbal MW, Riaz T, Yasmin I, Leghari AA, Amin S, Bilal M, Qi X. Chitosan‐Based Materials as Edible Coating of Cheese: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muhammad Waheed Iqbal
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
- Riphah College of Rehabilitation and Allied Health Sciences Riphah International University Faisalabad 38000 Pakistan
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Iqra Yasmin
- Center of Excellence for Olive Research and Training Barani Agricultural Research Institute Chakwal 48800 Pakistan
- Department of Food Science and Technology Government College Women University Faisalabad 38000 Pakistan
| | - Ali Ahmad Leghari
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Sabahat Amin
- National Institute of Food Science & Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | - Xianghui Qi
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
6
|
Kurakula M, N. NR. Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009–2020). Int J Biol Macromol 2020; 165:1924-1938. [DOI: 10.1016/j.ijbiomac.2020.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/27/2022]
|
7
|
Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol Ther 2016; 170:80-97. [PMID: 27773783 DOI: 10.1016/j.pharmthera.2016.10.013] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan oligosaccharide (COS) is an oligomer of β-(1➔4)-linked d-glucosamine. COS can be prepared from the deacetylation and hydrolysis of chitin, which is commonly found in the exoskeletons of arthropods and insects and the cell walls of fungi. COS is water soluble, non-cytotoxic, readily absorbed through the intestine and mainly excreted in the urine. Of particular importance, COS and its derivatives have been demonstrated to possess several biological activities including anti-inflammation, immunostimulation, anti-tumor, anti-obesity, anti-hypertension, anti-Alzheimer's disease, tissue regeneration promotion, drug and DNA delivery enhancement, anti-microbial, anti-oxidation and calcium-absorption enhancement. The mechanisms of actions of COS have been found to involve the modulation of several important pathways including the suppression of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) and the activation of AMP-activated protein kinase (AMPK). This review summarizes the current knowledge of the preparation methods, pharmacokinetic profiles, biological activities, potential therapeutic applications and safety profiles of COS and its derivatives. In addition, future research directions are discussed.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Varanuj Chatsudthipong
- Excellent Center for Drug Discovery and Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Lagarto A, Merino N, Valdes O, Dominguez J, Spencer E, de la Paz N, Aparicio G. Safety evaluation of chitosan and chitosan acid salts from Panurilus argus lobster. Int J Biol Macromol 2014; 72:1343-50. [PMID: 25450835 DOI: 10.1016/j.ijbiomac.2014.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 01/15/2023]
Abstract
Chitosan is a natural polymer with excellent properties such as biocompatibility, biodegradability, non-toxicity and adsorptive abilities. We obtained chitosan derived from Panurilus argus lobster shell and its lactate and acetate salts to introduce in pharmaceutical industry. We examined the single and repeated dose toxicity of chitosan and its lactate and acetate salts. Single oral doses of 2000 mg/kg were well tolerated for all three materials. In the repeat dose tests, animals treated with chitosan only show a slight erythrocytes increase. Variations in erythrocyte and leukocyte count and some biochemical parameters were observed in animals treated with chitosan acid salts. One g/kg orally was found to be the subacute NOAEL for chitosan due to the hematological findings observed were not considered adverse. Chitosans obtained from Panurilus argus lobster shell have low toxicity and may be safe in rats because it did not cause any lethality or changes in the general behavior in both the single and repeated dose toxicity studies.
Collapse
Affiliation(s)
- Alicia Lagarto
- Drug Research and Development Center, CIDEM, 17 No. 6208 e/62 y 64, Playa, Código Postal 11300, Ciudad Habana, Cuba.
| | - Nelson Merino
- Drug Research and Development Center, CIDEM, 17 No. 6208 e/62 y 64, Playa, Código Postal 11300, Ciudad Habana, Cuba
| | - Odalys Valdes
- Drug Research and Development Center, CIDEM, 17 No. 6208 e/62 y 64, Playa, Código Postal 11300, Ciudad Habana, Cuba
| | - Jesus Dominguez
- Drug Research and Development Center, CIDEM, 17 No. 6208 e/62 y 64, Playa, Código Postal 11300, Ciudad Habana, Cuba
| | - Evelyn Spencer
- Drug Research and Development Center, CIDEM, 17 No. 6208 e/62 y 64, Playa, Código Postal 11300, Ciudad Habana, Cuba
| | - Nilia de la Paz
- Drug Research and Development Center, CIDEM, 17 No. 6208 e/62 y 64, Playa, Código Postal 11300, Ciudad Habana, Cuba
| | - Guillermo Aparicio
- Drug Research and Development Center, CIDEM, 17 No. 6208 e/62 y 64, Playa, Código Postal 11300, Ciudad Habana, Cuba
| |
Collapse
|
9
|
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 2009; 56:290-9. [PMID: 19788905 DOI: 10.1016/j.yrtph.2009.09.015] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 11/16/2022]
Abstract
Interest in use of the polysaccharide chitosan as a pharmaceutical excipient by different dose routes and for a number of applications is not new but it still does not appear to be present in any marketed drugs. Including a novel excipient in a new drug formulation requires a number of safety considerations. Review of the published literature showed that chitosan has low oral toxicity and local tolerance potential supporting use in non-parenteral formulations. Prior human oral exposure has occurred through use of chitosan dietary supplements and food additive, medical device and cosmetic applications. Although systemic exposure to parent chitosan may be limited (due to digestion in the gastrointestinal tract), any that is absorbed will likely undergo enzyme degradation to naturally occurring glucosamine, and N-acetylglucosamine, its copolymers, which are excreted or used in the amino sugar pool. Chitosan has local biological activity in the form of haemostatic action and, together with its ability to activate macrophages and cause cytokine stimulation (which has resulted in interest in medical device and wound healing applications), may result in a more careful assessment of its safety as a parenteral excipient.
Collapse
Affiliation(s)
- Paul Baldrick
- Scientific and Regulatory Consulting, Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG3 1PY, UK.
| |
Collapse
|