1
|
Bayram OF, Marah S, Turkekul I, Ozen T. Phytochemical profile, bioactivity, and molecular docking studies of natural edible mushrooms grown in Tokat and Sivas provinces of Turkey. J Food Sci 2024; 89:5928-5950. [PMID: 39138636 DOI: 10.1111/1750-3841.17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Mushrooms have been essential to the human diet because they contain balanced chemical components and some biologically active substances. In this work, we investigated the phenolics, essential oils, metal contents, antioxidant, antibacterial, DNA protective, and enzyme inhibition activities for Clitocybe geotropa, Ramaria aurea, Rhizopogon luteolus (RL), Russula delica (RD), Verpa bohemica, and Marasmius oreades mushrooms. Results exhibited a higher content for citric and succinic acids in all tested kinds. Further, we detected a high content of cis-9-oleic acid, linoleate, and cis-11-eicosanoate. All mushroom species contain a significant percentage of both Cu and Zn. Moreover, RL and RD recorded the highest phenolic and flavonoid contents. Furthermore, all samples showed standard to good antioxidant activity, and the same is true for the antibacterial and DNA protective activities. Enzyme inhibition activity was generally high and significantly higher against the urease than the thiourea. We applied molecular docking between the highest phenolic molecules with the urease to determine the mushroom extracts' high inhibition mechanism. In conclusion, all mushroom species revealed a variety in chemical content that is probably related to their multi-bioactivity.
Collapse
Affiliation(s)
- Onur Furkan Bayram
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Sarmed Marah
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Ibrahim Turkekul
- Department of Biology, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
2
|
Fonseca J, Vaz JA, Ricardo S. The Potential of Mushroom Extracts to Improve Chemotherapy Efficacy in Cancer Cells: A Systematic Review. Cells 2024; 13:510. [PMID: 38534354 PMCID: PMC10969097 DOI: 10.3390/cells13060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Chemoresistance is a challenge in cancer treatment, limiting the effectiveness of chemotherapy. Mushroom extracts have shown potential as treatments for cancer therapies, offering a possible solution to overcome chemoresistance. This systematic review aimed to explore the role of mushroom extracts in enhancing chemotherapy and reversing chemoresistance in cancer cells. We searched the PubMed, Web of Science and Scopus databases, following the PRISMA guidelines, and registered on PROSPERO. The extracts acted by inhibiting the proliferation of cancer cells, as well as enhancing the effect of chemotherapy. The mechanisms by which they acted included regulating anti-apoptotic proteins, inhibiting the JAK2/STAT3 pathway, inhibiting the ERK1/2 pathway, modulating microRNAs and regulating p-glycoprotein. These results highlight the potential of mushroom extracts to modulate multiple mechanisms in order to improve the efficacy of chemotherapy. This work sheds light on the use of mushroom extracts as an aid to chemotherapy to combat chemoresistance. Although studies are limited, the diversity of mushrooms and their bioactive compounds show promising results for innovative strategies to treat cancer more effectively. It is crucial to carry out further studies to better understand the therapeutic potential of mushroom extracts to improve the efficacy of chemotherapy in cancer cells.
Collapse
Affiliation(s)
- Jéssica Fonseca
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (UCIBIO-IUCS-CESPU), 4585-116 Gandra, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sara Ricardo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
3
|
Perović T, Petrović J, Gašić U, Kostić M, Ćirić A. Natural extracts against agricultural pathogens: A case study of Celtis australis L. Food Sci Nutr 2023; 11:3358-3364. [PMID: 37324890 PMCID: PMC10261757 DOI: 10.1002/fsn3.3325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 06/17/2023] Open
Abstract
Plant extracts and other plant products have been used as an alternative to synthetic fungicides or an additional way to reduce their use. The choice of plant extracts and their application depends on their functional characteristics, availability, cost-effectiveness, and their impact on phytopathogens, and also on the environment. Therefore, the present study aims to assess the potential of Celtis australis methanolic extracts as source of compounds with antifungal activity. Methanolic extracts prepared from leaves and unripe mesocarps of C. australis collected from different localities of Montenegro (Podgorica-PG, Donja Gorica-DG, and Bar-BR) were evaluated for their phenolic compounds' composition as well as antifungal and cytotoxic properties. Obtained results revealed that extracts contain various bioactive constituents including phenolic acids, flavonoids, and their derivatives. The predominant phenolic acid was ferulic acid, identified in leaf samples from DG (187.97 mg/100 g dw), while isoorientin was the most abundant phenolic compound found in all examined samples. Regarding antifungal potential of the tested samples, all but one (prepared from mesocarp BR) possessed higher activity than Previcur, a commercial systemic fungicide intended to control seedlings. In vitro studies on HaCaT cell line showed that the extracts had no toxic effect toward the tested cell line. These results lead to the conclusion that methanolic extracts of C. australis can become an alternative to the use of synthetic fungicides in agriculture. Those extracts represent natural biodegradable fungicides and enable more efficient control of pathogenic fungi.
Collapse
Affiliation(s)
- Tatjana Perović
- Biotechnical Faculty, Centre for Subtropical CulturesUniversity of MontenegroBarMontenegro
| | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
4
|
Takemura H, Choi JH, Fushimi K, Narikawa R, Wu J, Kondo M, Nelson DC, Suzuki T, Ouchi H, Inai M, Hirai H, Kawagishi H. Role of hypoxanthine-guanine phosphoribosyltransferase in the metabolism of fairy chemicals in rice. Org Biomol Chem 2023; 21:2556-2561. [PMID: 36880328 DOI: 10.1039/d3ob00026e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fairy chemicals (FCs), 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are molecules with many diverse functions in plants. The defined biosynthetic pathway for FCs is a novel purine metabolism in which they are biosynthesized from 5-aminoimidazole-4-carboxamide. Here, we show that one of the purine salvage enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), recognizes AHX and AOH as substrates. Two novel compounds, AOH ribonucleotide and its ribonucleoside which are the derivatives of AOH, were enzymatically synthesized. The structures were determined by mass spectrometry, 1D and 2D NMR spectroscopy, and X-ray single-crystal diffraction analysis. This report demonstrates the function of HGPRT and the existence of novel purine metabolism associated with the biosynthesis of FCs in rice.
Collapse
Affiliation(s)
- Hirohide Takemura
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Keiji Fushimi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Rei Narikawa
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Tochigi 321-8505, Japan
| | - Hitoshi Ouchi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
5
|
Antioxidant Properties, Bioactive Compounds Contents, and Chemical Characterization of Two Wild Edible Mushroom Species from Morocco: Paralepista flaccida (Sowerby) Vizzini and Lepista nuda (Bull.) Cooke. Molecules 2023; 28:molecules28031123. [PMID: 36770790 PMCID: PMC9920256 DOI: 10.3390/molecules28031123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Mushrooms have been consumed for centuries and have recently gained more popularity as an important source of nutritional and pharmaceutical compounds. As part of the valorization of mushroom species in northern Morocco, the current study aimed to investigate the chemical compositions and antioxidant properties of two wild edible mushrooms, Paralepista flaccida and Lepista nuda. Herein, the bioactive compounds were determined using spectrophotometer methods, and results showed that the value of total phenolic content (TPC) was found to be higher in P. flaccida (32.86 ± 0.52 mg) than in L. nuda (25.52 ± 0.56 mg of gallic acid equivalents (GAEs)/mg of dry methanolic extract (dme)). On the other hand, the value of total flavonoid content (TFC) was greater in L. nuda than in P. flaccida, with values of 19.02 ± 0.80 and 10.34 ± 0.60 mg of (+)-catechin equivalents (CEs)/g dme, respectively. Moreover, the ascorbic acid, tannin, and carotenoids content was moderate, with a non-significant difference between the two samples. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis allowed the identification and quantification of thirteen individual phenolic compounds in both P. flaccida and L. nuda, whereas p-Hydroxybenzoic acid was recognized as the major compound detected, with values of 138.50 ± 1.58 and 587.90 ± 4.89 µg/g of dry weight (dw), respectively. The gas chromatography-mass spectrometry (GC-MS) analysis of methanolic extracts of P. flaccida and L. nuda revealed the presence of sixty-one and sixty-six biomolecules, respectively. These biomolecules can mainly be divided into four main groups, namely sugars, amino acids, fatty acids, and organic acids. Moreover, glycerol (12.42%) and mannitol (10.39%) were observed to be the main chemical compositions of P. flaccida, while L. nuda was predominated by linolelaidic acid (21.13%) and leucine (9.05%). L. nuda showed a strong antioxidant property, evaluated by DPPH (half maximal effective concentration (EC50) 1.18-0.98 mg/mL); β-carotene bleaching (EC50 0.22-0.39 mg/mL); and reducing power methods (EC50 0.63-0.48 mg/mL), respectively. These findings suggested that both mushrooms are potential sources of various biomolecules, many of which possess important biological activities which are interesting for the foods and pharmaceuticals industry.
Collapse
|
6
|
Kotajima M, Choi JH, Kondo M, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Miwa Y, Shoda C, Lee D, Nakai A, Kurihara T, Wu J, Hirai H, Kawagishi H. Axl, Immune Checkpoint Molecules and HIF Inhibitors from the Culture Broth of Lepista luscina. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248925. [PMID: 36558053 PMCID: PMC9781456 DOI: 10.3390/molecules27248925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Two compounds 1 and 2 were isolated from the culture broth of Lepista luscina. This is the first time that compound 1 was isolated from a natural source. The structure of compound 1 was identified via 1D and 2D NMR and HRESIMS data. Compounds 1 and 2 along with 8-nitrotryptanthrin (4) were evaluated for their biological activities using the A549 lung cancer cell line. As a result, 1 and 2 inhibited the expression of Axl and immune checkpoint molecules. In addition, compounds 1, 2 and 4 were tested for HIF inhibitory activity. Compound 2 demonstrated statistically significant HIF inhibitory effects on NIH3T3 cells and 1 and 2 against ARPE19 cells.
Collapse
Affiliation(s)
- Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | - Masaaki Toda
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yukihiro Miwa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayaka Nakai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Correspondence:
| |
Collapse
|
7
|
Othman S, Añibarro-Ortega M, Dias MI, Ćirić A, Mandim F, Soković M, Ferreira IC, Pinela J, Barros L. Valorization of quince peel into functional food ingredients: A path towards "zero waste" and sustainable food systems. Heliyon 2022; 8:e11042. [PMID: 36281371 PMCID: PMC9587281 DOI: 10.1016/j.heliyon.2022.e11042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Quince (Cydonia oblonga Mill.) is an astringent fruit widely processed into marmalade and other sweets through processes that discard the peel as a by-product. Therefore, this study was performed to characterize the quince peel composition in nutrients and phytochemicals and evaluate its in vitro biological activity, following a “zero waste” approach. The quince peel dry powder was particularly rich in fiber (20.2 g/100 g), fructose (34 g/100 g), malic acid (7.2 g/100 g), and potassium (692 mg/100 g). Extracts prepared by dynamic hydroethanolic maceration and hot water extraction yielded 4.70 and 4.27 mg/g of phenolic compounds, respectively, with a prevalence of flavan-3-ols. The hydroethanolic extract was the most effective in inhibiting lipid peroxidation and oxidative hemolysis, and also presented better antimicrobial effects against foodborne pathogens, which agreed with the highest flavan-3-ol contents. The extracts were better than control synthetic food additives against some tested fungal and bacterial strains. On the other hand, no ability to inhibit nitric oxide production or toxicity to the tumor and non-tumor cell lines was observed. Furthermore, the solid residues remaining after extraction contained 35–37 g/100 g of fiber. Overall, quince peel can be upcycled into fiber-rich and bioactive ingredients to endow the value chain with natural food fortifiers, preservatives, and health promoters.
Collapse
Affiliation(s)
- Souha Othman
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Ćirić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Isabel C.F.R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Corresponding author.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Corresponding author.
| |
Collapse
|
8
|
Assemie A, Abaya G. The Effect of Edible Mushroom on Health and Their Biochemistry. Int J Microbiol 2022; 2022:8744788. [PMID: 35369040 PMCID: PMC8967584 DOI: 10.1155/2022/8744788] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Edible mushrooms are fungi that can be seen with the naked eye and are relatively easy to gather by hand. This review article highlights the health benefit and the biochemistry of several mushroom species. Agaricus bisporus, Pleurotus species. Lentinus edodes, and Volvariella species are the most acceptable varieties among the cultivated mushroom. Various biochemical methods such as methanol, ethanol, and water extract of different parts of the edible mushroom in the laboratory have been applied to determine and/or quantify the presence and effectiveness of their chemical compounds, food value, and medicinal properties. They contain varying amounts of carbohydrates, proteins, nucleic acids, lipids, minerals, terpenoids, phenolic compounds, steroids, and lectins and vitamins, as well as lowering cholesterol levels in the body. Due to the presence of those vital nutrients, mushrooms are the best food item with high nutritional value. These compounds have a wide range of therapeutic effects and can act as immunomodulatory, anticarcinogenic, antiviral, antioxidant, and anti-inflammatory agents. Routine consumption of edible mushrooms would give adequate protection due to the presence of all the necessary nutrients from them. Therefore, edible mushrooms are herbal antibiotics to many diseases as well as various cancers of humans.
Collapse
Affiliation(s)
- Anmut Assemie
- Department of Biology, Wachemo University, PO Box 667, Hossana, Ethiopia
| | - Galana Abaya
- Department of Biotechnology, Wachemo University, PO Box 667, Hossana, Ethiopia
| |
Collapse
|
9
|
Petrovic J, Fernandes Â, Stojković D, Soković M, Barros L, Ferreira I, Shekhar A, Glamočlija J. A Step Forward Towards Exploring Nutritional and Biological Potential of Mushrooms: A Case Study of Calocybe gambosa (Fr.) Donk Wild Growing in Serbia. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/144836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Ishara J, Buzera A, Mushagalusa GN, Hammam ARA, Munga J, Karanja P, Kinyuru J. Nutraceutical potential of mushroom bioactive metabolites and their food functionality. J Food Biochem 2021; 46:e14025. [PMID: 34888869 DOI: 10.1111/jfbc.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and inexpensive. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies while discussing the food functionality of mushrooms. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. PRACTICAL APPLICATIONS: Diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity are among the world's largest life-threatening conditions and diseases. Several mushroom bioactive compounds, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been found potential in tackling these diseases through diverse cellular and physiological pathways modulation with no toxicity evidence, suggesting their use as nutraceutical foods in preventing and controlling these life-threatening conditions and diseases.
Collapse
Affiliation(s)
- Jackson Ishara
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Ariel Buzera
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Gustave N Mushagalusa
- Department of Food Science and Technology, Université Evangélique en Afrique, Bukavu, D.R. Congo
| | - Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Judith Munga
- Department Food Nutrition and Dietetics, Kenyatta University, Nairobi, Kenya
| | - Paul Karanja
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - John Kinyuru
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
11
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
12
|
Biochemical and Morphological Characteristics of Some Macrofungi Grown Naturally. J Fungi (Basel) 2021; 7:jof7100851. [PMID: 34682272 PMCID: PMC8538520 DOI: 10.3390/jof7100851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, the production of macro-fungi (mushrooms) has steadily increased, and so has their economic value, in global terms. The use of functional foods, dietary supplements, and traditional medicines derived from macro-fungi is increasing as they have numerous health benefits as well as abundant nutrients. This study aimed to determine some biochemical contents (pH, soluble solid contents (SSC), total antioxidant capacity (TAC) and total phenolic contents (TPC)) of eight edible macro-fungi species growing naturally (in the wild) in Turkey. The samples were collected in the Van Yuzuncu Yil University (VAN YYU) campus area in the months of April-May 2018, in different locations, and brought to the laboratory, and the necessary mycological techniques were applied for their identification. Location, habitats, collection dates and some morphological measurements were determined for all identified species. Biochemical parameters of the macro-fungi species were analyzed separately both in cap and stem. The color values (L, a, b, Chroma and hue) were separately evaluated on cap surface, cap basement and stem. Results showed that there were significant differences for most of the biochemical parameters in different organs between and within species. The pH, SSC, TAC and TPC values varied from 6.62 to 8.75, 2.25 to 5.80° brix, 15.72 to 57.67 TE mg-1 and 13.85 to 60.16 gallic acid equivalent (GAE) fresh weight basis. As a result of the study, it was concluded that the parameters such as total antioxidant capacity, total phenolic content and soluble content in Morchella esculenta, Helvella leucopus, Agaricus bitorquis and Suillus collinitus were higher than for the other species and clearly implied that they may be further exploited as functional ingredients in the composition of innovative food products.
Collapse
|
13
|
Ślusarczyk J, Adamska E, Czerwik-Marcinkowska J. Fungi and Algae as Sources of Medicinal and Other Biologically Active Compounds: A Review. Nutrients 2021; 13:3178. [PMID: 34579055 PMCID: PMC8464797 DOI: 10.3390/nu13093178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Many species of fungi including lichenized fungi (lichens) and algae have the ability to biosynthesize biologically active compounds. They produce, among others, polysaccharides with anticancer and immunostimulatory properties: (1) Background: This paper presents the characteristics of the most important bioactive compounds produced by fungi and algae; (2) Methods: Based on the example of the selected species of mushrooms, lichens and algae, the therapeutic properties of the secondary metabolites that they produce and the possibilities of their use are presented; (3) Results: The importance of fungi, especially large-fruited mushrooms, lichens and algae, in nature and human life is discussed, in particular, with regard to their use in the pharmaceutical industry and their nutritional value; (4) Conclusions: The natural organisms, such as fungi, lichenized fungi and algae, could be used as supplementary medicine, in the form of pharmaceutical preparations and food sources. Further advanced studies are required on the pharmacological properties and bioactive compounds of these organisms.
Collapse
Affiliation(s)
- Joanna Ślusarczyk
- Institute of Biology, Jan Kochanowski University, 25-420 Kielce, Poland;
| | - Edyta Adamska
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | |
Collapse
|
14
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
15
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
16
|
Dizeci N, Onar O, Karaca B, Demirtas N, Coleri Cihan A, Yildirim O. Comparison of the chemical composition and biological effects of Clitocybe nebularis and Infundibulicybe geotropa. Mycologia 2021; 113:1156-1168. [PMID: 34477496 DOI: 10.1080/00275514.2021.1951076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Clitocybe mushrooms have long been recognized for their various therapeutic potential and medicinal properties. A few members of the genus are considered edible and many others are poisonous. This study investigated the ethanolic extracts obtained from C. nebularis (CN) and I. geotropa (IG) mushrooms for phenolic content and antioxidant, antiproliferative, antimicrobial, and antibiofilm activities. The data from ultra-performance liquid chromatography and Fourier transform infrared spectroscopy analysis of the mushrooms were presented for the first time. According to the results, both ethanolic extracts contain high levels of phenolic (catechin, myricetin, quercetin, rutin, gallic acid, vanillic acid) compounds. Fourier transform infrared spectroscopy results may suggest the presence of clitopycin in CN extract. The ethanol extract of CN scavenged about 79% and the IG 78% of the free 2,2-diphenyl-1-picrylhydrazyl radicals. Additionally, the CN and IG extracts inhibited glutathione-S-transferase by 10%-18% at all concentrations. The CN extract effectively inhibited aldose reductase by 30%-80% at all concentrations. Besides, the CN extract showed promising antiproliferative activity on HT-29 and MCF-7 cell lines. On the other hand, CN and IG extracts displayed inhibitory effects on some multidrug-resistant Gram-positive bacteria and effectively inhibited biofilm production. The obtained results showed that C. nebularis and I. geotropa extracts presented inhibition of biofilm production. Therefore, C. nebularis was demonstrated to be a potential source of natural medicine.
Collapse
Affiliation(s)
- Naz Dizeci
- Department of Medical Biology and Genetic, Faculty of Medicine, Ankara Medipol University, Altındağ, Ankara 06050, Turkey
| | - Okan Onar
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - Basar Karaca
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - Nergiz Demirtas
- Food Chemical Analysis Laboratory, Food Control Laboratory, The Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - Arzu Coleri Cihan
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| | - Ozlem Yildirim
- Department of Biology, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
| |
Collapse
|
17
|
Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nutritional quality of kiwifruit has been highlighted by several studies, while its peel is typically discarded as a by-product with no commercial value. This study was carried out to optimize the ultrasound-assisted extraction (UAE) of phenolic compounds from kiwi peel. Three independent variables (time (t), ultrasonic power (P) and ethanol concentration (EtOH)) were combined in a five-level central composite rotatable design coupled with the response surface methodology (RSM). The extraction yield determined gravimetrically and the content of phenolic compounds identified by HPLC-DAD-ESI/MSn (namely two quercetin glycosides, one catechin isomer and one B-type (epi)catechin dimer) were the experimental responses used in the optimization. The polynomial models were successfully fitted to the experimental data and used to determine the optimal UAE conditions. The sonication of the sample at 94.4 W for 14.8 min, using 68.4% ethanol, resulted in a maximum of 1.51 ± 0.04 mg of flavonoids per g of extract, a result that allowed the experimental validation of the predictive model. The kiwi peel extract obtained under optimized conditions showed somehow promising bioactive properties, including antioxidant and antimicrobial effects, and no toxicity to Vero cells. Overall, this study contributes to the valorization of kiwi peel as a low-cost raw material for the development of natural ingredients (such as food preservatives) and also to the resource-use efficiency and circular bioeconomy.
Collapse
|
18
|
Gómez-Mejía E, Roriz CL, Heleno SA, Calhelha R, Dias MI, Pinela J, Rosales-Conrado N, León-González ME, Ferreira ICFR, Barros L. Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chem 2020; 337:127998. [PMID: 32919276 DOI: 10.1016/j.foodchem.2020.127998] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
Abstract
Grape (Vitis vinifera L. var. Albariño) and mulberry (Morus nigra L.) seeds pomace were characterized in terms of tocopherols, organic acids, phenolic compounds and bioactive properties. Higher contents of tocopherols (28 ± 1 mg/100 g fw) were obtained in mulberry, whilst grape seeds were richer in organic acids (79 ± 4 mg/100 g fw). The phenolic analysis of hydroethanolic extracts characterised grape seeds by catechin oligomers (36.0 ± 0.3 mg/g) and mulberry seeds by ellagic acid derivatives (3.14 ± 0.02 mg/g). Both exhibited high antimicrobial activity against multiresistant Staphylococcus aureus MIC = 5 mg/mL) and no cytotoxicity against carcinogenic and non-tumour primary liver (PLP) cells. Mulberry seeds revealed the strongest inhibition (p < 0.05) against thiobarbituric reactive substances (IC50 = 23 ± 2 µg/mL) and oxidative haemolysis (IC50 at 60 min = 46.0 ± 0.8 µg/mL). Both seed by-products could be exploited for the developing of antioxidant-rich ingredients with health benefits for industrial application.
Collapse
Affiliation(s)
- Esther Gómez-Mejía
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Custódio Lobo Roriz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María Eugenia León-González
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
19
|
Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol 2020; 104:4675-4703. [PMID: 32274562 DOI: 10.1007/s00253-020-10476-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew's ear (black) fungus or black wood ear fungus Auricularia auricula-judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep's head mushroom Grifola frondosa, lion's mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese "meshimakobu," Chinese "song gen," Korean "sanghwang," American "black hoof mushroom"), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.
Collapse
|
20
|
Çayan F, Deveci E, Tel-Çayan G, Duru ME. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00417-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Pinela J, Omarini AB, Stojković D, Barros L, Postemsky PD, Calhelha RC, Breccia J, Fernández-Lahore M, Soković M, Ferreira ICFR. Biotransformation of rice and sunflower side-streams by dikaryotic and monokaryotic strains of Pleurotus sapidus: Impact on phenolic profiles and bioactive properties. Food Res Int 2020; 132:109094. [PMID: 32331629 DOI: 10.1016/j.foodres.2020.109094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
Fungi are known to modify the properties of lignocellulosic materials during solid-state fermentation (SSF). In this study, agricultural side-streams (sunflower seed hulls, rice husks and rice straw) were used as substrates for SSF with dikaryotic and monokaryotic strains of Pleurotus sapidus. The phenolic profiles of the mentioned substrates were characterized by LC-DAD/ESI-MSn pre- and post- fermentation. Moreover, antioxidant, cytotoxic and antimicrobial activities were screened against oxidizable cellular substrates, tumour and primary cell lines, and different bacteria and fungi, respectively. The concentration of phenolic compounds in the crop side-streams was reduced after fermentation with both strains of the fungus. The fermented extracts also displayed lower antioxidant and cytotoxic activities and had no hepatotoxicity. The antimicrobial activity depended upon the crop side-stream and/or SSF conditions. These results indicate that P. sapidus represent a good candidate to modify the phenolic fraction presents in crop side-streams with a consequent decrease in its bioactivities. However, the SSF with P. sapidus strains play an interesting role in the detoxification of plant materials which can be used for different applications according to the "reduce - reuse - recycle" concept contributing with the sustainable land use and circular economy.
Collapse
Affiliation(s)
- José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alejandra B Omarini
- INCITAP Institute of Earth and Environmental Sciences of La Pampa (CONICET-UNLPam) National Scientific and Technical Research Council-National University of La Pampa. Mendoza 109 (CP6300), Santa Rosa, La Pampa, Argentina; Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH. Campus Ring 1, CP28759 Bremen, Germany
| | - Dejan Stojković
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar despota Stefana 142, Belgrade, Serbia
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Pablo D Postemsky
- Laboratorio de Biotecnología de Hongos Comestibles y Medicinales, CERZOS-UNS/CONICET, Camino de La Carrindaga Km7, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Javier Breccia
- INCITAP Institute of Earth and Environmental Sciences of La Pampa (CONICET-UNLPam) National Scientific and Technical Research Council-National University of La Pampa. Mendoza 109 (CP6300), Santa Rosa, La Pampa, Argentina
| | - Marcelo Fernández-Lahore
- Downstream Bioprocessing Laboratory, Jacobs University Bremen gGmbH. Campus Ring 1, CP28759 Bremen, Germany
| | - Marina Soković
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar despota Stefana 142, Belgrade, Serbia
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
22
|
Sezgin S, Dalar A, Uzun Y. Determination of antioxidant activities and chemical composition of sequential fractions of five edible mushrooms from Turkey. Journal of Food Science and Technology 2019; 57:1866-1876. [PMID: 32327797 DOI: 10.1007/s13197-019-04221-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/01/2022]
Abstract
Tricholoma scalpturatum, Tricholoma populinum, Neolentinus cyathiformis, Chlorophyllum agaricoides, and Lycoperdon utriforme have been traditionally utilized as food in Turkey for a long time. The present study focused on determining antioxidant activities, total phenolic groups contents (flavonols, hydroxycinnamic acids, proanthocyanidins, and anthocyanins), phenolic compounds and fatty acids of sequential extracts (n-hexane, ethyl acetate, chloroform, acetone, ethanol, and pure water) obtained from five wild edible macrofungi species. Ethanol and acetone (or ethyl acetate) were found as the most efficient solvents in terms of antioxidant activities and extraction efficiency. Antioxidant studies showed that L. utriforme, C. agaricoides, and T. populinum exhibited the highest radical scavenging and reducing activities and contained the highest phenolic contents. Chromatographic studies revealed that phenolic acids (protocatechuic, gallic, and chlorogenic acids) and fatty acids (oleic, linoleic, and palmitic acids) were the major contributors of the antioxidant activities of the extracts. The results obtained suggest the utilization of these macrofungi species as significant sources of natural antioxidants.
Collapse
Affiliation(s)
- Sema Sezgin
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Van Yuzuncu Yil University, Zeve Campus, 65090 Van, Turkey
| | - Abdullah Dalar
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Van Yuzuncu Yil University, Zeve Campus, 65090 Van, Turkey
| | - Yusuf Uzun
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Van Yuzuncu Yil University, Zeve Campus, 65090 Van, Turkey
| |
Collapse
|
23
|
Añibarro-Ortega M, Pinela J, Barros L, Ćirić A, Silva SP, Coelho E, Mocan A, Calhelha RC, Soković M, Coimbra MA, Ferreira ICFR. Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants (Basel) 2019; 8:E444. [PMID: 31581507 PMCID: PMC6826699 DOI: 10.3390/antiox8100444] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
This work aimed to characterize compositional and bioactive features of Aloe vera leaf (fillet, mucilage, and rind) and flower. The edible fillet was analysed for its nutritional value, and all samples were studied for phenolic composition and antioxidant, anti-inflammatory, antimicrobial, tyrosinase inhibition, and cytotoxic activities. Dietary fibre (mainly mannan) and available carbohydrates (mainly free glucose and fructose) were abundant macronutrients in fillet, which also contained high amounts of malic acid (5.75 g/100 g dw) and α-tocopherol (4.8 mg/100 g dw). The leaf samples presented similar phenolic profiles, with predominance of chromones and anthrones, and the highest contents were found in mucilage (131 mg/g) and rind (105 mg/g) extracts, which also revealed interesting antioxidant properties. On the other hand, the flower extract was rich in apigenin glycoside derivatives (4.48 mg/g), effective against Pseudomonas aeruginosa (MIC = 0.025 mg/mL and MBC = 0.05 mg/mL) and capable of inhibiting the tyrosinase activity (IC50 = 4.85 mg/mL). The fillet, rind, and flower extracts also showed a powerful antifungal activity against Aspergillus flavus, A. niger, Penicillium funiculosum, and Candida albicans, higher than that of ketoconazole. Thus, the studied Aloe vera samples displayed high potential to be exploited by the food or cosmetic industries, among others.
Collapse
Affiliation(s)
- Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Soraia P Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Elisabete Coelho
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Cluj, Romania.
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
24
|
Chemical analysis, moisture-preserving, and antioxidant activities of polysaccharides from Pholiota nameko by fractional precipitation. Int J Biol Macromol 2019; 131:1021-1031. [DOI: 10.1016/j.ijbiomac.2019.03.154] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022]
|
25
|
New biological activity of the polysaccharide fraction from Cantharellus cibarius and its structural characterization. Food Chem 2018; 268:355-361. [DOI: 10.1016/j.foodchem.2018.06.106] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 11/24/2022]
|
26
|
Cayan F, Deveci E, Tel-Cayan G, Duru ME. Phenolic Acid Profile of Six Wild Mushroom Species by HPLC-DAD. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Pandya U, Dhuldhaj U, Sahay NS. Bioactive mushroom polysaccharides as antitumor: an overview. Nat Prod Res 2018; 33:2668-2680. [DOI: 10.1080/14786419.2018.1466129] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Urja Pandya
- Department of Microbiology, Samarpan Science and Commerce College, Gandhinagar, India
| | - Umesh Dhuldhaj
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| | - Nirmal S. Sahay
- Sadbhav SRISTI Sanshodhan Natural Products Laboratory, SRISTI, AES Boys Hostel Campus, Navrangpura, Ahmedabad, India
| |
Collapse
|
28
|
Gupta S, Summuna B, Gupta M, Annepu SK. Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-54528-8_86-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Freitas AC, Antunes MB, Rodrigues D, Sousa S, Amorim M, Barroso MF, Carvalho A, Ferrador SM, Gomes AM. Use of coffee by-products for the cultivation of Pleurotus citrinopileatus
and Pleurotus salmoneo-stramineus
and its impact on biological properties of extracts thereof. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ana C. Freitas
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Mariana B. Antunes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
- Bioinvitro, Biotecnologia Lda; Rua Eng.° José Rodrigo Carvalho, 95 4480-484 Árvore, Vila do Conde Portugal
| | - Dina Rodrigues
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Sérgio Sousa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Manuela Amorim
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| | - Maria F. Barroso
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto Portugal
| | - Ana Carvalho
- REQUIMTE/LAQV; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto Portugal
| | - Sandra M. Ferrador
- Bioinvitro, Biotecnologia Lda; Rua Eng.° José Rodrigo Carvalho, 95 4480-484 Árvore, Vila do Conde Portugal
| | - Ana M. Gomes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Arquiteto Lobão Vital 172, 4200-374 Porto Portugal
| |
Collapse
|
30
|
Kaliyaperumal M, Kezo K, Gunaseelan S. A Global Overview of Edible Mushrooms. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Screening of mushrooms bioactivity: piceatannol was identified as a bioactive ingredient in the order Cantharellales. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-3007-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Sánchez C. Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol 2017; 2:13-22. [PMID: 29062957 PMCID: PMC5625788 DOI: 10.1016/j.synbio.2016.12.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023] Open
Abstract
Preventive medicine and food industry have shown an increased interest in the development of natural antioxidants, since those most commonly used synthetic antioxidants may have restricted use in food. This could explain why there is currently much research on the antioxidant properties from natural products such as mushrooms. Many mushrooms have been reported to possess antioxidant properties, which enable them to neutralize free radicals. The oxygen molecule is a free radical, which lead to the generation of the reactive oxygen species and can damage the cells. Cell damage caused by free radicals appears to be a major contributor to aging and degenerative diseases. Mushrooms antioxidant components are found in fruit bodies, mycelium and culture both, which include polysaccharides, tocopherols, phenolics, carotenoids, ergosterol and ascorbic acid among others. Fruit bodies or mycelium can be manipulated to produce active compounds in a relatively short period of time, which represent a significant advantage in antioxidant compounds extraction from mushrooms. Antioxidant compounds may be extracted to be used as functional additives or mushrooms can be incorporated into our food regime, representing an alternative source of food to prevent damage caused by oxidation in the human body.
Collapse
|
33
|
Kaygusuz O, Kaygusuz M, Dodurga Y, Seçme M, Herken EN, Gezer K. Assessment of the antimicrobial, antioxidant and cytotoxic activities of the wild edible mushroom Agaricus lanipes (F.H. Møller & Jul. Schäff.) Hlaváček. Cytotechnology 2017; 69:135-144. [PMID: 28058568 PMCID: PMC5264629 DOI: 10.1007/s10616-016-0045-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/16/2016] [Indexed: 01/31/2023] Open
Abstract
The present investigation was undertaken to evaluate the antimicrobial and antioxidant activities of the wild edible mushroom Agaricus lanipes, and also to investigate its cytotoxicity and potential and possible apoptotic effect against the A549 lung cancer cell line in in vitro conditions. Total antioxidant capacity, total phenolic content, total oxidant status, total antioxidant status, lipid hydroperoxides, and total free -SH levels of A. lanipes were found to be 4.55 mg T/g, 14.6 mg GA equivalent/g, 3.10 mg H2O2 equivalent/g, 2.25 mg H2O2 equivalent/g, and 1.90 µmol/g, respectively. The methanolic extract of A. lanipes had relatively strong antimicrobial activity against seven tested microorganism strains. It also had high anti-proliferative potency and strong pro-apoptotic effects, and this mushroom used as a daily nutrient could be a source for new drug developments and treatment in cancer therapies, and could be a guide for studies in this area.
Collapse
Affiliation(s)
- Oğuzhan Kaygusuz
- Department of Biology, Faculty of Science and Arts, Pamukkale University, P.O. BOX 20001, Denizli, Turkey.
| | - Meruyert Kaygusuz
- Denizli Vocational School of Technical Sciences, Pamukkale University, Denizli, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Emine Nur Herken
- Department of Food Engineering, Engineering Faculty, Pamukkale University, Denizli, Turkey
| | - Kutret Gezer
- Department of Biology, Faculty of Science and Arts, Pamukkale University, P.O. BOX 20001, Denizli, Turkey
| |
Collapse
|
34
|
Fernandes Â, Petrović J, Stojković D, Barros L, Glamočlija J, Soković M, Martins A, Ferreira IC. Polyporus squamosus (Huds.) Fr from different origins: Chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Reis FS, Sousa D, Barros L, Martins A, Morales P, Ferreira ICFR, Vasconcelos MH. Leccinum vulpinum Watling induces DNA damage, decreases cell proliferation and induces apoptosis on the human MCF-7 breast cancer cell line. Food Chem Toxicol 2016; 90:45-54. [PMID: 26854920 DOI: 10.1016/j.fct.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
The current work aimed to study the antitumour activity of a phenolic extract of the edible mushroom Leccinum vulpinum Watling, rich essentially in hydroxybenzoic acids. In a first approach, the mushroom extract was tested against cancer cell growth by using four human tumour cell lines. Given the positive results obtained in these initial screening experiments and the evidence of some studies for an inverse relationship between mushroom consumption and breast cancer risk, a detailed study of the bioactivity of the extract was carried out on MCF-7 cells. Once the selected cell line to precede the work was the breast adenocarcinoma cell line, the human breast non-malignant cell line MCF-10A was used as control. Overall, the extract decreased cellular proliferation and induced apoptosis. Furthermore, the results also suggest that the extract causes cellular DNA damage. Data obtained highlight the potential of mushrooms as a source of biologically active compounds, particularly with antitumour activity.
Collapse
Affiliation(s)
- Filipa S Reis
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal; Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal; Dpto. Nutrición y Bromatología II, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Pza Ramón y Cajal, s/n, E-28040 Madrid, Spain
| | - Diana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Lillian Barros
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal
| | - Anabela Martins
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal
| | - Patricia Morales
- Dpto. Nutrición y Bromatología II, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Pza Ramón y Cajal, s/n, E-28040 Madrid, Spain
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal; Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
36
|
Petrović J, Glamočlija J, Stojković D, Ćirić A, Barros L, Ferreira ICFR, Soković M. Nutritional value, chemical composition, antioxidant activity and enrichment of cream cheese with chestnut mushroom Agrocybe aegerita (Brig.) Sing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:6711-8. [PMID: 26396420 PMCID: PMC4573151 DOI: 10.1007/s13197-015-1783-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/31/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
A very well-known and appreciated mushroom, Agrocybe aegerita (Brig.) Sing, was the subject of chemical profiling, antioxidant assays and sensory evaluation test in cream cheese. Methanolic extract obtained from a wild sample of A. aegerita fruiting body was fully chemically identified. Sample was found to be rich in carbohydrates (84.51 g/100 g dw), ash and proteins (6.69 g/100 g dw and 6.68 g/100 g dw, respectively). Trehalose was the main free sugar while malic acid was the most abundant organic acid. Four isoforms of tocopherols were identified; γ- tocopherol was the dominant isoform with 86.08 μg/100 g dw, followed by β- tocopherol, δ-tocopherol and α-tocopherol (8.80 μg/100 g dw, 3.40 μg/100 g dw and 2.10 μg/100 g dw, respectively). Polyunsaturated fatty acids were predominant, with linoleic acid as the most prominent one (78.40 %). Methanolic extract of chestnut mushroom exhibited high antioxidant activity. Sensory evaluation test included grading by panelists and comparing the overall acceptability of cream cheese alone and enriched cream cheese with dry powder of A. aegerita. General conclusion of the participants was that the newly developed product was more likeable in comparison to cream cheese alone. Due to the health-beneficial effects of antioxidants and wealth of chemically identified nutrients, A. aegerita is a promising starting material for incorporation on larger scale products.
Collapse
Affiliation(s)
- Jovana Petrović
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Jasmina Glamočlija
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dejan Stojković
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Ćirić
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Lillian Barros
- />Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- />Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1172, 5301-855 Bragança, Portugal
| | - Marina Soković
- />Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
37
|
Stilinović N, Škrbić B, Živančev J, Mrmoš N, Pavlović N, Vukmirović S. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms. Food Funct 2015; 5:3170-8. [PMID: 25294630 DOI: 10.1039/c4fo00703d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercial preparations of Cordyceps sinensis, Ganoderma lucidum and Coprinus comatus mushroom marketed as healthy food supplements in Serbia were analyzed by atomic absorption spectrometry with a graphite furnace (GFAAS) for their element content. Antioxidant activity potential and total phenolics of the same mushrooms were determined. The element content of mushroom samples was in the range of 0.130-0.360 mg kg(-1) for lead (Pb), <0.03-0.46 mg kg(-1) for arsenic (As), 0.09-0.39 mg kg(-1) for cadmium (Cd), 98.14-989.18 mg kg(-1) for iron (Fe), 0.10-101.32 mg kg(-1) for nickel (Ni), 5.06-26.50 mg kg(-1) for copper (Cu), 0.20-0.70 mg kg(-1) for cobalt (Co), 1.74-136.33 mg kg(-1) for chromium (Cr) and 2.19-21.54 mg kg(-1) for manganese (Mn). In the tests for measuring the antioxidant activity, the methanolic extract of C. sinensis showed the best properties. The same was seen for the analysis of selected phenolic compounds; C. sinensis was found to have the highest content. Commercial preparations of C. sinensis and C. comatus can be considered to be safe and suitable food supplements included in well-balanced diets.
Collapse
Affiliation(s)
- Nebojša Stilinović
- University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | | | | | | | | | | |
Collapse
|
38
|
Oliveira M, Reis FS, Sousa D, Tavares C, Lima RT, Ferreira ICFR, dos Santos T, Vasconcelos MH. A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth of a gastric cancer cell line and affects cellular autophagy and cell cycle. Food Funct 2015; 5:1389-94. [PMID: 24892846 DOI: 10.1039/c4fo00258j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ganoderma lucidum is one of the most extensively studied mushrooms as a functional food and as a chemopreventive agent due to its recognized medicinal properties. Some G. lucidum extracts have shown promising antitumor potential. In this study, the bioactive properties of various extracts of G. lucidum, from both the fruiting body and the spores, were investigated. The most potent extract identified was the methanolic fruiting body extract, which inhibited the growth of a gastric cancer cell line (AGS) by interfering with cellular autophagy and cell cycle.
Collapse
Affiliation(s)
- Marta Oliveira
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Petrović J, Stojković D, Reis FS, Barros L, Glamočlija J, Ćirić A, Ferreira ICFR, Soković M. Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food Funct 2015; 5:1441-51. [PMID: 24810655 DOI: 10.1039/c4fo00113c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laetiporus sulphureus (Bull.: Fr.) Murr. was studied to determine the nutritional value, bioactive compounds, in vitro antioxidants, and antimicrobial and antitumor activities. The studied mushroom is a rich source of carbohydrates and proteins. Mannitol and trehalose were the main free sugars. In addition, the polyunsaturated fatty acids α-, γ- and δ-tocopherols were found. Oxalic and citric acids were the most abundant organic acids; cinnamic and p-hydroxybenzoic acids were quantified in the methanolic extract and could be related to the antioxidant properties. It was the polysaccharidic extract that exhibited higher antioxidant and antimicrobial activities, indicating that the compounds present in this extract possess stronger bioactivity. Only the polysaccharidic extract revealed antiproliferative activity in human tumor cell lines. In addition, a suitable model system with chicken pâté was developed to test the antimicrobial preserving properties of L. sulphureus. The methanolic extract was used to examine in situ preserving properties against Aspergillus flavus and demonstrated excellent preserving potential.
Collapse
Affiliation(s)
- Jovana Petrović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015; 2015:376387. [PMID: 25685150 PMCID: PMC4320875 DOI: 10.1155/2015/376387] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/29/2014] [Indexed: 01/12/2023] Open
Abstract
Mushrooms have been consumed since earliest history; ancient Greeks believed that mushrooms provided strength for warriors in battle, and the Romans perceived them as the “Food of the Gods.” For centuries, the Chinese culture has treasured mushrooms as a health food, an “elixir of life.” They have been part of the human culture for thousands of years and have considerable interest in the most important civilizations in history because of their sensory characteristics; they have been recognized for their attractive culinary attributes. Nowadays, mushrooms are popular valuable foods because they are low in calories, carbohydrates, fat, and sodium: also, they are cholesterol-free. Besides, mushrooms provide important nutrients, including selenium, potassium, riboflavin, niacin, vitamin D, proteins, and fiber. All together with a long history as food source, mushrooms are important for their healing capacities and properties in traditional medicine. It has reported beneficial effects for health and treatment of some diseases. Many nutraceutical properties are described in mushrooms, such as prevention or treatment of Parkinson, Alzheimer, hypertension, and high risk of stroke. They are also utilized to reduce the likelihood of cancer invasion and metastasis due to antitumoral attributes. Mushrooms act as antibacterial, immune system enhancer and cholesterol lowering agents; additionally, they are important sources of bioactive compounds. As a result of these properties, some mushroom extracts are used to promote human health and are found as dietary supplements.
Collapse
|
41
|
Jafaar ZMT, Litchfield LM, Ivanova MM, Radde BN, Al-Rayyan N, Klinge CM. β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression. Int J Oncol 2014; 44:1365-75. [PMID: 24534923 PMCID: PMC3977804 DOI: 10.3892/ijo.2014.2294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/30/2013] [Indexed: 12/28/2022] Open
Abstract
Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ∼40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells. β-D-glucan dissolved in DMSO but not water inhibited MCF-7 cell proliferation in a concentration-dependent manner as measured by BrdU incorporation with an IC50 of ∼164±12 μg/ml. β-D-glucan dissolved in DMSO inhibited tamoxifen/endocrine-resistant LCC9 and LY2 cell proliferation with IC50 values of 4.6±0.3 and 24.2±1.4 μg/ml, respectively. MCF-10A normal breast epithelial cells showed a higher IC50 ∼464 μg/ml and the proliferation of MDA-MB-231 triple negative breast cancer cells was not inhibited by β-D-glucan. Concentration-dependent increases in the BAX/BCL2 ratio and cell death with β-D-glucan were observed in MCF-7 and LCC9 cells. PCR array analysis revealed changes in gene expression in response to 24-h treatment with 10 or 50 μg/ml β-D-glucan that were different between MCF-7 and LCC9 cells as well as differences in basal gene expression between the two cell lines. Select results were confirmed by quantitative real-time PCR demonstrating that β-D-glucan increased RASSF1 expression in MCF-7 cells and IGFBP3, CTNNB1 and ERβ transcript expression in LCC9 cells. Our data indicate that β-D-glucan regulates breast cancer-relevant gene expression and may be useful for inhibiting endocrine-resistant breast cancer cell proliferation.
Collapse
Affiliation(s)
- Zainab M T Jafaar
- Center of Biotechnology, Agricultural Research Directorate, Ministry of Science and Technology, Baghdad, Iraq
| | - Lacey M Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Margarita M Ivanova
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Brandie N Radde
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Numan Al-Rayyan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
42
|
Cytotoxicity of Coprinopsis atramentaria extract, organic acids and their synthesized methylated and glucuronate derivatives. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Paiva AM, Pinto RA, Teixeira M, Barbosa CM, Lima RT, Vasconcelos MH, Sousa E, Pinto M. Development of noncytotoxic PLGA nanoparticles to improve the effect of a new inhibitor of p53–MDM2 interaction. Int J Pharm 2013; 454:394-402. [DOI: 10.1016/j.ijpharm.2013.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
|
44
|
Suillus luteus methanolic extract inhibits cell growth and proliferation of a colon cancer cell line. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Azevedo CMG, Afonso CMM, Sousa D, Lima RT, Vasconcelos MH, Pedro M, Barbosa J, Corrêa AG, Reis S, Pinto MMM. Multidimensional optimization of promising antitumor xanthone derivatives. Bioorg Med Chem 2013; 21:2941-59. [PMID: 23623253 DOI: 10.1016/j.bmc.2013.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 01/18/2023]
Abstract
A promising antitumor xanthone derivative was optimized following a multidimensional approach that involved the synthesis of 17 analogues, the study of their lipophilicity and solubility, and the evaluation of their growth inhibitory activity on four human tumor cell lines. A new synthetic route for the hit xanthone derivative was also developed and applied for the synthesis of its analogues. Among the used cell lines, the HL-60 showed to be in general more sensitive to the compounds tested, with the most potent compound having a GI50 of 5.1 μM, lower than the hit compound. Lipophilicity was evaluated by the partition coefficient (K(p)) of a solute between buffer and two membrane models, namely liposomes and micelles. The compounds showed a logK(p) between 3 and 5 and the two membrane models showed a good correlation (r(2)=0.916) between each other. Studies concerning relationship between solubility and structure were developed for the hit compound and 5 of its analogues.
Collapse
Affiliation(s)
- Carlos M G Azevedo
- Centro de Química Medicinal da Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Portuguese wild mushrooms at the “pharma–nutrition” interface: Nutritional characterization and antioxidant properties. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Vaz JA, Ferreira IC, Tavares C, Almeida GM, Martins A, Helena Vasconcelos M. Suillus collinitus methanolic extract increases p53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chem 2012; 135:596-602. [DOI: 10.1016/j.foodchem.2012.04.127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/13/2012] [Accepted: 04/23/2012] [Indexed: 11/16/2022]
|
48
|
Lin Y, Liu J, Hu Y, Song X, Zhao Y. An antioxidant exopolysaccharide devoid of pro-oxidant activity produced by the soil bacterium Bordetella sp. B4. BIORESOURCE TECHNOLOGY 2012; 124:245-251. [PMID: 22989652 DOI: 10.1016/j.biortech.2012.05.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 06/01/2023]
Abstract
An exopolysaccharide (EPS) with a molecular weight of 230 kDa, was isolated from Bordetella sp. B4. The EPS was identified as linear alpha-1,6-(6-methyl)-glucan with N-acetyl-D-glucosamine branches at alpha-1, 4-linkages by IR and NMR spectroscopy. The free radical scavenging capacities of EPS on 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)), H(2)O(2), -OH and lipid peroxidation were 2-, 86-, 134- and 18-fold higher than that of ascorbic acid, respectively. Compared with ascorbic acid, the EPS was more effective in preventing DNA and protein from free radical damage induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH). More significantly, the EPS did not degrade DNA and protein by the pro-oxidant effect in the presence of copper ions and H(2)O(2). Furthermore, EPS could protect human umbilical vein endothelium cells (HUVECs) from high glucose-mediated damage. The production of EPS reached 10.2 g/L in the fermentation medium containing 3.0 g/L cholesterol, suggesting that Bordetella sp. B4 was a potential producer of antioxidant EPS.
Collapse
Affiliation(s)
- Yanliang Lin
- Department of Center Laboratory, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | | | | | | | | |
Collapse
|
49
|
Neves MP, Lima RT, Choosang K, Pakkong P, de São José Nascimento M, Vasconcelos MH, Pinto M, Silva AMS, Cidade H. Synthesis of a natural chalcone and its prenyl analogs--evaluation of tumor cell growth-inhibitory activities, and effects on cell cycle and apoptosis. Chem Biodivers 2012; 9:1133-43. [PMID: 22700231 DOI: 10.1002/cbdv.201100190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Six prenyl (=3-methylbut-2-en-1-yl) chalcones (=1,3-diphenylprop-2-en-1-ones), 2-7, and one natural non-prenylated chalcone, 1, have been synthesized and evaluated for their in vitro growth-inhibitory activity against three human tumor cell lines. A pronounced dose-dependent growth-inhibitory effect was observed for all prenylated derivatives, except for 7. The chalcone possessing one prenyloxy group at C(2'), i.e., 2, was the most active derivative against the three human tumor cell lines (5.9<GI₅₀<7.7 μM). The majority of compounds caused an increase in percentage of apoptotic cells and/or they interfered with cell cycle distribution in the MCF-7 cell line.
Collapse
Affiliation(s)
- Marta P Neves
- Centro de Química Medicinal da Universidade do Porto-CEQUIMED-UP, Rua Aníbal Cunha 164, PT-4050-047 Porto
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Carvajal AES, Koehnlein EA, Soares AA, Eler GJ, Nakashima AT, Bracht A, Peralta RM. Bioactives of fruiting bodies and submerged culture mycelia of Agaricus brasiliensis (A. blazei) and their antioxidant properties. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2011.11.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|