1
|
Javed M, Suramya, Mangla A, Jindal G, Bhutto HN, Shahid S, Kumar S, Raisuddin S. Bisphenol A-induced polycystic ovary syndrome (PCOS) with hormonal and metabolic implications in rats. Reprod Toxicol 2025; 131:108750. [PMID: 39549768 DOI: 10.1016/j.reprotox.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
There is a rising incidence of polycystic ovary syndrome (PCOS) cases worldwide in women of reproductive age due to environmental factors. We evaluated the effect of an environmental estrogen, bisphenol A (BPA) for its reprotoxicity regarding the induction of PCOS in rats and also assessed its hormonal and metabolic implications. There was 66.6 % and 50 % disorder, in the estrus cycle at low (50 µg/kg) and high (500 µg/kg) doses of BPA, respectively. While animals treated with the positive control (dehydroepiandrosterone, DHEA at 6 mg/100 g) caused 100 % disorder. Cystic and atretic follicles along with two corpora lutea were found in the low dose group. However, no corpus luteum was found in the high dose group. Furthermore, hyperplasia and hypertrophy were found in the myometrium, endometrium, and luminal epithelium of the uterus of the low dose and DHEA groups. Additionally, 17β estradiol, progesterone, DHEA, androstenedione, testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone sulphate (DHEAS), antimullerian hormone (AMH), ratio of LH/FSH and testosterone/DHT were increased significantly (P < 0.01) in BPA groups. A significantly higher TSH (P < 0.01) indicates hypothyroidism. Furthermore, hyperglycemia, hyperinsulinemia, HOMA-IR, and HOMAβ indicate insulin resistance in the low-dose group. Thus, the low dose of BPA was found to be more potent as compared to the higher dose in defining the hyperandrogenic state. Our study revealed that BPA may not only be a causative factor in the induction of PCOS but also has metabolic implications bearing on its estrogenic nature.
Collapse
Affiliation(s)
- Mehjbeen Javed
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suramya
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anuradha Mangla
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Garima Jindal
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Humaira Naaz Bhutto
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shaesta Shahid
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suraj Kumar
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sheikh Raisuddin
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Ogwoni HA, Aja PM, Eze ED, Agu PC, Moyosore AA, Ale BA, Ekpono EU, Awoke JN, Ogbu PN, Ukachi OU, Orji OU, Nweke PC, Egwu CO, Ekpono EU, Ewa GO, Igwenyi IO, Alum EU, Chukwu DC, Aja L, Ani GO, Offor CE, Yakubu OE, Maduagwuna E, Akobi JB, Noreen S, Awuchi CG. Cucumeropsis mannii seed oil (CMSO) restores testicular mitochondrial dysfunctions by modulating the activities of dysregulated testicular mitochondrial enzymes in male albino rats exposed to bisphenol A. Food Sci Nutr 2024; 12:7854-7863. [PMID: 39479659 PMCID: PMC11521674 DOI: 10.1002/fsn3.4379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 11/02/2024] Open
Abstract
Bisphenol A, a traditional endocrine disruptor, has been implicated in male infertility. This study investigated the effect of Cucumeropsis mannii seed oil (CMSO) on bisphenol A (BPA)-induced biochemical toxicity in the testicular mitochondria of male albino rats. The rats were assigned randomly to six experimental groups (n = 6), A, B, C, D, E, and F. Group A received 1 mL of olive oil. Groups B and C received 100 mL/kg body weight (BW) of BPA and 7.5 mL/kg BW CMSO, respectively. Rats in groups D, E, and F received preadministered doses of 100 mL/kg BW of BPA, 5 mL/kg BW of BPA, and 2.5 mL/kg BW of CMSO, respectively, followed by 6 weeks of exposure to those doses. Some mitochondrial enzymes, mitochondrial membrane potential (MMP), mitochondria testicular protein, and body weight of rats were determined using standard methods. BPA significantly reduced succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, NADH dehydrogenase, and monoamine oxidase activity. Also, BPA prominently decreased the MMP, mitochondrial testicular protein, and body weight of rats. Interestingly, coadministration of BPA and CMSO restored the dysregulated activities of the enzymes and levels of other biomarkers. We postulated that CMSO may be a promising drug for treating systemic toxicity caused by environmental toxicants such as BPA.
Collapse
Affiliation(s)
- H. A. Ogwoni
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesCross River University of Technology (CRUTECH)CalabarNigeria
| | - P. M. Aja
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
- Department of Biochemistry, Faculty of Biomedical SciencesKampala International UniversityBushenyiUganda
| | - Ejike Daniel Eze
- Department of Physiology, School of MedicineKabale UniversityKabaleUganda
| | - P. C. Agu
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - Afodun Adam Moyosore
- Department of Anatomy and Cell Biology, Faculty of Health SciencesBusitema UniversitySukuluUganda
| | - B. A. Ale
- Department of Biochemistry, Faculty of Biological SciencesUniversity of NigeriaNsukkaNigeria
| | - E. U. Ekpono
- Department of Science Laboratory Technology, Biochemistry OptionFederal PolytechnicOkoNigeria
| | - J. N. Awoke
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - Patience N. Ogbu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of MedicineAlex‐Ekwueme Federal University, Ndufu‐AlikeIkwoNigeria
| | - O. U. Ukachi
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - O. U. Orji
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - P. C. Nweke
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - C. O. Egwu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of MedicineAlex‐Ekwueme Federal University, Ndufu‐AlikeIkwoNigeria
| | - E. U. Ekpono
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - G. O. Ewa
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - I. O. Igwenyi
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - E. U. Alum
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - D. C. Chukwu
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - Lucy Aja
- Department of Science Education, Faculty of EducationEbonyi State UniversityAbakalikiNigeria
| | - G. O. Ani
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - C. E. Offor
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - O. E. Yakubu
- Department of Biochemistry, Faculty of SciencesFederal UniversityWukariNigeria
| | - E. Maduagwuna
- Department of Biochemistry, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria
| | - J. B. Akobi
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesCross River University of Technology (CRUTECH)CalabarNigeria
| | - Sana Noreen
- University Institute of Diet and Nutritional SciencesUniversity of LahoreLahorePakistan
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Faculty of Biomedical SciencesKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| |
Collapse
|
3
|
Zhao Y, Luo X, Hu J, Panga MJ, Appiah C, Du Z, Zhu L, Retyunskiy V, Gao X, Ma B, Zhang Q. Syringin alleviates bisphenol A-induced spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish. Int Immunopharmacol 2024; 131:111830. [PMID: 38520788 DOI: 10.1016/j.intimp.2024.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 μg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qi Zhang
- School of Food Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
El-Beshbishy HA, Waggas DS, Ali RA. Rats' testicular toxicity induced by bisphenol A is lessened by crocin via an antiapoptotic mechanism and bumped P-glycoprotein expression. Toxicon 2024; 241:107674. [PMID: 38458495 DOI: 10.1016/j.toxicon.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bisphenol A (BPA) engenders testicular toxicity via hydroxyl free radical genesis in rat striatum and depletion of the endogenous antioxidants in the epididymal sperms. The multi-drug resistance efflux carrier; P-glycoprotein (P-gp) expel the BPA from the testis and is responsible for the testicular protection through the deactivation of numerous xenobiotics. In our study, we investigated whether the BPA-induced testicular toxicity could be circumvented through administration of an antioxidant; crocin (Cr). Implication of P-gp expression was also investigated. Rats administered BPA (10 mg/kg b.w. orally for 14 days), dropped the body weight, testes/body weight ratio, total protein content, testosterone, follicle stimulating hormone, luteinizing hormone, and sperm motility & count, total antioxidant status, glutathione content and antioxidant enzymes (superoxide dismutase and catalase), concomitant with the elevation of the percentage abnormal sperm morphology, as well as testicular lipid peroxides and nitrite/nitrate levels. Histopathological examination showed spermatogenesis disorders after the BPA rats exposure. The immunohistochemical study showed up-regulation of the P-gp as evident by increasing immunoreactivity in interstitial cells, with positive localization in some spermatogonia cells. The BPA-treated rats showed positive immunoreactivity against caspase-3. The co-intake of Cr (200 mg/kg b.w./day, i.p. 14 days) along with the BPA, significantly ameliorated all the mentioned parameters, boosted histopathological image, fell the caspase-3 up-regulation, and perched the P-gp expression. We showed that, Cr promotes P-gp as an approach to nurture the testicles against the BPA toxicity. In conclusion; Cr lessens the oxidative stress conditions to safeguard rats from the BPA-induced testicular toxicity and sex hormones abnormalities, reducing apoptosis and up-regulating P-gp.
Collapse
Affiliation(s)
- Hesham A El-Beshbishy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rabab A Ali
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, 35516, Egypt; Medical Laboratory Technology Dept., College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
5
|
Mansoori R, Kazemi S, Almasi D, Hosseini SM, Karim B, Nabipour M, Moghadamnia AA. Therapeutic benefit of melatonin in 5-fluorouracil-induced renal and hepatic injury. Basic Clin Pharmacol Toxicol 2024; 134:397-411. [PMID: 38129993 DOI: 10.1111/bcpt.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Nephrotoxicity and hepatotoxicity include increased oxidative stress and apoptosis; as a result, liver and kidney damage are related to its pathogenesis. These are significant side effects caused in cancer patients treated with 5-FU. In the research, 25 rats were divided into five groups, including control, 5-FU and 5-FU + 2.5, 5 and 10 mg/kg melatonin (MEL), and the protective impact of MEL against 5-FU-induced hepatorenal damage in rats was investigated. 5-FU caused significant harm, resulting in severe renal failure and histopathological changes. It also increased BUN, creatinine and hepatic function markers levels while decreasing superoxide dismutase and glutathione peroxidase activity. Additionally, 5-FU led to a notable increase in malondialdehyde content. However, MEL co-administration to rats reversed most biochemical and histologic effects. In the control and MEL + 5-FU groups, the values were comparable. The doses of MEL treatment had a significant positive impact on 5-FU-induced oxidative stress, apoptosis, lipid peroxidation and kidney damage. Our data concluded that MEL has an ameliorative effect on hepatorenal damage caused by 5-FU.
Collapse
Affiliation(s)
- Razieh Mansoori
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Darya Almasi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Majid Nabipour
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Aja PM, Ogwoni HA, Agu PC, Ekpono EU, Awoke JN, Ukachi OU, Orji OU, Ale BA, Nweke CP, Igwenyi IO, Alum EU, Chukwu DC, Offor CE, Asuk AA, Eze ED, Yakubu OE, Akobi JB, Ani OG, Awuchi CG. Cucumeropsis mannii seed oil protects against Bisphenol A-induced testicular mitochondrial damages. Food Sci Nutr 2023; 11:2631-2641. [PMID: 37324897 PMCID: PMC10261808 DOI: 10.1002/fsn3.3260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 09/20/2024] Open
Abstract
There has been increasing search for the ameliorative properties of seed oils against toxicants. bisphenol A acts as an estrogenic endocrine-disrupting chemical capable of causing male infertility. This study aimed to explore Cucumeropsis mannii seed oil effects against mitochondrial damage in rats using bisphenol A. Forty-eight rats were randomly assigned to six groups (n = 6) of eight rats each and fed the same food and water for 6 weeks. The group A rats were given 1 mL olive oil, while the ones in group B were given bisphenol A at 100 mL/kg body weight via oral route. Group C received C. mannii seed oil 7.5 mL/kg body weight C. mannii seed oil, while group D, group E, and group F were pre-administered bisphenol A at 100 mL/kg body weight, followed by treatment with C. mannii seed oil at 7.5, 5, and 2.5 mL/kg body weight, respectively. Antioxidant enzymes, glutathione, reactive oxygen species, testicular volume, malondialdehyde, body weight, and testicular studies were done using standard methods. The results of the bisphenol A-administered group showed a significant decrease in the antioxidant enzymes, glutathione, body weight, and testicular volume with elevation in the levels of reactive oxygen species, malondialdehyde, and testicular indices. BPA + CMSO-treated group showed a significant increase in GPx activity compared with BPA-exposed rats. CMSO treatment significantly increased catalase activity in comparison with that of rats exposed to BPA. Remarkably, C. mannii seed oil and bisphenol A co-administration significantly reversed the abnormalities observed in the dysregulated biochemical biomarkers. Our findings suggest that C. mannii seed oil has considerable antioxidant potential which can be explored in therapeutic development against systemic toxicity induced by exposure to bisphenol A. Cucumeropsis mannii seed oil protects against bisphenol A-induced testicular mitochondria damages.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryMbarara University of Science and TechnologyMbararaUganda
| | | | | | | | | | | | - Obasi Uche Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | | | - Esther Ugo Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | - Atamgba Agbor Asuk
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | | | - J. B. Akobi
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | - Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| |
Collapse
|
7
|
Palak E, Lebiedzinska W, Lupu O, Pulawska K, Anisimowicz S, Mieczkowska AN, Sztachelska M, Niklinska GN, Milewska G, Lukasiewicz M, Ponikwicka-Tyszko D, Huhtaniemi I, Wolczynski S. Molecular insights underlying the adverse effects of bisphenol A on gonadal somatic cells' steroidogenic activity. Reprod Biol 2023; 23:100766. [PMID: 37084542 DOI: 10.1016/j.repbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Bisphenol A (BPA) exposure may impair gonadal steroidogenesis, although the underlying mechanism is not well known. Hereby, we assessed BPA action on human primary granulosa (hGC) and mouse Leydig cells (BLTK-1) proliferation, cytotoxicity, hormone secretion, and steroidogenic enzyme/receptor gene profile. hGC and BLTK-1 cells were stimulated with increasing concentrations of BPA (10-12 M to 10-4 M for cell proliferation assay, 10-8 M to 10-4 M for LDH-cytotoxicity assay, and 10-9 M to 10-5 M for hormone secretion and genes expression analysis). BPA at low concentrations (pM - nM) did not affect cell proliferation in either cell type, although was toxic at higher (µM) concentrations. BPA stimulation at low nM concentrations decreased the production of estradiol (E2) and testosterone (T) in BLTK-1, E2, and progesterone in hGCs. BPA down-regulated Star, Cyp11a1, and Hsd17b3, but up-regulated Cyp19a1, Esr1, Esr2, and Gpr30 expression in BLTK-1 cells. In hGC, BPA down-regulated STAR, CYP19A1, PGRMC1, and PAQR7 but up-regulated ESR2 expression. Estrogen receptor degrader fulvestrant (FULV) attenuated BPA inhibition of hormone production in both cell lines. FULV also blocked the BPA-induced Gpr30 up-regulation in BLTK-1 cells, whereas in hGC, failed to reverse the down-regulation of PGRMC1, STAR, and CYP19A1. Our findings provide novel mechanistic insights into environmentally-relevant doses of BPA action through both nuclear estrogen receptor-dependent and independent mechanisms affecting cultured granulosa and Leydig cell steroidogenesis.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | - Aleksandra N Mieczkowska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Monika Lukasiewicz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
8
|
Rashid H, Akhter MS, Alshahrani S, Qadri M, Nomier Y, Sageer M, Khan A, Alam MF, Anwer T, Ayoub R, Bahkali RJH. Mitochondrial oxidative damage by co-exposure to bisphenol A and acetaminophen in rat testes and its amelioration by melatonin. Clin Exp Reprod Med 2023; 50:26-33. [PMID: 36935409 PMCID: PMC10030205 DOI: 10.5653/cerm.2022.05568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/05/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE Human exposure to multiple xenobiotics, over various developmental windows, results in adverse health effects arising from these concomitant exposures. Humans are widely exposed to bisphenol A, and acetaminophen is the most commonly used over-the-counter drug worldwide. Bisphenol A is a well-recognized male reproductive toxicant, and increasing evidence suggests that acetaminophen is also detrimental to the male reproductive system. The recent recognition of male reproductive system dysfunction in conditions of suboptimal reproductive outcomes makes it crucial to investigate the contributions of toxicant exposures to infertility and sub-fertility. We aimed to identify toxicity in the male reproductive system at the mitochondrial level in response to co-exposure to bisphenol A and acetaminophen, and we investigated whether melatonin ameliorated this toxicity. METHODS Male Wistar rats were divided into six groups (n=10 each): a control group and groups that received melatonin, bisphenol A, acetaminophen, bisphenol A and acetaminophen, and bisphenol A and acetaminophen with melatonin treatment. RESULTS Significantly higher lipid peroxidation was observed in the testicular mitochondria and sperm in the treatment groups than in the control group. Levels of glutathione and the activities of catalase, glutathione peroxidase, glutathione reductase, and manganese superoxide dismutase decreased significantly in response to the toxicant treatments. Likewise, the toxicant treatments significantly decreased the sperm count and motility, while significantly increasing sperm mortality. Melatonin mitigated the adverse effects of bisphenol A and acetaminophen. CONCLUSION Co-exposure to bisphenol A and acetaminophen elevated oxidative stress in the testicular mitochondria, and this effect was alleviated by melatonin.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Yousra Nomier
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Maryam Sageer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad F Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Razan Ayoub
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rana J H Bahkali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
9
|
Eid RA, Abadi AM, El-Kott AF, Zaki MSA, Abd-Ella EM. The antioxidant effects of coenzyme Q10 on albino rat testicular toxicity and apoptosis triggered by bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42339-42350. [PMID: 36648721 DOI: 10.1007/s11356-022-24920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023]
Abstract
Polycarbonate plastics for packaging and epoxy resins are both made with the industrial chemical bisphenol A (BPA). This investigation looked at the histological structure, antioxidant enzymes, and albino rats' testis to determine how coenzyme Q10 (CoQ10) impacts BPA toxicity. For the experiments, three sets of 18 male adult rats were created: group 1 received no therapy, group 2 acquired BPA, and group 3 got the daily BPA treatment accompanied by coenzyme Q10, 1 h apart. The experimental period ran for 14 days. The biochemical biomarkers catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) were altered as a result of BPA exposure. The testicular histological architecture, which is made up of apoptosis, was also exaggerated. Furthermore, rats given BPA and CoQ10 treatment may experience a diminution in these negative BPA effects. These protective properties of CoQ10 may be correlated with the ability to eliminate oxidizing substances that can harm living species. The outcomes might support the hypothesis that CoQ10 prevented oxidative damage and boosted rats' stress responses when BPA was introduced. Thus, by shielding mammals from oxidative stress, CoQ10 aids in the growth and development of the animals. BPA is extremely hazardous to humans and can persist in tissues. Human reproductive functions are a worry due to human exposure to BPA, especially for occupational workers who are typically exposed to higher doses of BPA. As a result, in order to reduce the health risks, BPA usage must be minimized across a diverse range of industries, and improper plastic container handling must be prohibited. By giving CoQ10 to patients, BPA's harmful effects on reproductive structures and functions may be avoided.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, Saudi Arabia.
| | - Alsaleem Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia.,Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Abd-Ella
- Department of Zoology, College of Science, Fayoum University, Fayoum, Egypt.,Department of Biology, College of Science and Art, Al-Baha University, Al-Mandaq, Al-Baha, Saudi Arabia
| |
Collapse
|
10
|
Dehdari Ebrahimi N, Parsa S, Nozari F, Shahlaee MA, Maktabi A, Sayadi M, Sadeghi A, Azarpira N. Protective effects of melatonin against the toxic effects of environmental pollutants and heavy metals on testicular tissue: A systematic review and meta-analysis of animal studies. Front Endocrinol (Lausanne) 2023; 14:1119553. [PMID: 36793277 PMCID: PMC9922902 DOI: 10.3389/fendo.2023.1119553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Environmental pollution and infertility are two modern global challenges that agonize personal and public health. The causal relationship between these two deserves scientific efforts to intervene. It is believed that melatonin maintains antioxidant properties and may be utilized to protect the testicular tissue from oxidant effects caused by toxic materials. METHODS A systematic literature search was conducted in PubMed, Scopus, and Web of Science to identify the animal trial studies that evaluated melatonin therapy's effects on rodents' testicular tissue against oxidative stress caused by heavy metal and non-heavy metal environmental pollutants. Data were pooled, and standardized mean difference and 95% confidence intervals were estimated using the random-effect model. Also, the risk of bias was assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool. (PROSPERO: CRD42022369872). RESULTS Out of 10039 records, 38 studies were eligible for the review, of which 31 were included in the meta-analysis. Most of them showed beneficial effects of melatonin therapy on testicular tissue histopathology. [20 toxic materials were evaluated in this review, including arsenic, lead, hexavalent chromium, cadmium, potassium dichromate, sodium fluoride, cigarette smoke, formaldehyde, carbon tetrachloride (CCl4), 2-Bromopropane, bisphenol A, thioacetamide, bisphenol S, ochratoxin A, nicotine, diazinon, Bis(2-ethylhexyl) phthalate (DEHP), Chlorpyrifos (CPF), nonylphenol, and acetamiprid.] The pooled results showed that melatonin therapy increased sperm count, motility, viability and body and testicular weights, germinal epithelial height, Johnsen's biopsy score, epididymis weight, seminiferous tubular diameter, serum testosterone, and luteinizing hormone levels, testicular tissue Malondialdehyde, glutathione peroxidase, superoxide dismutase, and glutathione levels. On the other hand, abnormal sperm morphology, apoptotic index, and testicular tissue nitric oxide were lower in the melatonin therapy arms. The included studies presented a high risk of bias in most SYRCLE domains. CONCLUSION In conclusion, our study demonstrated amelioration of testicular histopathological characteristics, reproductive hormonal panel, and tissue markers of oxidative stress. Melatonin deserves scientific attention as a potential therapeutic agent for male infertility. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022369872.
Collapse
Affiliation(s)
| | - Shima Parsa
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Nozari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amirhossein Maktabi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrab Sayadi
- Cardiovascular research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Sadeghi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Negar Azarpira,
| |
Collapse
|
11
|
Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. J Biochem Mol Toxicol 2022; 37:e23292. [PMID: 36527247 DOI: 10.1002/jbt.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is an omnipresent environmental pollutant. Despite being restrictions in-force for its utilization, it is widely being used in the production of polycarbonate plastics and epoxy resins. Direct, low-dose, and long-term exposure to BPA is expected when they are used in the packaging of food products and are used as containers for food consumption. Occupationally, workers are typically exposed to BPA at higher levels and for longer periods during the manufacturing process. BPA is a known endocrine disruptor chemical (EDC), that causes male infertility, which has a negative impact on human life from emotional, physical, and societal standpoints. To minimize the use of BPA in numerous consumer products, efforts and regulations are being made. Despite legislative limits in numerous nations, BPA is still found in consumer products. This paper examines BPA's overall male reproductive toxicity, including its impact on the hypothalamic-pituitary-testicular (HPT) axis, hormonal homeostasis, testicular steroidogenesis, sperm parameters, reproductive organs, and antioxidant defense system. Furthermore, this paper highlighted the role of non-monotonic dose-response (NMDR) in BPA exposure, which will help to improve the overall understanding of the harmful effects of BPA on the male reproductive system.
Collapse
Affiliation(s)
- Shiv K. Yadav
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| | - Vandana Bijalwan
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| | - Suresh Yadav
- ICMR‐National Institute for Implementation Research on Non‐Communicable Disease (NIIRNCD) Jodhpur Rajasthan India
| | - Kamalesh Sarkar
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
- ICMR‐National Institute of Cholera & Enteric Diseases (NICED) Kolkata West Bengal India
| | - Santasabuj Das
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
- ICMR‐National Institute of Cholera & Enteric Diseases (NICED) Kolkata West Bengal India
| | - Dhirendra P. Singh
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| |
Collapse
|
12
|
Nayak D, Adiga D, Khan NG, Rai PS, Dsouza HS, Chakrabarty S, Gassman NR, Kabekkodu SP. Impact of Bisphenol A on Structure and Function of Mitochondria: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:10. [DOI: 10.1007/s44169-022-00011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 04/02/2024]
Abstract
AbstractBisphenol A (BPA) is an industrial chemical used extensively to manufacture polycarbonate plastics and epoxy resins. Because of its estrogen-mimicking properties, BPA acts as an endocrine-disrupting chemical. It has gained attention due to its high chances of daily and constant human exposure, bioaccumulation, and the ability to cause cellular toxicities and diseases at extremely low doses. Several elegant studies have shown that BPA can exert cellular toxicities by interfering with the structure and function of mitochondria, leading to mitochondrial dysfunction. Exposure to BPA results in oxidative stress and alterations in mitochondrial DNA (mtDNA), mitochondrial biogenesis, bioenergetics, mitochondrial membrane potential (MMP) decline, mitophagy, and apoptosis. Accumulation of reactive oxygen species (ROS) in conjunction with oxidative damage may be responsible for causing BPA-mediated cellular toxicity. Thus, several reports have suggested using antioxidant treatment to mitigate the toxicological effects of BPA. The present literature review emphasizes the adverse effects of BPA on mitochondria, with a comprehensive note on the molecular aspects of the structural and functional alterations in mitochondria in response to BPA exposure. The review also confers the possible approaches to alleviate BPA-mediated oxidative damage and the existing knowledge gaps in this emerging area of research.
Collapse
|
13
|
Shetty S, Kumar V, Ramesh V, Bharati S. Mito-TEMPO protects against Bisphenol-A-induced testicular toxicity: An in vivo study. Free Radic Res 2022; 56:427-435. [PMID: 36205519 DOI: 10.1080/10715762.2022.2133702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Bisphenol-A (BPA) is a common environmental toxin which alters testicular function in both animals and humans. BPA exerts its cytotoxic potential by altering mitochondrial oxidative stress and functioning. Therefore, protecting mitochondria from oxidative stress may prevent BPA-induced testicular damage. In the present study, modulation of BPA toxicity by mitochondria-targeted antioxidant, mito-TEMPO was studied in male wistar rats. Rats were administered mito-TEMPO (0.1 mg/kg b.w, i.p.) twice a week, followed by BPA (10 mg/kg b.w., orally) once a week for 4 weeks. After 4 weeks, sperm parameters were evaluated in the testis along with histopathological analysis. The mitochondrial oxidative stress, mitochondrial membrane potential (MMP) and enzymatic activity of mitochondrial complex II and IV were estimated in the testicular tissue. Pre-treatment of mito-TEMPO protected animals from toxic effect of BPA as indicated by the normalisation of sperm parameters and preserved histoarchitecture of testis. BPA treatment to animals significantly increased mitochondrial reactive oxygen species (ROS) and lipid peroxidation (LPO). A significant decrease in the activity of mitochondrial complex II was also observed after BPA exposure whereas, mitochondrial complex II activity was increased. In addition, an increase in MMP was also observed in BPA group. Mito-TEMPO successfully normalised mitochondrial ROS and LPO formation. Similar normalisation effect was also noted in the activity of mitochondrial complex II, complex IV and MMP. Results suggested that mito-TEMPO pre-treatment significantly protected BPA-induced oxidative stress and thereby mito-TEMPO effectively prevented testicular damage.
Collapse
Affiliation(s)
- Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| | - Vinoth Kumar
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| | - Vasumathi Ramesh
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal (576104), India
| |
Collapse
|
14
|
Eid RA, Abadi AM, kott AFE, Zaki MSA, Abd-ella EM. The Anti-Oxidant Effects of Coenzyme Q10 on Albino Rat Testicular Toxicity and Apoptosis Triggered by Bisphenol A.. [DOI: 10.21203/rs.3.rs-2073923/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Polycarbonate plastics for packaging and epoxy resins are both made with the industrial chemical bisphenol A (BPA). This investigation looked at the histological structure, antioxidant enzymes, and albino rats' testis to determine how Coenzyme Q10 (CoQ10) impacts BPA toxicity. For the experiments, 18 adult male rats were broken into three groups: group 1 received no therapy, group 2 acquired BPA, and group 3 got daily BPA treatment accompanied by coenzyme Q10, one hour apart. All experiment done for 14 days. The biochemical biomarkers catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) were altered as a result of BPA exposure. The testicular histological architecture, which is made up of apoptosis, was also exaggerated. Furthermore, rats given BPA and CoQ10 treatment may experience a diminution in these negative BPA effects. These protective properties of CoQ10 may be correlated with the ability to eliminate oxidizing substances that can harm living species.The outcomes might support the hypothesis that CoQ10 prevented oxidative damage and boosted rats' stress responses when BPA was introduced. Thus, by shielding mammals from oxidative stress, CoQ10 aids in the growth and development of the animals.BPA is extremely hazardous to humans and can persist in tissues. Human reproductive functions are a worry due to human exposure to BPA, especially for occupational workers who are typically exposed to higher doses of BPA. As a result, in order to reduce the health risks, BPA usage must be minimized across a diverse range of industries, and improper plastic container handling must be prohibited. By giving CoQ10 to patients, BPA's harmful effects on reproductive structures and functions may be avoided.
Collapse
|
15
|
Xiong NX, Kuang XY, Fang ZX, Ou J, Li SY, Zhao JH, Huang JF, Li KX, Wang R, Fan LF, Luo SW, Liu SJ. Transcriptome analysis and co-expression network reveal the mechanism linking mitochondrial function to immune regulation in red crucian carp (Carassius auratus red var) after Aeromonas hydrophila challenge. JOURNAL OF FISH DISEASES 2022; 45:1491-1509. [PMID: 35749280 DOI: 10.1111/jfd.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a common pathogen of freshwater fish. In this study, A. hydrophila infection was shown to cause tissue damage, trigger physiological changes as well as alter the expression profiles of immune- and metabolic-related genes in immune tissues of red crucian carp (RCC). Transcriptome analysis revealed that acute A. hydrophila infection exerted a profound effect on mitochondrial oxidative phosphorylation linking metabolic regulation to immune response. In addition, we further identified cellular senescence, apoptosis, necrosis and mitogen-activated protein kinase signal pathways as crucial signal pathways in the kidney of RCC subjected to A. hydrophila infection. These findings may have important implications for understanding modulation of immunometabolic response to bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shi-Yun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jia-Hui Zhao
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Jin-Fang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ke-Xin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Rou Wang
- Foreign studies college, Hunan Normal University, Changsha, China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
16
|
Paulino LRFM, Barroso PAA, Silva BR, Barroso LG, Barbalho EC, Bezerra FTG, Souza ALP, Monte APO, Silva AWB, Matos MHT, Silva JRV. Immunolocalization of melatonin receptors in bovine ovarian follicles and in vitro effects of melatonin on growth, viability and gene expression in secondary follicles. Domest Anim Endocrinol 2022; 81:106750. [PMID: 35870423 DOI: 10.1016/j.domaniend.2022.106750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
This study aims to investigate the (1) expression of melatonin receptors types 1A/B (MTNR1A/B) in bovine ovaries and (2) the in vitro effects of melatonin on secondary follicle development, antrum formation, viability, and expression of messenger ribonucleic acid (mRNA) for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase-1 (GPX1) and peroxiredoxin 6 (PRDX6). The expression of MTNR1A/B in bovine ovarian follicles was demonstrated by immunohistochemistry. To choose the most effective concentration of melatonin on follicular growth and viability, isolated secondary follicles were cultured individually at 38.5°C, with 5% CO2 in air, for 18 d in TCM-199+ alone or supplemented with 10-11, 10-9, 10-7 or 10-5 M melatonin. Then, melatonin receptor antagonist, luzindole, was tested to further evaluate the mechanisms of actions of melatonin, that is, the follicles were cultured in control medium alone or supplemented with 10-7 M melatonin, 10 µM luzindole and both 10-7 M melatonin and 10 µM luzindole. Follicular growth, morphology and antrum formation were evaluated at days 6, 12 and 18. At the end of culture, viability of secondary follicles was analyzed by calcein-AM and ethidium homodimer-1, and the relative levels of mRNA for SOD, CAT, GPX1 and PRDX6 were evaluated by real time polymerase chain reaction. Immunohistochemistry results showed expression of MTNR1A/B in oocyte and granulosa cells of primordial, primary, secondary and antral follicles. Secondary follicles cultured in medium supplemented with melatonin at different concentrations had well preserved follicles after 18 d of culture. Furthermore, follicles cultured in presence of 10-7 M melatonin presented significantly higher diameters than those cultured in other treatments. The presence of melatonin receptor antagonist, luzindole, blocked the effects of melatonin on follicular growth and viability. In addition, follicles cultured in medium containing only melatonin had significantly higher rates of antrum formation. Follicles cultured in medium containing only melatonin had higher relative levels of mRNA for CAT, SOD and PRDX-6 than those cultured with both melatonin and luzindole. Follicles cultured with luzindole only or both melatonin and luzindole had lower relative levels of mRNA for PRDX6 and GPX1 than those cultured control medium. In conclusion, melatonin promotes growth of bovine secondary follicles through its membrane-coupled receptors, while luzindole blocks the effects of melatonin on follicle growth and reduces the expression of antioxidant enzymes in cultured follicles.
Collapse
Affiliation(s)
- L R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - P A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - B R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - L G Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A L P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A P O Monte
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - A W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - M H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil.
| |
Collapse
|
17
|
Zhang Z, Wang H, Lei X, Mehdi Ommati M, Tang Z, Yuan J. Bisphenol a exposure decreases learning ability through the suppression of mitochondrial oxidative phosphorylation in the hippocampus of male mice. Food Chem Toxicol 2022; 165:113167. [DOI: 10.1016/j.fct.2022.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
|
18
|
Protective Effect of Melatonin on Nonylphenol-Induced Reproductive and Behavioral Disorders in First-Generation Adult Male Rats. Behav Neurol 2022; 2022:1877761. [PMID: 35530167 PMCID: PMC9072055 DOI: 10.1155/2022/1877761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 01/02/2023] Open
Abstract
Methods Pregnant Wistar rats were randomly assigned into five groups: control, NP (25 mg/kg), NP (25 mg/kg)+MLT (10 mg/kg), NP (25 mg/kg)+MLT (20 mg/kg), and MLT (20 mg/kg). The duration of treatment was 21 days from gestation time. Morris water maze was used to assess learning and memory. NP concentrations of serum and testicular tissue were measured by HPLC. Histological analysis of testicular tissues was done by H&E staining. Results Behavioral study showed that NP does not impair learning and memory in first-generation rats. Histomorphometric results showed that NP can significantly reduce the cross-sectional area of the seminiferous tubules and the epithelium, the diameter and number of seminiferous tubules, the thickness of the epithelium, and the number of spermatocytes and spermatogonia compared to other groups. MLT reversed the NP-induced histomorphometric. Also, it changes and increased the activity of superoxide dismutase (SOD), total antioxidant capacity (TAC), and catalase (CAT). The level of malondialdehyde (MDA) significantly decreased in MLT-treated groups compared with the NP group. Conclusion Our finding showed that MLT enhanced the learning process and reduced NP-induced testicular tissue damage through its antioxidants and cytoprotective effects.
Collapse
|
19
|
Liu L, Cui H, Huang Y, Zhou Y, Hu J, Wan Y. Enzyme-Mediated Reactions of Phenolic Pollutants and Endogenous Metabolites as an Overlooked Metabolic Disruption Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3634-3644. [PMID: 35238542 DOI: 10.1021/acs.est.1c08141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is generally recognized that phenol-containing molecules mainly undergo phase II metabolic reactions, whereas glucuronide and sulfate are conjugated to form water-soluble products. Here, we report direct reactions of phenolic pollutants (triclosan, alkylphenol, bisphenol A [BPA], and its analogues) and some endogenous metabolites (vitamin E [VE] and estradiol) to generate new lipophilic ether products (e.g., BPA-O-VEs and alkylphenol-O-estradiol). A nontargeted screening strategy was used to identify the products in human liver microsome incubations, and the most abundant products (BPA-O-VEs) were confirmed via in vivo exposure in mice. BPA-O-VEs were frequently detected in sera from the general population at levels comparable to those of glucuronide/sulfate-conjugated BPA. Recombinant human cytochrome P450s were applied to find that CYP3A4 catalyzed the formation of these newly discovered ether metabolites by linking the VE hydroxyl group to the BPA phenolic ring, leading to the significantly reduced antioxidative activities of BPA-O-VEs compared to VEs. The effects of the reaction on the homeostasis of reacted biomolecules were finally assessed by in vitro assay and in vivo mice exposures. The generation of BPA-O-VEs decreased the VE concentrations and increased the reactive oxygen species generation after exposure to BPA at environmentally relevant concentrations. The identified reactions provided an overlooked metabolic disruption pathway for phenolic pollutants.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Nguyen M, Sabry R, Davis OS, Favetta LA. Effects of BPA, BPS, and BPF on Oxidative Stress and Antioxidant Enzyme Expression in Bovine Oocytes and Spermatozoa. Genes (Basel) 2022; 13:142. [PMID: 35052481 PMCID: PMC8774721 DOI: 10.3390/genes13010142] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
Bisphenol A (BPA) and its analogs, bisphenol S (BPS) and bisphenol F (BPF), might impact fertility by altering oxidative stress pathways. Here, we hypothesize that bisphenols-induced oxidative stress is responsible for decreased gamete quality. In both female (cumulus-oocyte-complexes-COCs) and male (spermatozoa), oxidative stress was measured by CM-H2DCFDA assay and key ROS scavengers (SOD1, SOD2, GPX1, GPX4, CAT) were quantified at the mRNA and protein levels using qPCR and Western blot (COCs)/immunofluorescence (sperm). Either gamete was treated in five groups: control, vehicle, and 0.05 mg/mL of BPA, BPS, or BPF. Our results show elevated ROS in BPA-treated COCs but decreased production in BPS- and BPF-treated spermatozoa. Additionally, both mRNA and protein expression of SOD2, GPX1, and GPX4 were decreased in BPA-treated COCs (p < 0.05). In sperm, motility (p < 0.03), but not morphology, was significantly altered by bisphenols. SOD1 mRNA expression was significantly increased, while GPX4 was significantly reduced. These results support BPA's ability to alter oxidative stress in oocytes and, to a lesser extent, in sperm. However, BPS and BPF likely act through different mechanisms.
Collapse
Affiliation(s)
| | | | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.N.); (R.S.); (O.S.D.)
| |
Collapse
|
21
|
Zhang H, Yang R, Shi W, Zhou X, Sun S. The association between bisphenol A exposure and oxidative damage in rats/mice: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118444. [PMID: 34742820 DOI: 10.1016/j.envpol.2021.118444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies reported that BPA could cause oxidative damage to different tissues in rats/mice. This study aimed to perform a systematic review and meta-analysis of BPA exposure on oxidative damage in rats/mice. A comprehensive literature search was conducted using PubMed, Embase, and Web of Science databases from their inception date until July 18, 2020. 20 eligible articles were included in this study. The results showed that BPA could significantly increase the level of MDA (SMD, 16.88; 95%CI, 12.06-21.71), but there was a significant reduction in the contents of antioxidants, such as GR (-10.46, -13.91 ∼ -7.02), CAT (-8.48, -11.66 ∼ -5.30), GPx (-9.37, -11.95 ∼ -6.80), GST (-7.59, -14.51 ∼ -0.67), GSH (-10.64, -13.96 ~ -7.33), and SOD (-6.48, -8.37 ∼ -4.58) in rats/mice. Our study provided clear evidence that BPA exposure could significantly induce oxidative damage in rats/mice. And we also found that the degree of oxidative damage was related to BPA dose, target tissue, intervention means, and exposure duration of BPA.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wanying Shi
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China
| | - Xin Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China
| | - Suju Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Population Health, Shijiazhuang, 050017, China.
| |
Collapse
|
22
|
Ebrahimi R, Shokrzadeh M, Ghassemi Barghi N. Effects of melatonin on the Bisphenol-A- induced cytotoxicity and genetic toxicity in colon cancer cell lines, normal gingival cell lines, and bone marrow stem cell lines. Cancer Inform 2021; 20:11769351211056295. [PMID: 34819716 PMCID: PMC8606939 DOI: 10.1177/11769351211056295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/09/2021] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a synthetic chemical that has widely been used in the production of polycarbonate plastic and epoxy resins in the manufacture of consumer products. The most common path of human exposure to BPA is by oral intake that involves genotoxicity, oxidative stress, endocrine disruption, mutagenicity, and carcinogenicity in both in vitro and in vivo models. Melatonin is known as a free-radical scavenger and a powerful antioxidant agent. This study aimed to investigate the effects of melatonin on viability and genetic disorders of normal Human Gingival Fibroblasts (HGF), colon cancer (MKN45), and bone marrow stem cell (MSC) lines exposed to BPA. For this purpose, MTT and Comet assays were performed to evaluate the cytotoxicity and genotoxicity properties of BPA and the role of melatonin. The results showed that BPA exposure resulted in increased oxidative stress parameters including MDA and ROS, and decreased GSH content. The current study demonstrated the cytotoxicity and genotoxicity effects of BPA and the protective role of melatonin in preventing cytotoxicity and DNA damage are induced by BPA.
Collapse
Affiliation(s)
- Rouya Ebrahimi
- Department of Toxicology and Pharmacology, Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Sari, Iran
| | - Nasrin Ghassemi Barghi
- Department of Toxicology and Pharmacology, Pharmaceutical Research Center, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Sari, Iran
| |
Collapse
|
23
|
Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells. Toxicology 2021; 461:152924. [PMID: 34474090 DOI: 10.1016/j.tox.2021.152924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
Bisphenol A (BPA) is a chemical compound commonly used in the production of plastics for daily lives and industry. As BPA is well known for its adverse health effects, several alternative materials have been developed. This study comprehensively analyzed the toxicity of BPA and its three substitutes including bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF) on aging, healthspan, and mitochondria using an in vivo Caenorhabditis elegans (C. elegans) model animal and cultured mammalian fibroblast cells. C. elegans treated with 1 mM BPA exhibited abnormalities in the four tested parameters related to development and growth, including delayed development, decreased body growth, reduced reproduction, and abnormal tissue morphology. Exposure to the same concentration of each alternative including TMBPF, which has been proposed as a relatively safe BPA alternative, detrimentally affected at least three of these events. Moreover, all bisphenols (except BPS) remarkably shortened the organismal lifespan and increased age-related changes in neurons. Exposure to BPA and BPF resulted in mitochondrial abnormalities, such as reduced oxygen consumption and mitochondrial membrane potential. In contrast, the ATP levels were noticeably higher after treatment with all bisphenols. In mammalian fibroblast cells, exposure to increasing concentrations of all bisphenols (ranging from 50 μM to 500 μM) caused a severe decrease in cell viability in a dose-dependent manner. BPA increased ATP levels and decreased ROS but did not affect mitochondrial permeability transition pores (mPTP). Notably, TMBPF was the only bisphenol that caused a significant increase in mitochondrial ROS and mPTP opening. These results suggest that the potentially harmful physiological effects of BPA alternatives should be considered.
Collapse
|
24
|
PERUMAL P, DE AK, BHATTACHARYA D, ALYETHODI RR, BHOWMICK SNEHA, KUNDU A. Effect of exogenous melatonin on endocrinological profiles, biochemical and antioxidant and oxidative stress profiles in post-partum anestrus Andaman local buffaloes (Bubalus bubalis) in tropical island ecosystem. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i3.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Andaman local buffalo (ALB) is distributed in Andaman and Nicobar Islands. ALB is non-descriptive and represents admixture of different Indian breeds of buffaloes. ALB is suffering infertility due to anestrus in dry (summer) season. Therefore, this study was conducted to assess the effect of slow release subcutaneous exogenous melatonin (MT) implant on hematological profiles, endocrinological profiles (cortisol and prolactin), biochemical profile (total protein, albumin, globulin, glucose and total cholesterol), antioxidant profiles [total antioxidant capacity (TAC), catalase (CAT), glutathione (GSH) and superoxide dismutase (SOD)] and oxidative stress profile (malondialdehyde; MDA) in anestrus buffalo cows during summer to improve its reproductive efficiency. Experimental buffaloes (5–7 years of age) were selected and divided into two groups, Gr I: Control (n=6) and Gr II: Treatment (n=6; melatonin implant @ 18 mg/50 kg b.wt). Statistical analysis revealed that these experimental profiles differed significantly between treatment and control groups. Blood profiles revealed that anestrus buffalo suffered severe macrocytic hypochromic anemia with increased leukocytosis and MT has improved the health status of reproductive system and whole body systems. Concentration of cortisol and prolactin were lower in MT treated than in control group. Similarly, antioxidant profiles were higher and oxidative stress profile was lower in MT treated group than in control group. Biochemical profiles were increased in MT treated than in untreated buffalos. Study concludes that melatonin had significant beneficial effects in improvement of the antioxidant profiles, minimization of oxidative stress with cascading beneficial effects on hormone, biochemical and hematological profiles, which will improve the cyclicity and fertility rate in anestrus buffalo during summers in humid tropical island ecosystem.
Collapse
|
25
|
Salamanca-Fernández E, Rodríguez-Barranco M, Amiano P, Delfrade J, Chirlaque MD, Colorado S, Guevara M, Jimenez A, Arrebola JP, Vela F, Olea N, Agudo A, Sánchez MJ. Bisphenol-A exposure and risk of breast and prostate cancer in the Spanish European Prospective Investigation into Cancer and Nutrition study. Environ Health 2021; 20:88. [PMID: 34399780 PMCID: PMC8369702 DOI: 10.1186/s12940-021-00779-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disruptor that it is present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident breast and prostate cancer in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS We designed a case-cohort study within the EPIC-Spain cohort. Study population consisted on 4812 participants from 4 EPIC-Spain centers (547 breast cancer cases, 575 prostate cancer cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Borgan II weighted Cox regression was used to estimate hazard ratios. RESULTS Median follow-up time in our study was 16.9 years. BPA geometric mean serum values of cases and sub-cohort were 1.12 ng/ml vs 1.10 ng/ml respectively for breast cancer and 1.33 ng/ml vs 1.29 ng/ml respectively for prostate cancer. When categorizing BPA into tertiles, a 40% increase in risk of prostate cancer for tertile 1 (p = 0.022), 37% increase for tertile 2 (p = 0.034) and 31% increase for tertile 3 (p = 0.072) was observed with respect to values bellow the limit of detection. No significant association was observed between BPA levels and breast cancer risk. CONCLUSIONS We found a similar percentage of detection of BPA among cases and sub-cohort from our population, and no association with breast cancer risk was observed. However, we found a higher risk of prostate cancer for the increase in serum BPA levels. Further investigation is needed to understand the influence of BPA in prostate cancer risk.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Pilar Amiano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Josu Delfrade
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Sciences, University of Murcia, Murcia, Spain
| | - Sandra Colorado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Jimenez
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP), Campus Universitario de Cartuja, C/Cuesta del Observatorio 4, 18080, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| |
Collapse
|
26
|
Zaid SSM, Othman S, Kassim NM. Protective role of Mas Cotek (Ficus deltoidea) against the toxic effects of bisphenol A on morphology and sex steroid receptor expression in the rat uterus. Biomed Pharmacother 2021; 140:111757. [PMID: 34044283 DOI: 10.1016/j.biopha.2021.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Numerous scientific studies have found that young women are at a high risk of reproductive infertility due to their routine exposure to numerous bisphenol A (BPA) products. This risk is highly associated with the production of reactive oxygen species from BPA products. Ficus deltoidea, which has strong antioxidant properties, was selected as a potential protective agent to counter the detrimental effects of BPA in the rat uterus. METHODS Female Sprague-Dawley rats were allocated into four groups (n = 8) as follows: (i) the Normal Control group (NC), (ii) the BPA-exposed group (PC), (iii) the group concurrently treated with BPA and F. deltoidea (FC) and (iv) the group treated with F. deltoidea alone (F). RESULTS After 6 weeks of concurrent treatment with F. deltoidea, uterine abnormalities in the BPA-exposed rats showed a significant improvement. Specifically, the size of stromal cells increased; interstitial spaces between stromal cells expanded; the histology of the glandular epithelium and the myometrium appeared normal and mitotic figures were present. The suppressive effects of BPA on the expression levels of sex steroid receptors (ERα and ERβ) and the immunity gene C3 were significantly normalised by F. deltoidea treatment. The role of F. deltoidea as an antioxidant agent was proven by the significant reduction in malondialdehyde level in BPA-exposed rats. Moreover, in BPA-exposed rats, concurrent treatment with F. deltoidea could normalise the level of the gonadotropin hormone, which could be associated with an increase in the percentage of rats with a normal oestrous cycle. CONCLUSION F. deltoidea has the potential to counter the toxic effects of BPA on the female reproductive system. These protective effects might be due to the phytochemical properties of F. deltoidea. Therefore, future study is warranted to identify the bioactive components that contribute to the protective effects of F. deltoidea.
Collapse
Affiliation(s)
- Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Normadiah M Kassim
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Mondal S, Bandyopadhyay A. Bisphenol A and male murine reproductive system: finding a link between plasticizer and compromised health. Toxicol Sci 2021; 183:241-252. [PMID: 34320211 DOI: 10.1093/toxsci/kfab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global burden of male infertility is rising at an alarming rate affecting the lives of millions in terms of physical, emotional and societal perspectives. Among several existing endocrine disrupting chemicals, bisphenol A (BPA) has been reported by many to inflict male reproductive toxicity in different experimental models, especially in mice. This review article critically discusses the overall reproductive toxicity of BPA with a special note to its ubiquitous existence, contamination route, effects on the reproductive system and toxicity mechanisms in male mice. Disturbed redox status in germ cells and spermatozoa plays a pivotal role in BPA induced male reproductive toxicity. In this context, the involvement of mitochondria and endoplasmic reticulum is also of grave importance. Induction of caspase-dependent apoptosis is the extreme consequence that leads to deterioration of cellular parameters. Besides the oxidative cellular and histoarchitectural damages, perturbed endocrine regulation, subsequent impaired hormonal and cellular genesis program, epigenetic alterations and inflammation cumulatively reflect poor sperm quality leading to compromised reproduction. Moreover, several key issues have also been highlighted that, if addressed, will strengthen our understanding of BPA mediated male reproductive toxicity.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt College Dhimarkheda (Rani Durgawati Vishwavidyalaya), Madhya Pradesh, Katni, 483332, India
| | - Arindam Bandyopadhyay
- Department of Zoology, Govt Shyam Sundar Agrawal College (Rani Durgawati Vishwavidyalaya), Madhya Pradesh, Sihora, Jabalpur, 483225, India
| |
Collapse
|
28
|
Rafiee Z, Rezaee-Tazangi F, Zeidooni L, Alidadi H, Khorsandi L. Protective effects of selenium on Bisphenol A-induced oxidative stress in mouse testicular mitochondria and sperm motility. JBRA Assist Reprod 2021; 25:459-465. [PMID: 33899458 PMCID: PMC8312290 DOI: 10.5935/1518-0557.20210010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE This study aimed to explore the impact of selenium (SE) on Bisphenol-A (BPA)-exposed sperm and isolated testicular mitochondria of mice. METHODS Mouse sperm and isolated mitochondria were exposed to BPA (0.8 mM) and different concentrations of SE (50, 100, and 200 μM) for four hours. The viability of sperm and isolated mitochondria as well as the mitochondrial membrane potential (MMP) were evaluated. SOD (superoxide dismutase), GSH (glutathione), MDA (malondialdehyde), and ROS (reactive oxygen species) levels in testicular mitochondria were also examined. RESULTS BPA concentration-dependently enhanced ROS and MDA levels in isolated mitochondria, while MMP and acclivity of GSH and SOD significantly reduced. BPA also considerably impaired spermatozoa survival and motility. SE concentration-dependently reduced mitochondrial oxidative stress, MMP, sperm survival, and total sperm motility. CONCLUSIONS Our findings collectively suggested that SE concentration-dependently reversed BPA-caused mitochondrial toxicity and reduced sperm motility by suppressing oxidative stress.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Rezaee-Tazangi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Alidadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Kadir ER, Imam A, Olajide OJ, Ajao MS. Alterations of Kiss 1 receptor, GnRH receptor and nuclear receptors of the hypothalamo-pituitary-ovarian axis following low dose bisphenol-A exposure in Wistar rats. Anat Cell Biol 2021; 54:212-224. [PMID: 33967032 PMCID: PMC8225470 DOI: 10.5115/acb.20.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023] Open
Abstract
Bisphenol A is a chemical used primarily as a monomer in the production of polycarbonate plastics and epoxy resins. It is a synthetic chemical compound that is produced in billions of pounds annually, and tagged as an endocrine disruptor. Bisphenol A is a high production synthetic chemical compound that is used in the production of many consumables and equipments of daily consumption and use by man. Growing interest in possible health threats posed by endocrine disrupting chemicals (bisphenol-A inclusive), as these substances are in our environment, food, and many consumer products. Therefore, this study aims to determine bisphenol-A effects on the hypothalamo-pituitary-ovarian axis, and role of melatonin in this regard. Forty-two Wistar rats were bred, grouped into 7, with each group consisting of 6 rats. Experimental groups were administered low and high doses of bisphenol-A and melatonin, starting from day 19, and was continued for 7 weeks orally. They were left to develop into full adults and were sacrificed on day 120±4 days. Blood samples, hypothalamus, pituitary and ovarian tissues were excised for biochemical and tissue antioxidants assays as well as genetic studies. Results show elevated gonadotropin and androgen levels. There was disruption of reactive oxygen species in the ovarian tissues, as well as alterations in the expression of genes that regulate reproduction at the hypothalamus and pituitary levels. Conclusion of early exposure to bisphenol-A is associated with prolonged duration of disruption of reproductive functions in female Wistar rats, which persist long after cessation of the exposure. Melatonin antioxidant effects give some promising outturns against bisphenol-A induced toxicities.
Collapse
Affiliation(s)
- Eniola Risikat Kadir
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria.,Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, QC, Canada
| | - Moyosore Saliu Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
30
|
Zaid SSM, Ruslee SS, Mokhtar MH. Protective Roles of Honey in Reproductive Health: A Review. Molecules 2021; 26:molecules26113322. [PMID: 34205972 PMCID: PMC8197897 DOI: 10.3390/molecules26113322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, most people who lead healthy lifestyles tend to use natural products as supplements, complementary medicine or alternative treatments. Honey is God's precious gift to mankind. Honey has been highly appreciated and extensively used since ancient history due to its high nutritional and therapeutic values. It is also known to enhance fertility. In the last few decades, the important role of honey in modern medicine has been acknowledged due to the large body of convincing evidence derived from extensive laboratory studies and clinical investigations. Honey has a highly complex chemical and biological composition that consists of various essential bioactive compounds, enzymes, amino and organic acids, acid phosphorylase, phytochemicals, carotenoid-like substances, vitamins and minerals. Reproductive health and fertility rates have declined in the last 30 years. Therefore, this review aimed to highlight the protective role of honey as a potential therapeutic in maintaining reproductive health. The main role of honey is to enhance fertility and treat infertility problems by acting as an alternative to hormone replacement therapy for protecting the vagina and uterus from atrophy, protecting against the toxic effects of xeno-oestrogenic agents on female reproductive functions and helping in the treatment of gynaecological disorders, such as vulvovaginal candidiasis infection, that affect women's lives.
Collapse
Affiliation(s)
- Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: ; Tel.: +60-3-9769-6742
| | - Siti Suraya Ruslee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
31
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Acute toxicity and sublethal effects of sodium laureth sulfate on oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108998. [PMID: 33556537 DOI: 10.1016/j.cbpc.2021.108998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
The present study was performed to determine the acute toxicity of sodium laureth sulfate (SLES) and its sublethal effects on oxidative stress enzymes in benthic oligochaete worm Tubifex tubifex. The results showed that 96 h median lethal concentration (LC50) value of SLES for Tubifex tubifex is 21.68 mg/l. Moreover exposed worms showed abnormal behaviours including incremented erratic movement, mucus secretion, and decreased clumping tendency at acute level. Percentage of autotomy additionally increased significantly (P < 0.05) with the increasing dose of toxicant at 96 h exposure. Sublethal concentrations of SLES (10% and 30% of 96 h LC50 value) caused paramount alterations in the oxidative stress enzymes. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GPx) exhibited a striking initiatory increment followed by a resulting descending pattern. Moreover, during exposure times, catalase (CAT) activity and malondialdehyde (MDA) level increased markedly with incrementing concentrations of SLES. However, the effects of sodium laureth sulfate on Tubifex tubifex were characterized and portrayed by the development of a correlation matrix and an integrated biomarker response (IBR) assessment. These results indicate that exposure to this anionic surfactant alters the survivability and behavioral response at acute level and modifies changes in oxidative stress enzymes at sublethal level in Tubifex tubifex.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
32
|
Ahmed Zaki MS, Haidara MA, Abdallaa AM, Mohammed H, Sideeg AM, Eid RA. Role of dietary selenium in alleviating bisphenol A toxicity of liver albino rats: Histological, ultrastructural, and biomarker assessments. J Food Biochem 2021; 45:e13725. [PMID: 33847390 DOI: 10.1111/jfbc.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is used as a plasticizer in polycarbonate plastics. It has been used in consumer products and epoxy resins for decades as protective coatings and linings for food and beverage bottles. This can trigger human reactions to BPA which interferes with estrogen receptors. Our study explored the ameliorative effects of selenium (Se) in male rats on liver damage caused by BPA. Rats were divided into four groups at random: The first one obtained olive oil and acted as a control. Se (0.5 mg/kg diet) was given for the second group. The third one was treated with BPA (10 mg/kg body weight/day) orally. Concomitantly Se (0.5 mg/kg diet) and BPA (10 mg/kg body weight/day) were given orally in the fourth one. Liver specimens were prepared for light, electron microscopes and the serum samples were screened for biochemical markers. In the BPA received group, histological findings indicated apoptotic hepatic histological changes such as sinusoidal congestion, cytoplasmic vacuolation and leukocyte infiltration. Ultrastructurally, the same group had mitochondrial degeneration, rough endoplasmic reticulum swelling, and nuclear pyknosis, as well as fat droplet deposition and lysosome enhancement. Liver enzymes: In the BPA group, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) have been substantially increased. Moreover, histological and ultrastructural improvements were seen in the rat population treated with BPA and Se, whereas ALT and AST levels were lowered and malondialdehyde (MDA), glutathione peroxidase (GPx), human C reactive protein (hCRP), and the serum levels of interleukin-6 (IL-6) were significantly modulated. PRACTICAL APPLICATIONS: Bisphenol A (BPA) is used in the manufacturing of polycarbonate plastic (e.g., water bottles, baby bottles) and epoxy resins (e.g., inner coating in metallic food cans). It is a non-polymer preservative for other plastics, one of the contaminants of the atmosphere and a common endocrine estrogenic disruptor. Our study explored the ameliorative effects of selenium (Se) in male rats on liver damage caused by BPA. Rats were divided into four groups at random: The first one obtained olive oil and acted as a control. Se (0.5 mg/kg diet) was given for the second group. The third one was treated with BPA (10 mg/kg body weight/day) orally. Concomitant Se (0.5 mg/kg diet) and BPA (10 mg/kg body weight/day) were given in the fourth one. Liver specimens were prepared for light, electron microscopes and the serum samples were screened for biochemical markers.
Collapse
Affiliation(s)
- Mohamed Samir Ahmed Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Histology Department, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed A Haidara
- Physiology Department, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Asim M Abdallaa
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Heitham Mohammed
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abulqasim M Sideeg
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Refaat A Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
33
|
Chronic exposure of adult male Wistar rats to bisphenol A causes testicular oxidative stress: Role of gallic acid. Endocr Regul 2021; 54:14-21. [PMID: 32597147 DOI: 10.2478/enr-2020-0003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Bisphenol A (BPA) has been reported that among other male reproductive dys-functions, it can cause marked estrogenic effects including alteration in serum hormones as well as testicular lesions in exposed animals. This work sought to study the role of gallic acid (GA), a known antioxidant, on the BPA-induced testicular oxidative stress in adult male Wistar rats using serum hormone analysis, histopathology, and biochemical assays. METHODS Adult male rats were divided into four groups (n=10) including control (0.2 ml of corn oil), GA (20 mg/kg/day), BPA (10 mg/kg/day), BPA+GA (BPA, 10 mg/kg/day + GA, 20 mg/kg/day). All medications were given by oral gavage for 45 consecutive days. The body and testicular weights were measured. Blood and organ samples were collected for the serum hormonal assay: testosterone (T), luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL), and tissue biochemistry analysis: superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-S-transferase (GST), malondialdehyde (MDA), hydrogen peroxide (H2O2), respectively. RESULTS The BPA-treated rats showed significant reduction in the gonadosomatic index. BPA also caused significant decrease in the levels of the serum testosterone and prolactin. Furthermore, BPA induced testicular oxidative stress by decreasing the activities of antioxidant enzymes and increasing reactive oxygen species. However, co-treatment with GA protected against these alterations. CONCLUSION Findings from the present study confirmed the previously reported data and show that the ability of GA, as a potent antioxidant, may protect against BPA-induced alterations in the male reproductive function. Hence, GA protects against testicular oxidative stress in adult male Wistar rats following chronic exposure to BPA.
Collapse
|
34
|
Mitochondria-targeted antioxidant, mito-TEMPO mitigates initiation phase of N-Nitrosodiethylamine-induced hepatocarcinogenesis. Mitochondrion 2021; 58:123-130. [PMID: 33711502 DOI: 10.1016/j.mito.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023]
Abstract
Targeting mitochondrial oxidative stress during initial stages of hepatocarcinogenesis can be an effective and promising strategy to prevent hepatocellular carcinoma (HCC). In the present study, mitochondria targeted antioxidant, mito-TEMPO was administered to male BALB/c mice at a dosage 0.1 mg/kg b.w. (intraperitoneal) twice a week, followed by single N-Nitrosodiethylamine (NDEA) intraperitoneal injection (10 mg/kg b.w.). After 24 h of NDEA administration, animals were sacrificed, blood and liver tissue were collected. Liver injury markers, histoarchitecture, antioxidant defence status, mitochondrial reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial dysfunction analysis, and mitochondrial membrane potential were investigated. Mito-TEMPO pre-treatment protected animals from the damaging effects of NDEA as observed by normalization of liver injury markers. NDEA metabolism resulted in a significantly increased intracellular and mitochondrial ROS generation with concomitant increase in LPO formation. The activity of mitochondrial complex I, complex II, malate dehydrogenase were significantly reduced and mitochondrial membrane potential was increased. Mito-TEMPO effectively scavenged NDEA-induced ROS generation and reduced LPO formation. A significant improvement was also observed in the activity of mitochondrial complex I, complex II, malate dehydrogenase and normalisation of mitochondrial membrane potential. Results suggested that mito-TEMPO had significant impact on the initiation phase of hepatocarcinogensis which could be one of the reason for its reported chemopreventive effect.
Collapse
|
35
|
Perumal P, De AK, Alyethodi RR, Savino N, Khate K, Vupru K, Khan MH. Daily and seasonal rhythmic secretary pattern of endocrinological profiles in mithun bull. Theriogenology 2021; 166:46-54. [PMID: 33684782 DOI: 10.1016/j.theriogenology.2021.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
Mithun (Bos frontalis) is a unique domestic free-range bovine species available in North Eastern hilly (NEH) regions of India and is reared for its protein rich meat. Mithun suffers severe non-cyclical population fluctuations; however, it is not yet declared as endangered species. Mithun follows some sort of seasonality based on the calving trend and semen production, although it is a perennial breeder. However, there is need to study the rhythmic changes of endocrine profiles to understand the hormone flow pattern in mithun to select the suitable time for blood collection to assess the exact endocrine profiles and to select the suitable time for natural breeding or semen collection by artificial methods for further research, conservation and propagation of its germplasm. Therefore, the present study was designed to evaluate the reproductive as well as metabolic endocrinological profiles in 24:00 h in intact adult mithun bulls during different seasons (winter, spring, summer and autumn) to know the rhythmic changes and flow pattern of the endocrinological profiles to improve its reproductive efficiency. Experimental mithun bulls (n = 6; age: 5-6 years; body condition score: 5-6 out of 10, classified as good) were selected for the study. Endocrinological profiles, follicle stimulating hormone (FSH), luteinizing hormone/interstitial cell stimulating hormone (LH/ICSH), testosterone, cortisol, thyroxine (T4), insulin like growth factor-1 (IGF-1), prolactin and melatonin (MT) were estimated at 04:00 h interval for one whole day in four seasons. The analysis was completed in two different ways as different times of collection (08:00, 12:00, 16:00, 20:00, 24:00 and 04:00 h) and day (08:00 to 16:00 h) & night time (20:00 to 04:00 h) collections. Repeated measures ANOVA analysis revealed that the bulls in winter and spring had significantly (p < 0.05) higher FSH, LH, testosterone, T4, IGF-1 and MT than those in summer whereas the bulls in summer had significantly higher cortisol and prolactin than those in winter and spring seasons. Similarly FSH, LH, testosterone, T4, IGF-1 and MT were significantly (p < 0.05) higher in night than in day time collections whereas cortisol and prolactin were significantly (p < 0.05) higher in day than in night time collections in different seasons. Correlation analysis revealed that FSH, LH, testosterone, T4, IGF-1 and MT had significant (p < 0.05) positive correlation with each other whereas these had significant (p < 0.05) negative correlation with cortisol and prolactin. The study concludes that season and time of blood collection had significant effect on the endocrinological profiles in mithun bulls. Estimation of FSH, LH, testosterone, T4, IGF-1 and MT during night time and cortisol and prolactin during day time was more appropriate to get correct value of the endocrinological profiles. Spring and winter have significantly greater beneficial effects than summer on reproduction and artificial breeding programs in mithun species in the semi-intensive management in the present location.
Collapse
Affiliation(s)
- P Perumal
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India; ICAR-Central Island Agricultural Research Institute, Port Blair, 744 105, Andaman and Nicobar Islands, India.
| | - A K De
- ICAR-Central Island Agricultural Research Institute, Port Blair, 744 105, Andaman and Nicobar Islands, India
| | - R R Alyethodi
- ICAR-Central Island Agricultural Research Institute, Port Blair, 744 105, Andaman and Nicobar Islands, India
| | - N Savino
- NU-School of Agricultural Science and Rural Development, Medziphema, Nagaland, 797 106, India
| | - K Khate
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India
| | - K Vupru
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India
| | - M H Khan
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India
| |
Collapse
|
36
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
37
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Oxidative stress in benthic oligochaete worm, Tubifex tubifex induced by sublethal exposure to a cationic surfactant cetylpyridinium chloride and an anionic surfactant sodium dodecyl sulfate. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108906. [PMID: 33022380 DOI: 10.1016/j.cbpc.2020.108906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/16/2022]
Abstract
The present study was assessed to determine the in vivo toxic effects of a cationic surfactant, cetylpyridinium chloride (CPC), and an anionic surfactant, sodium dodecyl sulfate (SDS) in terms of oxidative stress biomarkers in benthic oligochaete worm Tubifex tubifex for 14 days. The investigation demonstrated that sublethal concentrations of CPC (0.0213, and 0.0639 mg L-1) and SDS (1.094 and 3.092 mg L-1)induced paramount alterations in the oxidative stress enzymes in Tubifex tubifex. Superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH), and glutathione peroxidase (GPx) exhibited an initial notable increase in their activities in the surfactants exposed worms at 1d and 7d of exposure period followed by consequential reduction at 14d exposure period with respect to control, while catalase (CAT) and malondialdehyde (MDA) activities markedly incremented gradually throughout the exposure periods. Through the construction of the correlation matrix and integrated biomarker response (IBR), the effects of CPC and SDS on Tubifex tubifex were distinguished. These results indicate that exposure to these cationic and anionic surfactants modulates the levels of oxidative stress enzymes in Tubifex tubifex.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
38
|
Meng L, Liu J, Wang C, Ouyang Z, Kuang J, Pang Q, Fan R. Sex-specific oxidative damage effects induced by BPA and its analogs on primary hippocampal neurons attenuated by EGCG. CHEMOSPHERE 2021; 264:128450. [PMID: 33007573 DOI: 10.1016/j.chemosphere.2020.128450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
BPA analogs, including bisphenol S (BPS) and bisphenol B (BPB), have been used to replace BPA since it was banned to be added. To investigate whether BPA and its analogs cause oxidative damage effects on primary hippocampal neurons of rats, reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), mitochondrial membrane potential (MMP), apoptosis and cell viability assays were conducted after hippocampal neurons exposure to different concentrations of BPA, BPS, and BPB (1, 10, 100 nM and 1, 10, 100 μM). Moreover, the effects of EGCG (5 and 6 μM for male and female, respectively) added on neurons exposed to BPA were assessed. Results showed that 24 h exposure to these bisphenols (BPs) could increase the levels of ROS and contents of MDA, but reduce the activity of SOD significantly. A decline of cell viabilities accompanied with the increasing of apoptosis rates was observed after 7 d exposure to BPs and the reduction of MMP was also observed after 7 d exposure to BPA. Interestingly, BPS has the lower toxicity to hippocampal neurons compared with BPA and BPB. Non-monotonic dose-effect relationships between the concentrations of BPs and the cytotoxic effects were observed, and the effects of BPs on male hippocampal neurons are greater than those of female ones in general. While EGCG can protect neurons free of oxidative damages. In conclusion, the results suggest that BPs may induce sex-specific neurotoxic effects involving oxidative stress, which can be attenuated by EGCG, and males are more sensitive to BPs than females.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Congcong Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiahua Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Malmir M, Naderi Noreini S, Ghafarizadeh A, Faraji T, Asali Z. Ameliorative effect of melatonin on apoptosis, DNA fragmentation, membrane integrity and lipid peroxidation of spermatozoa in the idiopathic asthenoteratospermic men: In vitro. Andrologia 2020; 53:e13944. [PMID: 33368491 DOI: 10.1111/and.13944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fertility loss, recurrent spontaneous abortion and poor outcome in assisted reproductive techniques (ART) have been associated with DNA fragmentation. This work was achieved to evaluate the protective role of melatonin versus apoptosis, DNA fragmentation, membrane integrity and lipid peroxidation of spermatozoa from men with asthenoteratozoospermia (ATS). Some researchers maintain that melatonin can serve as a remedy for apoptosis induction, and it has an impressive effect on boosting the quality and quantity of spermatozoa. For this purpose, semen samples were collected from 50 ATS men and they were divided into control and melatonin (6 mM) groups at 2, 4, 6 and 24 hr. Concentrating on the reasons for apoptosis is an arduous process, but in the present study for this evaluation mitochondrial membrane potential (MMP), DNA fragmentation by TUNEL and sperm chromatin dispersion (SCD) methods and lipid peroxidation were carried out. Also, sperm viability was performed. In the control group, MDA, TUNEL-positive and SCD were significantly increased but viability and MMP of spermatozoa were significantly decreased. Moreover, in the melatonin group, TUNEL-positive, SCD and MDA levels were significantly decreased and viability and MMP significantly increased, compared to the control group. In outcome, melatonin prescription paves the way for apoptosis down-regulating in the ATS men.
Collapse
Affiliation(s)
- Mahdi Malmir
- Department of Midwifery,Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | | | | | - Tayebeh Faraji
- Department of Midwifery,Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Zahra Asali
- Department of Midwifery,Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| |
Collapse
|
40
|
Salamanca-Fernández E, Rodríguez-Barranco M, Petrova D, Larrañaga N, Guevara M, Moreno-Iribas C, Chirlaque MD, Colorado-Yohar S, Arrebola JP, Vela F, Olea N, Agudo A, Sánchez MJ. Bisphenol A exposure and risk of ischemic heart disease in the Spanish European Prospective Investigation into cancer and nutrition study. CHEMOSPHERE 2020; 261:127697. [PMID: 32731019 DOI: 10.1016/j.chemosphere.2020.127697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cardiovascular disease, particularly ischemic heart disease (IHD), is the leading cause of mortality worldwide. Bisphenol A (BPA) is considered an endocrine disruptor and obesogen, present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident IHD in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS We designed a case-cohort study within the EPIC-Spain cohort. The population consisted of 4636 participants from 4 EPIC-Spain centers (946 IHD cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Follow-up was performed by linking with national and regional databases and reviewing patients' clinical records. Cox Proportional Hazards Models were used for the statistical analyses. RESULTS Median follow-up time was 16 years and 70% of the participants showed detectable BPA values (>0.2 ng/ml). Geometric mean (GM) values of cases and sub-cohort were 1.22 ng/ml vs 1.19 ng/ml respectively (p = 0.90). Cox regression models showed no significant association of BPA serum levels and IHD, acute myocardial infarction or angina pectoris risk. CONCLUSIONS We evidenced a similar percentage of detection of BPA among cases and sub-cohort participants from our population, and no clear association with IHD risk was observed. However, further investigation is needed to understand the influence of BPA on IHD risk.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Dafina Petrova
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nerea Larrañaga
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Public Health Department of Gipuzkoa, Donostia, Spain
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Conchi Moreno-Iribas
- Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Department of Health and Sciences, University of Murcia, Spain
| | - Sandra Colorado-Yohar
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Radiology, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| |
Collapse
|
41
|
Rezaee-Tazangi F, Zeidooni L, Rafiee Z, Fakhredini F, Kalantari H, Alidadi H, Khorsandi L. Taurine effects on Bisphenol A-induced oxidative stress in the mouse testicular mitochondria and sperm motility. JBRA Assist Reprod 2020; 24:428-435. [PMID: 32550655 PMCID: PMC7558901 DOI: 10.5935/1518-0557.20200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives: This study was performed to investigate the protective effects of taurine (2-aminoethanesulfonic acid, TAU) on oxidative stress in the isolated mouse testicular mitochondria, mitochondrial membrane potential (MMP), viability and motility of the exposed sperms to the BPA. Methods: We treated epididymal spermatozoa obtained from mice and isolated mouse testicular mitochondria with BPA (0.8 mmol/mL) and various doses of TAU (5, 10, 30 and 50 µmol/L). We used the MTT assay and Rhodamine 123 uptake to assess sperm viability and MMP. We assessed the oxidative stress through measuring ROS (reactive oxygen species), MDA (malondialdehyde), GSH (glutathione), and SOD (super-oxide dismutase) levels in the testicular mitochondrial tissue. Results: BPA significantly elevated ROS, MDA and MMP levels, and markedly reduced SOD and GSH levels in the isolated mitochondria. BPA also considerably impaired spermatozoa viability and motility. Pretreatment with 30 and 50 µmol/L of TAU could considerably suppressed mitochondrial oxidative stress, enhanced MMP, and improved sperm motility and viability. Conclusion: TAU may attenuate the BPA-induced mitochondrial toxicity and impaired sperm motility via decreasing oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Rezaee-Tazangi
- Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Rafiee
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtesadat Fakhredini
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heybatollah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Alidadi
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
Perumal P, Chang S, De A, Baruah K, Khate K, Vupru K, Mitra A. Slow release exogenous melatonin modulates scrotal circumference and testicular parameters, libido, endocrinological profiles and antioxidant and oxidative stress profiles in mithun. Theriogenology 2020; 154:1-10. [PMID: 32470703 DOI: 10.1016/j.theriogenology.2020.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
|
43
|
Protective effects of melatonin on male fertility preservation and reproductive system. Cryobiology 2020; 95:1-8. [DOI: 10.1016/j.cryobiol.2020.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
|
44
|
Mi P, Gao Q, Feng ZY, Zhang JW, Zhao X, Chen DY, Feng XZ. Melatonin attenuates 17β-trenbolone induced insomnia-like phenotype and movement deficiency in zebrafish. CHEMOSPHERE 2020; 253:126762. [PMID: 32302915 DOI: 10.1016/j.chemosphere.2020.126762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
17β-trenbolone (17β-TBOH) is one of the dominant metabolites of trenbolone acetate, which is widely applied in beef cattle operations around the globe. The effects of environmental concentrations of 17β-trenbolone on the early development of zebrafish embryos have received very little attention. Melatonin could regulate sleep-wake cycle and plays a protective role in various adverse conditions. Here, environmentally realistic concentrations of 17β-trenbolone (1 ng/L, 10 ng/L, 50 ng/L) has been exposure to zebrafish embryos at 2 h postfertilization (hpf). The results showed that 10 ng/L and 50 ng/L 17β-trenbolone disturbed the distribution of caudal primary motoneurons and downregulated expression of motoneuron development related genes along with locomotion decreasing. While melatonin could recover the detrimental effects caused by 17β-trenbolone. Interestingly, 17β-trenbolone exposure increased waking activity and decreased rest even in a low dose (1 ng/L). Moreover, it upregulated hypocretin/orexin (Hcrt) signaling which promotes wakefulness. Melatonin restored the insomnia-like alternation induced by 17β-trenbolone exposure. Collectively, we conclude that 17β-trenbolone disturbed motoneuron development and altered sleep/wake behavior, while melatonin could alleviate the deleterious influence on motoneuron development and recover the circadian rhythm.
Collapse
Affiliation(s)
- Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qian Gao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ze-Yang Feng
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350, China
| | - Jing-Wen Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350, China.
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
45
|
Karmakar PC, Ahn JS, Kim YH, Jung SE, Kim BJ, Lee HS, Kim SU, Rahman MS, Pang MG, Ryu BY. Paternal Exposure to Bisphenol-A Transgenerationally Impairs Testis Morphology, Germ Cell Associations, and Stemness Properties of Mouse Spermatogonial Stem Cells. Int J Mol Sci 2020; 21:ijms21155408. [PMID: 32751382 PMCID: PMC7432732 DOI: 10.3390/ijms21155408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Bisphenol-A (BPA) exposure in an adult male can affect the reproductive system, which may also adversely affect the next generation. However, there is a lack of comprehensive data on the BPA-induced disruption of the association and functional characteristics of the testicular germ cells, which the present study sought to investigate. Adult male mice were administered BPA doses by gavage for six consecutive weeks and allowed to breed, producing generations F1-F4. Testis samples from each generation were evaluated for several parameters, including abnormal structure, alterations in germ cell proportions, apoptosis, and loss of functional properties of spermatogonial stem cells (SSCs). We observed that at the lowest-observed-adverse-effect level (LOAEL) dose, the testicular abnormalities and alterations in seminiferous epithelium staging persisted in F0-F2 generations, although a reduced total spermatogonia count was found only in F0. However, abnormalities in the proportions of germ cells were observed until F2. Exposure of the male mice (F0) to BPA alters the morphology of the testis along with the association of germ cells and stemness properties of SSCs, with the effects persisting up to F2. Therefore, we conclude that BPA induces physiological and functional disruption in male germ cells, which may lead to reproductive health issues in the next generation.
Collapse
Affiliation(s)
- Polash Chandra Karmakar
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Jin Seop Ahn
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Yong-Hee Kim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Sang-Eun Jung
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hee-Seok Lee
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Sun-Uk Kim
- National Primate Research Center and Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea;
| | - Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
| | - Buom-Yong Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Korea; (P.C.K.); (J.S.A.); (Y.-H.K.); (S.-E.J.); (M.S.R.); (M.-G.P.)
- Correspondence: ; Tel.: +82-31-670-4687; Fax: +82-31-670-0062
| |
Collapse
|
46
|
Amjad S, Rahman MS, Pang MG. Role of Antioxidants in Alleviating Bisphenol A Toxicity. Biomolecules 2020; 10:biom10081105. [PMID: 32722388 PMCID: PMC7465987 DOI: 10.3390/biom10081105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA) is an oestrogenic endocrine disruptor widely used in the production of certain plastics, e.g., polycarbonate, hard and clear plastics, and epoxy resins that act as protective coating for food and beverage cans. Human exposure to this chemical is thought to be ubiquitous. BPA alters endocrine function, thereby causing many diseases in human and animals. In the last few decades, studies exploring the mechanism of BPA activity revealed a direct link between BPA-induced oxidative stress and disease pathogenesis. Antioxidants, reducing agents that prevent cellular oxidation reactions, can protect BPA toxicity. Although the important role of antioxidants in minimizing BPA stress has been demonstrated in many studies, a clear consensus on the associated mechanisms is needed, as well as the directives on their efficacy and safety. Herein, considering the distinct biochemical properties of BPA and antioxidants, we provide a framework for understanding how antioxidants alleviate BPA-associated stress. We summarize the current knowledge on the biological function of enzymatic and non-enzymatic antioxidants, and discuss their practical potential as BPA-detoxifying agents.
Collapse
|
47
|
Aslanturk A, Uzunhisarcikli M. Protective potential of curcumin or taurine on nephrotoxicity caused by bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23994-24003. [PMID: 32304054 DOI: 10.1007/s11356-020-08716-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) received heightened attention in the recent years due to humans continuously being exposed to it. This study explores the effect of taurine or curcumin on subacute BPA treatment-induced nephrotoxicity in rats (Rattus norvegicus). Forty-two adult albino male rats were exposed to BPA (130 mg/kg daily) for 28 days by gastric gavage. BPA led to lipid peroxidation, inhibiting antioxidant enzyme activities like catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST). BPA exposure also induced histopathological changes like tubular and glomerular degeneration, vascular congestion, and interstitial cell infiltration in kidney tissue. Cotreatment with taurine (100 mg/kg daily) or curcumin (100 mg/kg daily) alleviated the lipid peroxidation level and antioxidant enzyme activities and histological alterations brought about by BPA. In this study, curcumin and taurine application provided protection against renal toxicity caused by BPA but did not prevent toxic effect completely.
Collapse
Affiliation(s)
- Ayse Aslanturk
- Vocational High School of Health Services, Gazi University, 06830, Golbasi, Ankara, Turkey.
| | - Meltem Uzunhisarcikli
- Vocational High School of Health Services, Gazi University, 06830, Golbasi, Ankara, Turkey
| |
Collapse
|
48
|
Faheem M, Adeel M, Khaliq S, Lone KP, El-Din-H-Sayed A. Bisphenol-A induced antioxidants imbalance and cytokines alteration leading to immune suppression during larval development of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26800-26809. [PMID: 32382907 DOI: 10.1007/s11356-020-08959-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Recently, the oxidative stress and immunotoxicity biomarkers have been extensively used in embryotoxicity using fish embryos as promising models especially after exposure to chemical-like environmental estrogens. Bisphenol-A (BPA) is an estrogenic endocrine disruptor and is ubiquitous in the aquatic environment. Larvae of Labeo rohita were exposed to low concentrations of BPA (10, 100, 1000 μg/l) for 21 days. Innate immune system, antioxidants parameters, and developmental alterations were used as biomarkers. Exposure to BPA caused developmental abnormalities including un-inflated swim bladder, delayed yolk sac absorption, spinal curvature, and edema of pericardium. Lipid peroxidation increased and activity of catalase (p < 0.05), superoxide dismutase (p < 0.05), and glutathione peroxidase (p < 0.01) decreased after exposure to BPA. Level of reduced glutathione also decreased (p < 0.05) in BPA-exposed group. Lower expression of tumor necrosis factor-α (p < 0.05) and interferon-γ (p < 0.001) was observed in BPA-exposed groups while expression of interleukin-10 increased (p < 0.05) in larvae exposed to 10 μg/l BPA. Moreover, exposure of BPA caused a concentration-dependent increase in expression of heat shock protein 70 (p < 0.05). The present study showed that the exposure to BPA in early life stages of Labeo rohita caused oxidative stress and suppress NF-κB signaling pathway leading to immunosuppression. The results presented here demonstrate the cross talk between heat shock protein 70 and cytokines expression.
Collapse
Affiliation(s)
| | | | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid P Lone
- Department of Zoology, GC University, Lahore, Pakistan
| | | |
Collapse
|
49
|
Castellini C, Totaro M, Parisi A, D'Andrea S, Lucente L, Cordeschi G, Francavilla S, Francavilla F, Barbonetti A. Bisphenol A and Male Fertility: Myths and Realities. Front Endocrinol (Lausanne) 2020; 11:353. [PMID: 32595601 PMCID: PMC7304337 DOI: 10.3389/fendo.2020.00353] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Bisphenol A (BPA) represents the main chemical monomer of epoxy resins and polycarbonate plastics. The environmental presence of BPA is widespread, and it can easily be absorbed by the human body through dietary and transdermal routes, so that more than 90% of the population in western countries display detectable BPA levels in the urine. As BPA is qualified as an endocrine disruptor, growing concern is rising for possible harmful effects on human health. This review critically discusses the available literature dealing with the possible impact of BPA on male fertility. In rodent models, the in vivo exposure to BPA negatively interfered with the regulation of spermatogenesis throughout the hypothalamic-pituitary-gonadal axis. Furthermore, in in vitro studies, BPA promoted mitochondrial dysfunction and oxidative/apoptotic damages in spermatozoa from different species, including humans. To date, the claimed clinical adverse effects on male fertility are largely based on the results from studies assessing the relationship between urinary BPA concentration and conventional semen parameters. These studies, however, produced controversial evidence due to heterogeneity in the extent of BPA exposure, type of population, and enrollment setting. Moreover, the cause-effect relationship cannot be established due to the cross-sectional design of the studies as well as the large spontaneous between- and within-subject variability of semen parameters. The best evidence of an adverse effect of BPA on male fertility would be provided by prospective studies on clinically relevant endpoints, including natural or medically assisted pregnancies among men either with different exposure degrees (occupational/environmental) or with different clinical conditions (fertile/subfertile).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arcangelo Barbonetti
- Medical Andrology, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
50
|
Meli R, Monnolo A, Annunziata C, Pirozzi C, Ferrante MC. Oxidative Stress and BPA Toxicity: An Antioxidant Approach for Male and Female Reproductive Dysfunction. Antioxidants (Basel) 2020; 9:E405. [PMID: 32397641 PMCID: PMC7278868 DOI: 10.3390/antiox9050405] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a non-persistent anthropic and environmentally ubiquitous compound widely employed and detected in many consumer products and food items; thus, human exposure is prolonged. Over the last ten years, many studies have examined the underlying molecular mechanisms of BPA toxicity and revealed links among BPA-induced oxidative stress, male and female reproductive defects, and human disease. Because of its hormone-like feature, BPA shows tissue effects on specific hormone receptors in target cells, triggering noxious cellular responses associated with oxidative stress and inflammation. As a metabolic and endocrine disruptor, BPA impairs redox homeostasis via the increase of oxidative mediators and the reduction of antioxidant enzymes, causing mitochondrial dysfunction, alteration in cell signaling pathways, and induction of apoptosis. This review aims to examine the scenery of the current BPA literature on understanding how the induction of oxidative stress can be considered the "fil rouge" of BPA's toxic mechanisms of action with pleiotropic outcomes on reproduction. Here, we focus on the protective effects of five classes of antioxidants-vitamins and co-factors, natural products (herbals and phytochemicals), melatonin, selenium, and methyl donors (used alone or in combination)-that have been found useful to counteract BPA toxicity in male and female reproductive functions.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| |
Collapse
|