1
|
Yue X, Tian T, Duan W, Zhao Y, Shi J, Ran J, Zhang Y, Yuan S, Xu X, Zuo J, Feng B, Wang Q. Ectoine maintains the flavor and nutritional quality of broccoli during postharvest storage. Food Chem 2024; 458:140204. [PMID: 38964092 DOI: 10.1016/j.foodchem.2024.140204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
The bacterial derived osmolyte ectoine has been shown to stabilize cell structure and function, a property that may help to extend the shelf life of broccoli. The impact of ectoine on broccoli stored for 4 d at 20 °C and 90% relative humidity was investigated. Results indicated that 0.20% ectoine treatment maintained the quality of broccoli, by reducing rate of respiration and ethylene generation, while increasing the levels of total phenolics, flavonoids, TSS, soluble protein, and vitamin C, relative to control. Headspace-gas chromatography-mass spectrometry, transcriptomic and metabolomic analyses revealed that ectoine stabilized aroma components in broccoli by maintaining level of volatile compounds and altered the expression of genes and metabolites associated with sulfur metabolism, as well as fatty acid and amino acid biosynthesis pathways. These findings provide a greater insight into how ectoine preserves the flavor and nutritional quality of broccoli, thus, extending its shelf life.
Collapse
Affiliation(s)
- Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tian Tian
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Agricultural, Guangxi University, Nanning 530004, China
| | - Wenhui Duan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yaqi Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jie Ran
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaodi Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Bihong Feng
- College of Agricultural, Guangxi University, Nanning 530004, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Qiu M, Jiang J, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. The biosynthesis of L-phenylalanine-derived compounds by engineered microbes. Biotechnol Adv 2024; 77:108448. [PMID: 39260779 DOI: 10.1016/j.biotechadv.2024.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
L-Phenylalanine (L-Phe) is an important aromatic amino acid, which has been widely used in food, health care products, medicine and other fields. Based on the relatively mature microbial biosynthesis process, a variety of L-phenylalanine-derived compounds have attracted more and more attentions owing to their extensively potential applications in the fields of food, medicine, spices, cosmetics, and pesticides. However, the challenge of biosynthesis of L-phenylalanine-derived compounds remains the issue of low production and productivity. With the development of metabolic engineering and synthetic biology, the biosynthesis of L-phenylalanine has reached a high level. Therefore, the synthesis of L-phenylalanine-derived compounds based on high production strains of L-phenylalanine has broad prospects. In addition, some L-phenylalanine-derived compounds are more suitable for efficient synthesis by exogenous addition of precursors due to their longer metabolic pathways and the inhibitory effects of many intermediate products. This review systematically summarized the research progress of L-phenylalanine-derived compounds, including phenylpyruvate derivatives, trans-cinnamic derivatives, p-coumaric acid derivatives and other L-phenylalanine-derived compounds (such as flavonoids). Finally, the main strategies to improve the production of L-phenylalanine-derived compounds were summarized, and the development trends of the synthesis of L-phenylalanine-derived compounds by microbial method were also prospected.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
3
|
Luo Y, Zhang C, Liao H, Luo Y, Huang X, Wang Z, Xiaole X. Integrative metagenomics, volatilomics and chemometrics for deciphering the microbial structure and core metabolic network during Chinese rice wine (Huangjiu) fermentation in different regions. Food Microbiol 2024; 122:104569. [PMID: 38839228 DOI: 10.1016/j.fm.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yunchuan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Xia Xiaole
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300000, PR China.
| |
Collapse
|
4
|
Çevikbaş H, Ulusoy S, Kaya Kinaytürk N. Exploring rose absolute and phenylethyl alcohol as novel quorum sensing inhibitors in Pseudomonas aeruginosa and Chromobacterium violaceum. Sci Rep 2024; 14:15666. [PMID: 38977845 PMCID: PMC11231148 DOI: 10.1038/s41598-024-66888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024] Open
Abstract
Inter-cellular signaling, referred to as quorum sensing (QS), regulates the production of virulence factors in numerous gram-negative bacteria, such as the human pathogens Pseudomonas aeruginosa and Chromobacterium violaceum. QS inhibition may provide an opportunity for the treatment of bacterial infections. This represents the initial study to examine the antibiofilm and antivirulence capabilities of rose absolute and its primary component, phenylethyl alcohol. QS inhibition was assessed by examining extracellular exopolysaccharide synthesis, biofilm development, and swarming motility in P. aeruginosa PAO1, along with violacein production in C. violaceum ATCC 12472. Molecular docking analysis was conducted to explore the mechanism by which PEA inhibits QS. Our results indicate that rose absolute and PEA caused decrease in EPS production (60.5-33.5%), swarming motility (94.7-64.5%), and biofilm formation (98.53-55.5%) in the human pathogen P. aeruginosa PAO1. Violacein production decreased by 98.1% and 62.5% with an absolute (0.5 v/v %) and PEA (2 mM). Moreover, the molecular docking analysis revealed a promising competitive interaction between PEA and AHLs. Consequently, this study offers valuable insights into the potential of rose absolute and PEA as inhibitors of QS in P. aeruginosa and C. violaceum.
Collapse
Affiliation(s)
- Halime Çevikbaş
- Faculty of Engineering and Natural Sciences, Biology Department, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Seyhan Ulusoy
- Faculty of Engineering and Natural Sciences, Biology Department, Süleyman Demirel University, Isparta, 32260, Turkey.
| | - Neslihan Kaya Kinaytürk
- Faculty of Arts and Science, Nanoscience and Nanotechnology Department, Mehmet Akif Ersoy University, Burdur, 15100, Turkey
| |
Collapse
|
5
|
Peng Q, Meng K, Yang X, Xu Z, Zhang L, Zheng H, Yu H, Zhang Y, Xie G. Analysis of flavor substances in Shaoxing traditional hand-made Jiafan wine with different amounts of ZaoShao liquor. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5252-5261. [PMID: 38308571 DOI: 10.1002/jsfa.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Adding ZaoShao liquor (high-concentration liquor) is one of the most important steps in the brewing process of Shaoxing Jiafan wine, a product protected by Chinese geographical indications. The focus of this study is the effect of different additive amounts of liquor on the flavor of end products. RESULTS In this study, four kinds of Shaoxing Jiafan wine were brewed by changing the amount of ZaoShao liquor. Headspace solid-phase microextraction and gas chromatography-mass spectrometry were used to detect the flavor substances of four kinds of Jiafan wine. The difference in flavor of four kinds of Jiafan wine was evaluated by electronic nose analysis technology and verified by sensory evaluation. Finally, the reliability of the experimental results was verified through an aroma reconstruction experiment of rice wine. In this study, the differences in flavoring substances under different amounts of ZaoShao liquor were verified from various angles. The results showed that the flavors of the four kinds of wines were significantly different. CONCLUSION The composition of flavor substances in Shaoxing rice wine varies with the amount of ZaoShao liquor. This study provided a scientific basis for the improvement of production technology of Shaoxing wine. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Peng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Kai Meng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Xinyi Yang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Zhuoqin Xu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Lili Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Huajun Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Hefeng Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Yuhao Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
6
|
Tong Q, Yang L, Zhang J, Zhang Y, Jiang Y, Liu X, Deng Y. Comprehensive investigations of 2-phenylethanol production by the filamentous fungus Annulohypoxylon stygium. Appl Microbiol Biotechnol 2024; 108:374. [PMID: 38878128 PMCID: PMC11180157 DOI: 10.1007/s00253-024-13226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024]
Abstract
2-Phenylethanol (2-PE) is an aromatic compound with a rose-like fragrance that is widely used in food and other industries. Yeasts have been implicated in the biosynthesis of 2-PE; however, few studies have reported the involvement of filamentous fungi. In this study, 2-PE was detected in Annulohypoxylon stygium mycelia grown in both potato dextrose broth (PDB) and sawdust medium. Among the 27 A. stygium strains investigated in this study, the strain "Jinjiling" (strain S20) showed the highest production of 2-PE. Under optimal culture conditions, the concentration of 2-PE was 2.33 g/L. Each of the key genes in Saccharomyces cerevisiae shikimate and Ehrlich pathways was found to have homologous genes in A. stygium. Upon the addition of L-phenylalanine to the medium, there was an upregulation of all key genes in the Ehrlich pathway of A. stygium, which was consistent with that of S. cerevisiae. A. stygium as an associated fungus provides nutrition for the growth of Tremella fuciformis and most spent composts of T. fuciformis contain pure A. stygium mycelium. Our study on the high-efficiency biosynthesis of 2-PE in A. stygium offers a sustainable solution by utilizing the spent compost of T. fuciformis and provides an alternative option for the production of natural 2-PE. KEY POINTS: • Annulohypoxylon stygium can produce high concentration of 2-phenylethanol. • The pathways of 2-PE biosynthesis in Annulohypoxylon stygium were analyzed. • Spent compost of Tremella fuciformis is a potential source for 2-phenylethanol.
Collapse
Affiliation(s)
- Qianwen Tong
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinxiang Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinrui Liu
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Youjin Deng
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Godoy P, Udaondo Z, Duque E, Ramos JL. Biosynthesis of fragrance 2-phenylethanol from sugars by Pseudomonas putida. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:51. [PMID: 38566218 PMCID: PMC10986128 DOI: 10.1186/s13068-024-02498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Petrochemicals contribute to environmental issues, with concerns ranging from energy consumption and carbon emission to pollution. In contrast, microbial biorefineries offer eco-friendly alternatives. The solvent-tolerant Pseudomonas putida DOT-T1E serves as a suitable host for producing aromatic compounds, specifically L-phenylalanine and its derivative, 2-phenylethanol (2-PE), which find widespread applications in various industries. RESULTS This study focuses on enhancing 2-PE production in two L-phenylalanine overproducing strains of DOT-T1E, namely CM12-5 and CM12-5Δgcd (xylABE), which grow with glucose and glucose-xylose, respectively. To synthesize 2-PE from L-phenylalanine, these strains were transformed with plasmid pPE-1, bearing the Ehrlich pathway genes, and it was found higher 2-PE production with glucose (about 50-60 ppm) than with xylose (< 3 ppm). To understand the limiting factors, we tested the addition of phenylalanine and intermediates from the Ehrlich and shikimate pathways. The results identified intracellular L-phenylalanine as a key limiting factor for 2-PE production. To overcame this limitation, a chorismate mutase/prephenate dehydratase variant-insentive to feedback inhibition by aromatic amino acids-was introduced in the producing strains. This led to increased L-phenylalanine production and subsequently produced more 2-PE (100 ppm). Random mutagenesis of the strains also produced strains with higher L-phenylalanine titers and increased 2-PE production (up to 120 ppm). The improvements resulted from preventing dead-end product accumulation from shikimate and limiting the catabolism of potential pathway intermediates in the Ehrlich pathway. The study explored agricultural waste substrates, such as corn stover, sugarcane straw and corn-syrup as potential C sources. The best results were obtained using 2G substrates at 3% (between 82 and 100 ppm 2-PE), with glucose being the preferred sugar for 2-PE production among the monomeric sugars in these substrates. CONCLUSIONS The findings of this study offer strategies to enhance phenylalanine production, a key substrate for the synthesis of aromatic compounds. The ability of P. putida DOT-T1E to thrive with various C-sources and its tolerance to substrates, products, and potential toxicants in industrial wastes, are highlighted. The study identified and overcome possible bottlenecks for 2-PE production. Ultimately, the strains have potential to become efficient microbial platforms for synthesizing 2-PE from agro-industrial waste materials.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Science, Little Rock, AR, 72205, USA
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain.
| |
Collapse
|
8
|
Peng Q, Tao W, Yu F, Xiong Q, Nong C, Zhang W, Fan J. Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:631. [PMID: 38475477 DOI: 10.3390/plants13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. 'Praire Rose' and BA in M. 'Lollipop' occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. 'Praire Rose' and M. 'Lollipop' were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. 'Praire Rose'. The production of BA in M. 'Lollipop' was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop'), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop') formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc.
Collapse
Affiliation(s)
- Qin Peng
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wenkai Tao
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Fangyuan Yu
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Qinqin Xiong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Chunshi Nong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Junjun Fan
- College of Horticulture, Jinling Institute of Technology, No. 99 Hongjing Avenue, Jiangning District, Nanjing 211169, China
| |
Collapse
|
9
|
Singh MK, Savita K, Singh S, Mishra D, Rani P, Chanda D, Verma RS. Vasorelaxant property of 2-phenyl ethyl alcohol isolated from the spent floral distillate of damask rose (Rosa damascena Mill.) and its possible mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116603. [PMID: 37149069 DOI: 10.1016/j.jep.2023.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Rosa damascena Mill. (Rosaceae), commonly known as damask rose, is an ancient medicinal and perfumery plant used in Traditional Unani Medicine due to various therapeutic effects, including cardiovascular benefits. AIM OF THE STUDY This study aimed to evaluate the vasorelaxant effect of the 2-phenyl ethyl alcohol (PEA) isolated from the spent flowers of R. damascena which remain after the extraction of essential oil. MATERIALS AND METHODS The freshly collected flowers of R. damascena were hydro-distilled in a Clevenger's type apparatus to extract the rose essential oil (REO). After removing the REO, the spent-flower hydro-distillate was collected and extracted with organic solvents to yield a spent-flower hydro-distillate extract (SFHE), which was further purified by column chromatography. The SFHE and its isolate were characterized by gas chromatography (GC-FID), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) techniques. The PEA, isolated from SFHE, was evaluated for vasorelaxation response in conduit blood vessels like rat aorta and resistant vessels like mesenteric artery. The preliminary screening of PEA was done in aortic preparation pre-constricted with phenylephrine. Further, a concentration-dependent relaxation response to PEA has been elicited in both endothelium-intact and endothelium-denuded arterial rings, and the mode of action was explored. RESULTS The SFHE revealed the presence of PEA as the main constituent (89.36%), which was further purity by column chromatography to a purity of 95.0%. The PEA exhibited potent vasorelaxation response both in conduit vessels like the rat aorta and resistance vessels like the mesenteric artery. The relaxation response is mediated without any involvement of vascular endothelium. Further, TEA sensitive BKca channel was found to be the major target for PEA-induced relaxation response in these blood vessels. CONCLUSIONS The spent flowers of R. damascena, which remain after the extraction of REO, could be used to extract PEA. The PEA possessed marked vasorelaxation properties in both aorta and mesenteric artery and showed promise for development into an herbal product against hypertension.
Collapse
Affiliation(s)
- Munmun Kumar Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Kumari Savita
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Swati Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Divya Mishra
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Poonam Rani
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Debabrata Chanda
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India.
| | - Ram Swaroop Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhang Q, Du G, Chen J, Li J, Qiao Z, Zheng J, Zhao D, Zhao X. Systematic analysis of Baobaoqu fermentation starter for Wuliangye Baijiu by the combination of metagenomics and metabolomics. Front Microbiol 2022; 13:1062547. [DOI: 10.3389/fmicb.2022.1062547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Baobaoqu (BBQ) is a traditional fermenting power, which is widely applied in Nong-flavor Baijiu brewing. There are two different types of BBQ (premium BBQ and normal BBQ) used in industrial manufacture, but the reasons for the significant differences between two kinds of BBQ have not been clearly illuminated. In this study, the combination of metagenomics and metabolomics was performed to compare the differences in the composition of microbial communities and the components of flavors between premium BBQ and normal BBQ. The results showed that the glycosidase-producing microorganisms are the biomarkers of premium BBQ, contributing a better ability of carbon source utilization than normal BBQ. In addition, several important flavors (ethyl hexanoate, phenylethanol, ethyl acetate) were rich in normal BBQ, which have a significant positive correlation with the biomarkers (Lactobacillus and Pichia kudriavzevii) of normal BBQ. It suggests that the microbial community has an advantage in utilizing raw materials in premium BBQ, while the community was inclined to form flavors in normal BBQ. The differences between two types of BBQ at the microbial and flavor level have theoretical and practical guiding significance in the application of premium and normal BBQ and in the further improvements of taste and quality of Baijiu.
Collapse
|
11
|
Zhong JX, Shih PJ, Yan JW, Hong GB. Ternary liquid–liquid equilibria for 2-phenylethyl acetate +2-phenylethanol + water and 2-phenylethyl acetate + acetic acid + water at atmospheric pressure. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Zou X, Wei Y, Jiang S, Xu F, Wang H, Zhan P, Shao X. ROS Stress and Cell Membrane Disruption are the Main Antifungal Mechanisms of 2-Phenylethanol against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14468-14479. [PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.
Collapse
Affiliation(s)
- Xiurong Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Pingping Zhan
- the Bio-ultrastructure Analysis Laboratory of the Key Laboratory of Applied Marine Biotechnology of the Ministry of Education, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
13
|
The same genetic regulation strategy produces inconsistent effects in different Saccharomyces cerevisiae strains for 2-phenylethanol production. Appl Microbiol Biotechnol 2022; 106:4041-4052. [PMID: 35665835 DOI: 10.1007/s00253-022-11993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
A CRISPR/Cas9 system with gene editing efficiency of 100% in the industrial diploid Saccharomyces cerevisiae CWY-132 strain for 2-phenylethanol (2-PE) production was constructed. The effect of deletion of acetyltransferase gene ATF1 in the Ehrlich pathway on 2-PE synthesis was studied for the first time in S. cerevisiae. Laboratory and industrial strains were compared for the deletion effect of ATF1 and acetaldehyde dehydrogenase genes ALD2 and ALD3 involved in competing branches of the Ehrlich pathway on the 2-PE titer. The results showed that in 2-PE low-yielding haploid strain PK-2C, the ATF1∆ mutant produced 2-PE of 0.45 g/L, an increase of 114%, whereas in CWY-132, the 2-PE yield of ATF1∆ decreased significantly from 3.50 to 0.83 g/L. In PK-2C, the 2-PE yield of ALD2∆ increased from 0.21 to 1.20 g/L, whereas in CWY-132, it decreased from 3.50 to 3.02 and 2.93 g/L in ALD2∆ and ALD3∆ mutants, respectively, and to 1.65 g/L in ALD2∆ALD3∆. These results indicate that the same genetic manipulation strategy used for strains with different 2-PE yield backgrounds produces significantly different or even opposite effects. Moreover, we found that a supply of NADH or GSH increased the 2-PE production in S. cerevisiae. The correlation between the synthesis of 2-PE and ethanol was also revealed, and the tolerance of cells to 2-PE and ethanol was suggested to be a key limiting factor for further increase of 2-PE production in high-yielding strains. KEY POINTS: • Deletion of genes competing for 2-PE synthesis produces different effects in S. cerevisiae strains. • The ATF1∆, ALD2∆, or ALD3∆ increased 2-PE production in laboratory strains but not industrial strains. • The supply of NADH or GSH increased the titer of 2-PE in S. cerevisiae.
Collapse
|
14
|
Lu X, Jing Y, Li Y, Zhang N, Cao Y. Eurotium cristatum produced β-hydroxy acid metabolite of monacolin K and improved bioactive compound contents as well as functional properties in fermented wheat bran. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Wang Z, Gao T, He Z, Zeng M, Qin F, Chen J. Reduction of off-flavor volatile compounds in okara by fermentation with four edible fungi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 2022; 11:foods11010109. [PMID: 35010235 PMCID: PMC8750221 DOI: 10.3390/foods11010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic ones. Natural 2-PE can be either produced through the extraction of essential oils from various flowers, including roses, hyacinths and jasmine, or through biotechnological routes. In fact, the rarity of natural 2-PE in flowers has led to the inability to satisfy the large market demand and to a high selling price. Hence, there is a need to develop a more efficient, economic, and environmentally friendly biotechnological approach as an alternative to the conventional industrial one. The most promising method is through microbial fermentation, particularly using yeasts. Numerous yeasts have the ability to produce 2-PE using l-Phe as precursor. Some agro-industrial waste and by-products have the particularity of a high nutritional value, making them suitable media for microbial growth, including the production of 2-PE through yeast fermentation. This review summarizes the biotechnological production of 2-PE through the fermentation of different yeasts on synthetic media and on various agro-industrial waste and by-products.
Collapse
|
17
|
Liang Z, Zhang P, Zeng XA, Fang Z. The art of flavored wine: Tradition and future. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Ectopic Odorant Receptor Responding to Flavor Compounds: Versatile Roles in Health and Disease. Pharmaceutics 2021; 13:pharmaceutics13081314. [PMID: 34452275 PMCID: PMC8402194 DOI: 10.3390/pharmaceutics13081314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Prompted by the ground-breaking discovery of the rodent odorant receptor (OR) gene family within the olfactory epithelium nearly 30 years ago, followed by that of OR genes in cells of the mammalian germ line, and potentiated by the identification of ORs throughout the body, our appreciation for ORs as general chemoreceptors responding to odorant compounds in the regulation of physiological or pathophysiological processes continues to expand. Ectopic ORs are now activated by a diversity of flavor compounds and are involved in diverse physiological phenomena varying from adipogenesis to myogenesis to hepatic lipid accumulation to serotonin secretion. In this review, we outline the key biological functions of the ectopic ORs responding to flavor compounds and the underlying molecular mechanisms. We also discuss research opportunities for utilizing ectopic ORs as therapeutic strategies in the treatment of human disease as well as challenges to be overcome in the future. The recognition of the potent function, signaling pathway, and pharmacology of ectopic ORs in diverse tissues and cell types, coupled with the fact that they belong to G protein-coupled receptors, a highly druggable protein family, unequivocally highlight the potential of ectopic ORs responding to flavor compounds, especially food-derived odorant compounds, as a promising therapeutic strategy for various diseases.
Collapse
|
19
|
Dai J, Xia H, Yang C, Chen X. Sensing, Uptake and Catabolism of L-Phenylalanine During 2-Phenylethanol Biosynthesis via the Ehrlich Pathway in Saccharomyces cerevisiae. Front Microbiol 2021; 12:601963. [PMID: 33717002 PMCID: PMC7947893 DOI: 10.3389/fmicb.2021.601963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/29/2021] [Indexed: 01/15/2023] Open
Abstract
2-Phenylethanol (2-PE) is an important flavouring ingredient with a persistent rose-like odour, and it has been widely utilized in food, perfume, beverages, and medicine. Due to the potential existence of toxic byproducts in 2-PE resulting from chemical synthesis, the demand for “natural” 2-PE through biotransformation is increasing. L-Phenylalanine (L-Phe) is used as the precursor for the biosynthesis of 2-PE through the Ehrlich pathway by Saccharomyces cerevisiae. The regulation of L-Phe metabolism in S. cerevisiae is complicated and elaborate. We reviewed current progress on the signal transduction pathways of L-Phe sensing, uptake of extracellular L-Phe and 2-PE synthesis from L-Phe through the Ehrlich pathway. Moreover, the anticipated bottlenecks and future research directions for S. cerevisiae biosynthesis of 2-PE are discussed.
Collapse
Affiliation(s)
- Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.,ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Huili Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
20
|
Identification of key odorants in traditional Shaoxing-jiu and evaluation of their impacts on sensory descriptors by using sensory-directed flavor analysis approaches. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00769-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Dai J, Li K, Song N, Yao W, Xia H, Yang Q, Zhang X, Li X, Wang Z, Yao L, Yang S, Chen X. Zygosaccharomyces rouxii, an Aromatic Yeast Isolated From Chili Sauce, Is Able to Biosynthesize 2-Phenylethanol via the Shikimate or Ehrlich Pathways. Front Microbiol 2020; 11:597454. [PMID: 33250885 PMCID: PMC7673420 DOI: 10.3389/fmicb.2020.597454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
We isolated an aromatic strain of yeast (M2013310) from chili sauce. Assembly, annotation, and phylogenetic analysis based on genome sequencing, identified M2013310 as an allodiploid yeast that was closely related to Zygosaccharomyces rouxii. During fermentation, M2013310, produced an aromatic alcohol with a rose-honey scent; gas chromatography tandem mass spectrometry identified this alcohol as 2-phenylethanol. The concentration of 2-phenylethanol reached 3.8 mg/L, 1.79 g/L, and 3.58 g/L, in M3 (NH4+), M3 (NH4+ + Phe), and M3 (Phe) culture media, after 72 h of fermentation, respectively. The mRNA expression levels of ARO8 encoding aromatic aminotransferases I and ARO10 encoding phenylpyruvate decarboxylase by M2013310 in M3 (Phe) were the lowest of the three different forms of media tested. These results indicated that M2013310 can synthesize 2-phenylethanol via the Shikimate or Ehrlich pathways and the production of 2-phenylethanol may be significantly improved by the over-expression of these two genes. Our research identified a promising strain of yeast (M2013310) that could be used to improve the production of 2-phenylethanol.
Collapse
Affiliation(s)
- Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.,ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ke Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Na Song
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Wanting Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Huili Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Qiao Yang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoling Zhang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
22
|
Yan W, Gao H, Qian X, Jiang Y, Zhou J, Dong W, Xin F, Zhang W, Jiang M. Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnol Adv 2020; 46:107674. [PMID: 33276074 DOI: 10.1016/j.biotechadv.2020.107674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/31/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Unconventional yeasts have attracted increased attentions owning to their unique biochemical properties and potential application in the biotechnological process. With the rapid development of microbial isolation tools and synthetic biology, more promising industrial yeasts have been isolated and characterized. Meyerozyma guilliermondii (anamorph Candida guilliermondii) is an ascomycetous yeast with several unique characteristics and physiology, such as the wide substrates spectrum and capability of various chemicals synthesis. The potential physiological and metabolic capabilities of M. guilliermondii, which can utilize various carbon sources including typical hydrophilic and hydrophobic materials were first reviewed in this review. Moreover, the wide applications of M. guilliermondii, such as for industrial enzymes production, metabolites synthesis and biocontrol were also reviewed. With the development of system and synthetic biology, M. guilliermondii will provide new opportunities for potential applications in biotechnology sectors in the future.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China.
| |
Collapse
|
23
|
Xu W, Jiang J, Xu Q, Zhong M. Drinking tastes of Chinese rice wine under different heating temperatures analyzed by gas chromatography-mass spectrometry and tribology tests. J Texture Stud 2020; 52:124-136. [PMID: 33184839 DOI: 10.1111/jtxs.12571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 02/02/2023]
Abstract
Drinking tastes and lubrication properties of Chinese rice wine (CRW) under different heating temperatures were studied by tribology tests, gas chromatography-mass spectrometry (GC-MS) and sensory evaluations. CRW's drinking tastes were evaluated by taste panelists. Flavor compounds were detected by GC-MS. Lubrication properties of CRW were measured by tribometer. Drinking tastes changed under different heating temperatures and were the best at 60°C assessed by panelists. Four key compounds, furfural, benzaldehyde, butanedioic acid diethyl ester, and phenylethyl alcohol, were determined by GC-MS affecting drinking tastes of CRW. Their variation trends were consistent with the changes of CRW's tastes. The variation of CRW's lubrication properties had a positive correlation with that of CRW's taste, especially astringency. The lowest friction coefficient implied the best lubrication performance and taste at 60°C. Therefore, it was possible to rapidly evaluate drinking tastes of CRW using tribology technology based on the results. Reasons for temperatures influencing CRW's lubrication properties and drinking tastes were also analyzed in this study.
Collapse
Affiliation(s)
- Wenhu Xu
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianzhong Jiang
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| | - Qixiang Xu
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| | - Min Zhong
- School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Yan W, Zhang X, Qian X, Zhou J, Dong W, Ma J, Zhang W, Xin F, Jiang M. Comprehensive investigations of 2-phenylethanol production by high 2-phenylethanol tolerating Meyerozyma sp. strain YLG18. Enzyme Microb Technol 2020; 140:109629. [DOI: 10.1016/j.enzmictec.2020.109629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
|
25
|
Ha JG, Kim J, Nam JS, Park JJ, Cho HJ, Yoon JH, Kim CH. Development of a Korean Culture-Friendly Olfactory Function Test and Optimization of a Diagnostic Cutoff Value. Clin Exp Otorhinolaryngol 2020; 13:274-284. [PMID: 32668827 PMCID: PMC7435434 DOI: 10.21053/ceo.2020.00864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Objectives Cultural familiarity and safety must be considered when assessing olfactory ability. The YSK olfactory function (YOF) test is a new olfactory function test using culturally familiar odorants to Koreans. Methods The YOF test comprises three subtests for threshold (T), discrimination (D), and identification (I). The identification test included eight universal and four Korean culture-friendly odorants, which were selected considering eight major functional groups. Data were obtained from 1,127 subjects over 19 years old. Subjects were classified as having normosmia (n=542), hyposmia (n=472), and anosmia (n=113) by self-reported olfactory function. The YOF test and the Korean version of the Sniffin’ stick test (KVSS-II) were performed on the same day in random order. Diagnostic cutoffs for anosmia and hyposmia were calculated using the Youden index (J). Results The mean values for each T/D/I subtest and the total TDI score were as follows: normosmia (T, 4.6±2.3; D, 8.6±2.1; I, 11.1±1.7; TDI score, 24.2±4.5); hyposmia (T, 3.3±2.2; D, 7.1±2.5; I, 9.2±3.1; TDI score, 19.5±6.4); and anosmia (T, 1.7±1.2; D, 5.1±2.5; I, 5.0±3.2; TDI score, 11.8±5.6). The correlation coefficients between the YOF test and KVSS-II were 0.57, 0.65, 0.80, and 0.86 for T, D, I, and the TDI score, respectively (P<0.001). The diagnostic cutoffs were a TDI score ≤14.5 (J=0.67) for anosmia and 14.5(TDI score ≤21.0 (J=0.38) for hyposmia. The diagnostic efficacy of the YOF test (area under the curve [AUC], 0.88) was equivalent to that of the KVSS-II (AUC, 0.88; P=0.843; DeLong method). Conclusion The YOF test is a new olfactory test using safe and Korean culture-friendly odorants. It showed equivalent validity with the conventional olfactory function test. Furthermore, the YOF test provides information on the major functional groups of odorants, potentially enabling a more comprehensive interpretation for patients with olfactory disorders.
Collapse
Affiliation(s)
- Jong-Gyun Ha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jinwon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Sung Nam
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Jin Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.,Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.,Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.,Korea Mouse Sensory Phenotyping Center, Yonsei University College of Medicine, Seoul, Korea.,Taste Research Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Chen Y, Zhang J, Tang Z, Sun Y. Visible light catalyzed anti-markovnikov hydration of styrene to 2-phenylethanol: From batch to continuous. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Effects of salinity on the synthesis of 3-methylthiopropanol, 2-phenylethanol, and isoamyl acetate in Zygosaccharomyces rouxii and Z. rouxii 3-2. Bioprocess Biosyst Eng 2020; 43:831-838. [DOI: 10.1007/s00449-019-02279-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
28
|
Faraone N, MacPherson S, Hillier NK. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:195-207. [PMID: 31564009 DOI: 10.1007/s10493-019-00421-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The spread of blacklegged ticks (Ixodes scapularis) and growing threat of Lyme disease transmission has increased demand for effective, safe and environmentally friendly repellent products. Plant-derived essential oils are natural products that exhibit insecticidal and repellant activities and represent a promising alternative to synthetic repellants. However, mechanisms by which ticks detect odor stimuli and how such stimuli may function as repellents are not well understood. We examined the repellent activity of selected essential oil components towards I. scapularis in short- and long-term dose-response trials. To determine the specific olfactory organs involved in detection of chemical stimuli, we tested tick behavioral response in repellency bioassays after removing appendages that house chemosensory sensilla (e.g., foretarsi or pedipalps). New prototype formulae were tested in longevity trials repelling up to 95% of tested ticks after 1 h post-application. This study provides new insight regarding tick olfaction and behavior, and innovative methods for selecting appropriate chemicals for development of novel plant-based repellent products for protection from ticks.
Collapse
Affiliation(s)
| | | | - N Kirk Hillier
- Biology Department, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
29
|
Ansari E, Karami A, Ebrahimie E. Isolation of 2-phenylethanol biosynthesis related gene and developmental patterns of emission of scent compounds in Persian musk rose (Rosa moschata Herrm.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Yu H, Xie T, Xie J, Ai L, Tian H. Characterization of key aroma compounds in Chinese rice wine using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem 2019; 293:8-14. [PMID: 31151652 DOI: 10.1016/j.foodchem.2019.03.071] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
To determine the key aroma compounds in Chinese rice wine (CRW), four types of CRW (YH, JF, SN, and XX) were analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and sensory evaluation. The contributions of the key aroma compounds to the flavor characteristics were determined by partial least squares regression. Sixty-one aroma compounds were detected. Twenty-five components were identified as odor-active compounds. On the basis of their odor active values, 18 odor-active compounds were determined as key aroma compounds. Ethyl isovalerate, ethyl butyrate, ethyl acetate, ethyl hexanoate, and phenylethyl alcohol were key aroma compounds in all four types of wine. The unique key aroma compounds of JF wine were isovaleraldehyde and isoamyl acetate; those of XX wine were 1-butanol, benzaldehyde, ethyl benzoate, ethyl phenylacetate, 2-octanone, and furfural; that of YH wine was ethyl 2-methylbutyrate; and those of SN wine were 1-butanol, 1-hexanol, 2-butenoic acid ethyl ester, and 3-methyl-1-butanol.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Tong Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Jingru Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China.
| |
Collapse
|
31
|
Qian X, Yan W, Zhang W, Dong W, Ma J, Ochsenreither K, Jiang M, Xin F. Current status and perspectives of 2-phenylethanol production through biological processes. Crit Rev Biotechnol 2018; 39:235-248. [DOI: 10.1080/07388551.2018.1530634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
32
|
Martínez-Avila O, Sánchez A, Font X, Barrena R. Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:9991-10004. [PMID: 30293195 DOI: 10.1007/s00253-018-9384-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022]
Abstract
2-Phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) are valuable generally recognized as safe flavoring agents widely used in industry. Perfumes, pharmaceuticals, polishes, and personal care products, are some of the final products using these compounds as additives due to their rose-like odor. Also, 2-PE is used in disinfectants, pest control, and cleaning products due to its biocide capability. Although most of these additives production are derived from chemical synthesis, the current trend of consumers to prefer natural products has contributed to the development of biotechnological approaches as an alternative way to obtain natural 2-PE and 2-PEA. The most efficient route to bioproduce these compounds is through the bioconversion of L-phenylalanine via the Ehrlich pathway, and most of the advances have been focused on the development of this process. This review compiles the most recent developments in the biotechnological production of 2-PE and 2-PEA, indicating the most studied strains producing 2-PE and 2-PEA, the current advances in the in situ product recovery in liquid systems, an overview of the strain developments, and the progress in the use of residue-based systems. Future research should address the need for more sustainable and economic systems such as those using wastes as raw materials, as well as the scale-up of the proposed technologies.
Collapse
Affiliation(s)
- Oscar Martínez-Avila
- Composting Research group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antoni Sánchez
- Composting Research group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Xavier Font
- Composting Research group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| | - Raquel Barrena
- Composting Research group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
33
|
Feng Y, Bruton R, Park A, Zhang A. Identification of attractive blend for spotted wing drosophila, Drosophila suzukii, from apple juice. JOURNAL OF PEST SCIENCE 2018; 91:1251-1267. [PMID: 30100831 PMCID: PMC6063330 DOI: 10.1007/s10340-018-1006-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Drosophila suzukii, commonly known as the spotted wing drosophila (SWD), is an exotic fruit fly from Southeast Asia that was introduced to the temperate regions of North America and Europe in 2008. It attacks a wide variety of fruits and has become a devastating pest of soft-skinned fruit crops. Due to the rapid spread of SWD across the newly invaded continents, fresh fruit markets have a zero-tolerance policy regarding D. suzukii infestation. Specific and efficient D. suzukii detection tools are urgently needed so that farmers can deliver timely management interventions to meet market demands. Since SWD is known to be attracted to damaged and rotting fruits, headspace volatiles from fresh and fermented apple juices were collected and analyzed by gas chromatography-mass spectrometry. Special attention was given to the compounds produced and/or enriched during the fermentation process. After performing a series of laboataory and field tests, we identified a quinary blend, which is more efficient and selective for D. suzukii than the currently standard apple cider vinegar and commercially available SWD lure under field conditions. Identification of SWD attractant will help growers accurately detect D. suzukii adult infestations in orchards, thereby allowing for timely pest management interventions while reducing conventional insecticidal usage to protect our crops, environment, and ecosystem.
Collapse
Affiliation(s)
- Yan Feng
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, United States Department of Agriculture, Bldg. 007, Rm. 312, BARC-W, Beltsville, MD 20705 USA
| | - Robert Bruton
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, United States Department of Agriculture, Bldg. 007, Rm. 312, BARC-W, Beltsville, MD 20705 USA
| | - Alexis Park
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, United States Department of Agriculture, Bldg. 007, Rm. 312, BARC-W, Beltsville, MD 20705 USA
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, United States Department of Agriculture, Bldg. 007, Rm. 312, BARC-W, Beltsville, MD 20705 USA
| |
Collapse
|
34
|
Local anesthetics induce interdigitation and thermotropic changes in dipalmitoylphosphatidylcholine bilayers. Chem Phys Lipids 2018; 210:22-27. [DOI: 10.1016/j.chemphyslip.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023]
|
35
|
Lv J, Wu J, Zuo J, Fan L, Shi J, Gao L, Li M, Wang Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem 2016; 216:225-33. [PMID: 27596413 DOI: 10.1016/j.foodchem.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
Abstract
Broccoli contains high levels of bioactive compounds but deteriorates and senesces easily. In the present study, freshly harvested broccoli was treated with selenite and stored at two different temperatures. The effect of selenite treatment on sensory quality and postharvest physiology were analyzed. Volatile components were assessed by HS-SPME combined with GC-MS and EN. The metabolism of Se and S was also examined. Results indicated that Se treatment had a significant effect on maintaining the sensory quality, suppressing the respiration intensity and ethylene production, as well as increasing the content of Se and decreasing the content of S. In particular, significant differences in the composition of volatile compounds were present between control and Se-treated. The differences were mainly due to differences in alcohols and sulfide compounds. These results demonstrate that Se treatment can have a positive effect on maintaining quality and enhancing its sensory quality through the release of volatile compounds.
Collapse
Affiliation(s)
- Jiayu Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Jie Wu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China; Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jinhua Zuo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Linlin Fan
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Junyan Shi
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Lipu Gao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Qing Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China.
| |
Collapse
|
36
|
Adsorptive recovery of an essential rose oil component from aqueous solution by nanoporous carbon (CMK-3). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0846-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Yao Y, Pan S, Fan G, Dong L, Ren J, Zhu Y. Evaluation of volatile profile of Sichuan dongcai, a traditional salted vegetable, by SPME–GC–MS and E-nose. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Vasudevan J, Nelson J, Hopp R. Evaluation of breath alcohol levels after fluticasone nasal spray. Ann Allergy Asthma Immunol 2015; 116:76-7. [PMID: 26520579 DOI: 10.1016/j.anai.2015.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 11/26/2022]
|
39
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Politano VT, Ritacco G, Salvito D, Schultz TW, Shen J, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, Benzyl alcohol, CAS Registry Number 100-51-6. Food Chem Toxicol 2015; 84 Suppl:S1-S14. [PMID: 26364874 DOI: 10.1016/j.fct.2015.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - D Belsito
- Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - P Calow
- University of Nebraska Lincoln, 230 Whittier Research Center, Lincoln, NE, 68583-0857, USA
| | - M L Dagli
- University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - A D Fryer
- Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996-4500, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
40
|
Honeypot visitation enables scent learning and heightens forager response in bumblebees (Bombus impatiens). LEARNING AND MOTIVATION 2015. [DOI: 10.1016/j.lmot.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Karami A, Niazi A, Kavoosi G, Khosh-Khui M, Salehi H. Temporal characterization of 2-phenylethanol in strongly and weakly scented genotypes of damask rose. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:43-49. [PMID: 25648161 PMCID: PMC4312323 DOI: 10.1007/s12298-014-0274-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
The molecular and physiological properties of 2-phenylethanol (2-PE) in the strongly scented genotype (SSG) and a weakly scented genotype (WSG) of damask rose at six floral developmental stages were investigated. The chemical compositions of volatile emissions were determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analysis of the floral headspace. In both genotypes, the relative percentage of 2-PE increased more in SSG than WSG, as flowers developed. In the petals of damask rose the relative transcript levels of phenyl acetaldehyde reductase (PAR) were higher at stages 3 and 4 in SSG and WSG, respectively. Also, the expression pattern of PAR indicated a significant difference between two genotypes during flower developmental stages. In this study, enzymatic activity leading to the synthesis of 2-PE from the phenyl acetaldehyde (PAld) moderately increased during flower development up to stage 5 in SSG. However, high level of PAR enzymatic activity was observed in stage 3 of WSG. These results indicated that the pattern activity of PAR was different in two used genotypes of damask rose. For SSG, PAR activities were low in early stage of flower development and then gradually increased reaching its highest value at full bloom stage. In WSG, no significant change in enzyme activity was seen after stage 3.
Collapse
Affiliation(s)
- Akbar Karami
- />Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- />Biotechnology Institute, Shiraz University, Shiraz, Iran
| | | | - Morteza Khosh-Khui
- />Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- />Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
42
|
Li C, Sun J, Li T, Liu SQ, Huang D. Chemical and enzymatic synthesis of a library of 2-phenethyl esters and their sensory attributes. Food Chem 2014; 154:205-10. [DOI: 10.1016/j.foodchem.2013.12.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/16/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
|
43
|
Belsito D, Bickers D, Bruze M, Calow P, Dagli ML, Fryer AD, Greim H, Miyachi Y, Saurat JH, Sipes IG. A toxicological and dermatological assessment of aryl alkyl alcohols when used as fragrance ingredients. Food Chem Toxicol 2012; 50 Suppl 2:S52-99. [PMID: 22051184 DOI: 10.1016/j.fct.2011.10.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/30/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022]
|