1
|
Sauvé B, Chorfi Y, Montminy MPL, Guay F. Vitamin D Supplementation Impacts Calcium and Phosphorus Metabolism in Piglets Fed a Diet Contaminated with Deoxynivalenol and Challenged with Lipopolysaccharides. Toxins (Basel) 2023; 15:394. [PMID: 37368695 DOI: 10.3390/toxins15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and-more recently-alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and 25-OH-D3 to the feed could modify the effects of DON in piglets. In this study, vitamin D3 or 25-OH-D3 supplementation was used in a control or DON-contaminated treatment. A repetitive exposure over 21 days to DON in the piglets led to disruptions in the vitamin D, calcium, and phosphorus metabolisms, resulting in a decreased growth performance, increased bone mineralization, and the downregulation of genes related to calcium and to phosphorus intestinal and renal absorption. The DON challenge also decreased blood concentrations of 25-OH-D3, 1,25-(OH)2-D3, and phosphate. The DON contamination likely decreased the piglets' vitamin D status indirectly by modifying the calcium metabolism response. Vitamin D supplementations did not restore vitamin D status or bone mineralization. After a lipopolysaccharide-induced inflammatory stimulation, feeding a 25-OH-D3 supplementation increased 25-OH-D3 concentration and 1,25-(OH)2-D3 regulations during the DON challenge. DON contamination likely induced a Ca afflux by altering the intestinal barrier, which resulted in hypercalcemia and hypovitaminosis D. The vitamin D supplementation could increase the calcitriol production to face the combined LPS and DON challenge.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, Montreal University, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y. Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Arch Toxicol 2022; 96:2639-2654. [PMID: 35900469 DOI: 10.1007/s00204-022-03337-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol (DON) is the most widespread mycotoxin in food and feedstuffs, posing a persistent health threat to humans and farm animals. The susceptibilities of DON vary significantly among animals, following the order of pigs, mice/rats and poultry from the most to least susceptible. However, no study comprehensively disentangles factors shaping species-specific sensitivity. In this review, the toxicokinetics and metabolism of DON are summarized in animals and humans. Generally, DON is fast-absorbed and widely distributed in multiple organs. DON is first enriched in the plasma, liver and kidney and subsequently accumulates in the intestine. There are also key variations among animals. Pigs and humans are highly sensitive to DON, and they have similar absorption rates (1 h < tmax < 4 h), high bioavailability (> 55%) and long clearance time (2 h < t1/2 < 4 h). Also, both species lack detoxification microorganisms and mainly depend on liver glucuronidation and urine excretion. Mice and rats have similar toxicokinetics (tmax < 0.5 h, t1/2 < 1 h). However, a higher proportion of DON is excreted by feces as DOM-1 in rats than in mice, suggesting an important role of gut microbiota in rats. Poultry is least sensitive to DON due to their fast absorption rate (tmax < 1 h), low oral bioavailability (5-30%), broadly available detoxification gut microorganisms and short clearance time (t1/2 < 1 h). Aquatic animals have significantly slower plasma clearance of DON than land animals. Overall, studies on toxicokinetics provide valuable information for risk assessment, prevention and control of DON contamination.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
3
|
Dänicke S, Heymann AK, Oster M, Wimmers K, Tesch T, Bannert E, Bühler S, Kersten S, Frahm J, Kluess J, Kahlert S, Rothkötter HJ, Billenkamp F. Does chronic dietary exposure to the mycotoxin deoxynivalenol affect the porcine hepatic transcriptome when an acute-phase response is initiated through first or second-pass LPS challenge of the liver? Innate Immun 2021; 27:388-408. [PMID: 34338001 PMCID: PMC8419296 DOI: 10.1177/17534259211030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sensitivity of pigs to deoxynivalenol (DON) might be increased by systemic inflammation (SI), which also has consequences for hepatic integrity. Liver lesions and a dys-regulated gene network might hamper hepatic handling and elimination of DON whereby the way of initiation of hepatic inflammation might play an additional role. First and second-pass exposure of the liver with LPS for triggering a SI was achieved by LPS infusion via pre- or post-hepatic venous route, respectively. Each infusion group was pre-conditioned either with a control diet (0.12 mg DON/kg diet) or with a DON-contaminated diet (4.59 mg DON/kg diet) for 4 wk. Liver transcriptome was evaluated at 195 min after starting infusions. DON exposure alone failed to modulate the mRNA expression significantly. However, pre- and post-hepatic LPS challenges prompted transcriptional responses in immune and metabolic levels. The mRNAs for B-cell lymphoma 2-like protein 11 as a key factor in apoptosis and IFN-γ released by T cells were clearly up-regulated in DON-fed group infused with LPS post-hepatically. On the other hand, mRNAs for nucleotide binding oligomerization domain containing 2, IFN-α and eukaryotic translation initiation factor 2α kinase 3 as ribosomal stress sensors were exclusively up-regulated in control pigs with pre-hepatic LPS infusion. These diverse effects were traced back to differences in TLR4 signalling.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Ann-Katrin Heymann
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Michael Oster
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Germany
| | - Tanja Tesch
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Erik Bannert
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Germany
| | | | - Fabian Billenkamp
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| |
Collapse
|
4
|
Schelstraete W, Devreese M, Croubels S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem Toxicol 2020; 137:111140. [PMID: 32004578 DOI: 10.1016/j.fct.2020.111140] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
Mycotoxins frequently contaminate food and feed materials, posing a threat to human and animal health. Fusarium species produce important mycotoxins with regard to their occurrence and toxicity, especially deoxynivalenol (DON), fumonisin B1 (FB1), zearalenone (ZEN) and T-2 toxin (T-2). The susceptibility of an animal species towards the effects of these toxins in part depends on the absorption, distribution, metabolism and excretion (ADME processes) of these toxins from the body. For humans, in vivo information is scarce and often animal data is used for extrapolation to humans. From a kinetic and safety point of view, the pig seems to be a promising animal model to aid in the assessment of the toxicological risk of mycotoxins to humans. Qualitatively, the ADME processes seem to be quite similar between pigs and humans. In addition, similar metabolite and excretion patterns are observed, although some quantitative differences are noticed which are subject of this review. The high sensitivity of pigs towards mycotoxins and the similar kinetics are an advantage for the use of this animal species in the risk assessment of mycotoxins, and for the establishment of legal limits of mycotoxins.
Collapse
Affiliation(s)
- Wim Schelstraete
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
5
|
Bannert E, Tesch T, Kluess J, Winkler J, Frahm J, Kersten S, Kahlert S, Renner L, Rothkötter HJ, Dänicke S. On the distribution and metabolism of Fusarium-toxins along the gastrointestinal tract of endotoxaemic pigs. Arch Anim Nutr 2018; 72:163-177. [PMID: 29741131 DOI: 10.1080/1745039x.2018.1465261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate the potential modulatory effect of E. coli lipopolysaccharides (LPS) on residues of deoxynivalenol (DON), de-epoxy-deoxynivalenol (DOM-1), zearalenone (ZEN) and its metabolites α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), zearalanone (ZAN), α-zearalanol (α-ZAL) and β-zearalanol (β-ZAL) after pre- or post-hepatic administration along the gastrointestinal axis. Fifteen barrows were exposed to a naturally mycotoxin contaminated diet (4.59 mg DON/kg feed and 0.22 mg ZEN/kg feed) and equipped with jugular (ju) and portal (po) catheters. On sampling day (day 29), the barrows were infused with LPS or a control fluid (LPS, 7.5 µg/kg body weight; control, 0.9% NaCl) either pre- or post-hepatically, resulting in three infusion groups: CONju-CONpo, CONju-LPSpo and LPSju-CONpo. At 195 min relative to infusion start (210 min post-feeding), pigs were sacrificed and content of stomach and small intestine (proximal, medial and distal part) as well as faeces were collected. In all LPS-infused animals, higher amounts of dry matter were recovered irrespective of LPS entry site suggesting a reduced gastric emptying and a decreased gastrointestinal motility under endotoxaemic conditions. DON metabolism in the gastrointestinal tract (GIT) remained unaltered by treatments and included an increase in the proportion of DOM-1 along the GIT, particularly from distal small intestine to faeces. Variables describing ZEN metabolism suggest a stimulated biliary release of ZEN and its metabolites in LPS-infused groups, particularly in the LPSju-CONpo group. In conclusion, the GIT metabolism of ZEN was markedly influenced in endotoxaemic pigs whereby a jugular induction of an acute phase reaction was more effective than portal LPS infusion hinting at a strong hepatic first-pass effect.
Collapse
Affiliation(s)
- Erik Bannert
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Tanja Tesch
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Jeannette Kluess
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Janine Winkler
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Jana Frahm
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Susanne Kersten
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Stefan Kahlert
- b Medical Faculty, Institute of Anatomy , Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Lydia Renner
- b Medical Faculty, Institute of Anatomy , Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Hermann-Josef Rothkötter
- b Medical Faculty, Institute of Anatomy , Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Sven Dänicke
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| |
Collapse
|
6
|
Tran AT, Kluess J, Berk A, Paulick M, Frahm J, Schatzmayr D, Winkler J, Kersten S, Dänicke S. Detoxification ofFusarium-contaminated maize with sodium sulphite –in vivoefficacy with special emphasis on mycotoxin residues and piglet health. Arch Anim Nutr 2018; 72:58-75. [DOI: 10.1080/1745039x.2017.1418047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anh Tuan Tran
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Andreas Berk
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Marleen Paulick
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | | | - Janine Winkler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
7
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
8
|
Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal Bioanal Chem 2017; 409:3369-3382. [PMID: 28299415 PMCID: PMC5395583 DOI: 10.1007/s00216-017-0279-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/03/2022]
Abstract
In this study, a rapid multi-mycotoxin approach was developed for biomonitoring and quantification of 27 important mycotoxins and mycotoxin metabolites in human blood samples. HPLC-MS/MS detection was used for the analysis of dried serum spots (DSS) and dried blood spots (DBS). Detection of aflatoxins (AFB1, AFB2, AFG1, AFG2, AFM1), trichothecenes (deoxynivalenol, DON; DON-3-glucoronic acid, DON-3-GlcA; T-2; HT-2; and HT-2-4-GlcA), fumonisin B1 (FB1), ochratoxins (OTA and its thermal degradation product 2'R-OTA; OTα; 10-hydroxychratoxin A, 10-OH-OTA), citrinin (CIT and its urinary metabolite dihydrocitrinone, DH-CIT), zearalenone and zearalanone (ZEN, ZAN), altenuene (ALT), alternariols (AOH; alternariol monomethyl ether, AME), enniatins (EnA, EnA1, EnB, EnB1) and beauvericin (Bea) was validated for two matrices, serum (DSS), and whole blood (DBS). HPLC-MS/MS analysis showed signal suppression as well as signal enhancement due to matrix effects. However, for most analytes LOQs in the lower pg/mL range and excellent recovery rate were achieved using matrix-matched calibration. Besides validation of the method, the analyte stability in DBS and DSS was also investigated. Stability is a main issue for some analytes when the dried samples are stored under common conditions at room temperature. Nevertheless, the developed method was applied to DBS samples of a German cohort (n = 50). Besides positive findings of OTA and 2'R-OTA, all samples were positive for EnB. This methodical study establishes a validated multi-mycotoxin approach for the detection of 27 mycotoxins and metabolites in dried blood/serum spots based on a fast sample preparation followed by sensitive HPLC-MS/MS analysis. Graphical Abstract ᅟ.
Collapse
|
9
|
Wielogórska E, MacDonald S, Elliott C. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the recent years, mycotoxins have undoubtedly gained a keen interest of the scientific community studying food safety. The main reason is their profound impact on both human and animal health. International surveys reveal a low percentage of feed samples being contaminated above permitted/guideline levels, developed to protect consumers of animal derived products. However, the deleterious impact of feed co-contaminated at low levels with numerous both known and regulated as well as novel mycotoxins on producing animals has been described. Associated effects on agro-economics world-wide include substantial pecuniary losses which are borne by the society as a whole. Even though good agronomic practice is thought to be the most effective way of preventing animal feed contamination, the EC have recognised the need to introduce an additional means of management of feed already contaminated with low-levels of mycotoxins to alleviate detrimental effects on agricultural production efficiency. This review discusses types of feed detoxifying agents described in scientific literature, their reported efficacy in both in vitro and in vivo systems, and comparison with available commercial formulations in the light of increasing knowledge regarding mycotoxin prevalence in the changing global environment.
Collapse
Affiliation(s)
- E. Wielogórska
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| | - S. MacDonald
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - C.T. Elliott
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| |
Collapse
|
10
|
Broekaert N, Devreese M, De Mil T, Fraeyman S, De Baere S, De Saeger S, De Backer P, Croubels S. Development and validation of an LC-MS/MS method for the toxicokinetic study of deoxynivalenol and its acetylated derivatives in chicken and pig plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 971:43-51. [PMID: 25264912 DOI: 10.1016/j.jchromb.2014.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/27/2022]
Abstract
This study aims to develop an LC-MS/MS method allowing the determination of 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, deoxynivalenol and its main in vivo metabolite, deepoxy-deoxynivalenol, in broiler chickens and pigs. These species have a high exposure to these toxins, given their mainly cereal based diet. Several sample cleanup strategies were tested and further optimized by means of fractional factorial designs. A simple and straightforward sample preparation method was developed consisting out of a deproteinisation step with acetonitrile, followed by evaporation of the supernatant and reconstitution in water. The method was single laboratory validated according to European guidelines and found to be applicable for the intended purpose, with a linear response up to 200ngml(-1) and limits of quantification of 0.1-2ngml(-1). As a proof of concept, biological samples from a broiler chicken that received either deoxynivalenol, 3- or 15-acetyl-deoxynivalenol were analyzed. Preliminary results indicate nearly complete hydrolysis of 3-acetyl-deoxynivalenol to deoxynivalenol; and to a lesser extent of 15-acetyl-deoxynivalenol to deoxynivalenol. No deepoxy-deoxynivalenol was detected in any of the plasma samples. The method will be applied to study full toxicokinetic properties of deoxynivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol in broiler chickens and pigs.
Collapse
Affiliation(s)
- N Broekaert
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - M Devreese
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - T De Mil
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S Fraeyman
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S De Baere
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S De Saeger
- Ghent University, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Laboratory of Food Analysis, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - P De Backer
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S Croubels
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
11
|
Lipopolysaccharides (LPS) modulate the metabolism of deoxynivalenol (DON) in the pig. Mycotoxin Res 2014; 30:161-70. [PMID: 24948114 DOI: 10.1007/s12550-014-0201-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/13/2023]
Abstract
Pigs might be exposed to lipopolysaccharides (LPS) and deoxynivalenol (DON) at the same time, and both toxins are thought to interactively affect the intestinal barrier, the innate immune system, and the xenobiotics metabolism. Hence, we aimed at examining the single and combined effects of both toxins on nutrient digestibility and DON metabolism. For this purpose, barrows (26 ± 4 kg) were fed restrictedly either a control diet (CON) or a diet contaminated with 3.1 mg DON/kg (DON) for 37 days. At day 37 of the experiment, pigs were infused intravenously for 60 min either with 100 μg DON/kg body weight (BW) (CON-DON), 7.5 μg LPS/kg BW (CON-LPS, DON-LPS) or a combination of both substances (CON-DON + LPS), or physiological saline (CON-CON, DON-CON). Blood samples were collected frequently until 3.25 h before the pigs were sacrificed for bile, liver, and kidney collection. The apparent digestibility of N-free extractives was significantly increased by 1 % when the DON-contaminated diet was fed. The total DON content in blood was significantly higher in endotoxemic pigs (34.8 ng/mL; CON-DON + LPS) when compared to the pigs infused with DON alone (18.8 ng/mL; CON-DON) while bile concentrations were not influenced by LPS. DON residue levels in liver and kidney closely reflected the treatment effects as described for blood. In contrast to DON infusion, the LPS challenge resulted in a significantly lower total DON concentration (13.2 vs. 7.5 ng/mL in groups DON-CON and DON-LPS, respectively) when the pigs were exposed to DON through the diet. The conjugation degree for DON in blood and bile was not influenced by treatments. In conclusion, endotoxemic pigs are characterized by higher DON residue levels in blood, liver, and kidney, probably by a compromised elimination.
Collapse
|
12
|
Dänicke S, Brezina U. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem Toxicol 2013; 60:58-75. [DOI: 10.1016/j.fct.2013.07.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
13
|
Kullik K, Brosig B, Kersten S, Valenta H, Diesing AK, Panther P, Reinhardt N, Kluess J, Rothkötter HJ, Breves G, Dänicke S. Interactions between the Fusarium toxin deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food Chem Toxicol 2013; 57:11-20. [DOI: 10.1016/j.fct.2013.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/31/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
14
|
Kullik K, Brosig B, Kersten S, Valenta H, Diesing AK, Panther P, Reinhardt N, Kluess J, Rothkötter HJ, Breves G, Dänicke S. Interactions of deoxynivalenol and lipopolysaccharides on tissue protein synthesis in pigs. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Possible interactions between the Fusarium toxin deoxynivalenol and lipopolysaccharides on in vivo protein synthesis were investigated in selected porcine tissues. A total of 36 male castrated pigs (initial weight of 26 kg) were used. 24 pigs were fed a control diet and 12 a Fusarium-contaminated diet (chronic oral deoxynivalenol, 3.1 mg/kg diet) for 37 days. Tissue protein synthesis was measured in pigs fed control diet after intravenous infusion of deoxynivalenol (100 µg/kg live weight/h), lipopolysaccharides (7.5 µg/kg live weight/h) or a combination of both compounds on the day of the measurements, while six pigs from the chronic oral deoxynivalenol group were intravenously treated with lipopolysaccharides (7.5 µg/kg live weight/h). Deoxynivalenol challenge alone failed to alter protein synthesis parameters. Fractional protein synthesis rates were exclusively reduced in liver, spleen and small intestine of lipopolysaccharides-treated pigs. Intravenous deoxynivalenol co-exposure enhanced the impacts of lipopolysaccharides on protein synthesis parameters in the spleen and the small intestine to some extent, while a chronic oral pre-exposure with deoxynivalenol relieved its effects in the spleen. Whether these interactions occur in other tissues and under other study conditions, especially toxin doses and route of entry into the body, needs to be examined further.
Collapse
Affiliation(s)
- K. Kullik
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - B. Brosig
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - S. Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - H. Valenta
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - A.-K. Diesing
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - P. Panther
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - N. Reinhardt
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - J. Kluess
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - H.-J. Rothkötter
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - G. Breves
- Department of Physiology, University of Veterinary Medicine, Buenteweg 17, 30559 Hannover, Germany
| | - S. Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| |
Collapse
|